diabetestalk.net

Why Ketone Bodies Are Formed?

Ketone Bodies Metabolism

Ketone Bodies Metabolism

1. Metabolism of ketone bodies Gandham.Rajeev Email:[email protected] 2. • Carbohydrates are essential for the metabolism of fat or FAT is burned under the fire of carbohydrates. • Acetyl CoA formed from fatty acids can enter & get oxidized in TCA cycle only when carbohydrates are available. • During starvation & diabetes mellitus, acetyl CoA takes the alternate route of formation of ketone bodies. 3. • Acetone, acetoacetate & β-hydroxybutyrate (or 3-hydroxybutyrate) are known as ketone bodies • β-hydroxybutyrate does not possess a keto (C=O) group. • Acetone & acetoacetate are true ketone bodies. • Ketone bodies are water-soluble & energy yielding. • Acetone, it cannot be metabolized 4. CH3 – C – CH3 O Acetone CH3 – C – CH2 – COO- O Acetoacetate CH3 – CH – CH2 – COO- OH I β-Hydroxybutyrate 5. • Acetoacetate is the primary ketone body. • β-hydroxybutyrate & acetone are secondary ketone bodies. • Site: • Synthesized exclusively by the liver mitochondria. • The enzymes are located in mitochondrial matrix. • Precursor: • Acetyl CoA, formed by oxidation of fatty acids, pyruvate or some amino acids 6. • Ketone body biosynthesis occurs in 5 steps as follows. 1. Condensation: • Two molecules of acetyl CoA are condensed to form acetoacetyl CoA. • This reaction is catalyzed by thiolase, an enzyme involved in the final step of β- oxidation. 7. • Acetoacetate synthesis is appropriately regarded as the reversal of thiolase reaction of fatty acid oxidation. 2. Production of HMG CoA: • Acetoacetyl CoA combines with another molecule of acetyl CoA to produce β-hydroxy β-methyl glutaryl CoA (HMC CoA). • This reaction is catalyzed by the enzyme HMG CoA synthase. 8. • Mitochondrial HMG CoA is used for ketogenesis. Continue reading >>

Ketone Bodies Formed In The Liver Are Exported To Other Organs

Ketone Bodies Formed In The Liver Are Exported To Other Organs

Ketone Bodies In human beings and most other mammals, acetyl-CoA formed in the liver during oxidation of fatty acids may enter the citric acid cycle (stage 2 of Fig. 16-7) or it may be converted to the "ketone bodies" acetoacetate, D-β-hydroxybutyrate, and acetone for export to other tissues. (The term "bodies" is a historical artifact; these compounds are soluble in blood and urine.) Acetone, produced in smaller quantities than the other ketone bodies, is exhaled. Acetoacetate and D-β-hydroxybutyrate are transported by the blood to the extrahepatic tissues, where they are oxidized via the citric acid cycle to provide much of the energy required by tissues such as skeletal and heart muscle and the renal cortex. The brain, which normally prefers glucose as a fuel, can adapt to the use of acetoacetate or D-β-hydroxybutyrate under starvation conditions, when glucose is unavailable. A major determinant of the pathway taken by acetyl-CoA in liver mitochondria is the availability of oxaloacetate to initiate entry of acetyl-CoA into the citric acid cycle. Under some circumstances (such as starvation) oxaloacetate is drawn out of the citric acid cycle for use in synthesizing glucose. When the oxaloacetate concentration is very low, little acetyl-CoA enters the cycle, and ketone body formation is favored. The production and export of ketone bodies from the liver to extrahepatic tissues allows continued oxidation of fatty acids in the liver when acetyl-CoA is not being oxidized via the citric acid cycle. Overproduction of ketone bodies can occur in conditions of severe starvation and in uncontrolled diabetes. The first step in formation of acetoacetate in the liver (Fig. 16-16) is the enzymatic condensation of two molecules of acetyl-CoA, catalyzed by thiolase; this is simply Continue reading >>

Ketone Body Metabolism

Ketone Body Metabolism

Ketone body metabolism includes ketone body synthesis (ketogenesis) and breakdown (ketolysis). When the body goes from the fed to the fasted state the liver switches from an organ of carbohydrate utilization and fatty acid synthesis to one of fatty acid oxidation and ketone body production. This metabolic switch is amplified in uncontrolled diabetes. In these states the fat-derived energy (ketone bodies) generated in the liver enter the blood stream and are used by other organs, such as the brain, heart, kidney cortex and skeletal muscle. Ketone bodies are particularly important for the brain which has no other substantial non-glucose-derived energy source. The two main ketone bodies are acetoacetate (AcAc) and 3-hydroxybutyrate (3HB) also referred to as β-hydroxybutyrate, with acetone the third, and least abundant. Ketone bodies are always present in the blood and their levels increase during fasting and prolonged exercise. After an over-night fast, ketone bodies supply 2–6% of the body's energy requirements, while they supply 30–40% of the energy needs after a 3-day fast. When they build up in the blood they spill over into the urine. The presence of elevated ketone bodies in the blood is termed ketosis and the presence of ketone bodies in the urine is called ketonuria. The body can also rid itself of acetone through the lungs which gives the breath a fruity odour. Diabetes is the most common pathological cause of elevated blood ketones. In diabetic ketoacidosis, high levels of ketone bodies are produced in response to low insulin levels and high levels of counter-regulatory hormones. Ketone bodies The term ‘ketone bodies’ refers to three molecules, acetoacetate (AcAc), 3-hydroxybutyrate (3HB) and acetone (Figure 1). 3HB is formed from the reduction of AcAc i Continue reading >>

Ketosis, Ketone Bodies, And Ketoacidosis – An Excerpt From Modern Nutritional Diseases, 2nd Edition

Ketosis, Ketone Bodies, And Ketoacidosis – An Excerpt From Modern Nutritional Diseases, 2nd Edition

The following text is excerpted from Lipids (Chapter 8) of Modern Nutritional Diseases, 2nd Edition. Ketone Bodies and Ketosis: Ketones are organic chemicals in which an interior carbon in a molecule forms a double bond with an oxygen molecule. Acetone, a familiar chemical, is the smallest ketone possible. It is composed of three carbons, with the double bond to oxygen on the middle carbon. Biological ketone bodies include acetone, larger ketones, and biochemicals that can become ketones. The most important of the ketone bodies are hydroxybutyrate and acetoacetate, both of which are formed from condensation of two acetyl CoA molecules. Acetone is formed from a nonenzymatic decarboxylation of acetoacetate. Ketone bodies are fuel molecules that can be used for energy by all organs of the body except the liver. The production of ketone bodies is a normal, natural, and important biochemical pathway in animal biochemistry (17, p. 577). Small quantities of ketone bodies are always present in the blood, with the quantity increasing as hours without food increase. During fasting or carbohydrate deprivation, larger amounts of ketone bodies are produced to provide the energy that is normally provided by glucose. Excessive levels of circulating ketone bodies can result in ketosis, a condition in which the quantity of circulating ketone bodies is greater than the quantity the organs and tissues of the body need for energy. People who go on extremely low-carbohydrate diets to lose a large excess of body fat usually go into a mild ketosis that moderates as weight is lost. There is no scientific evidence that a low-carbohydrate diet is capable of producing sufficient ketone bodies to be harmful. Excess ketone bodies are excreted by the kidneys and lungs. Exhaled acetone gives the brea Continue reading >>

Ketone Bodies Mimic The Life Span Extending Properties Of Caloric Restriction

Ketone Bodies Mimic The Life Span Extending Properties Of Caloric Restriction

The extension of life span by caloric restriction has been studied across species from yeast and Caenorhabditis elegans to primates. No generally accepted theory has been proposed to explain these observations. Here, we propose that the life span extension produced by caloric restriction can be duplicated by the metabolic changes induced by ketosis. From nematodes to mice, extension of life span results from decreased signaling through the insulin/insulin-like growth factor receptor signaling (IIS) pathway. Decreased IIS diminishes phosphatidylinositol (3,4,5) triphosphate (PIP3) production, leading to reduced PI3K and AKT kinase activity and decreased forkhead box O transcription factor (FOXO) phosphorylation, allowing FOXO proteins to remain in the nucleus. In the nucleus, FOXO proteins increase the transcription of genes encoding antioxidant enzymes, including superoxide dismutase 2, catalase, glutathione peroxidase, and hundreds of other genes. An effective method for combating free radical damage occurs through the metabolism of ketone bodies, ketosis being the characteristic physiological change brought about by caloric restriction from fruit flies to primates. A dietary ketone ester also decreases circulating glucose and insulin leading to decreased IIS. The ketone body, d-β-hydroxybutyrate (d-βHB), is a natural inhibitor of class I and IIa histone deacetylases that repress transcription of the FOXO3a gene. Therefore, ketosis results in transcription of the enzymes of the antioxidant pathways. In addition, the metabolism of ketone bodies results in a more negative redox potential of the NADP antioxidant system, which is a terminal destructor of oxygen free radicals. Addition of d-βHB to cultures of C. elegans extends life span. We hypothesize that increasing t Continue reading >>

Reference Range

Reference Range

Acetoacetate, beta-hydroxybutyrate, and acetone are ketone bodies. In carbohydrate-deficient states, fatty-acid metabolism spurs acetoacetate accumulation. The reduction of acetoacetate in the mitochondria results in beta-hydroxybutyrate production. Beta-hydroxybutyrate and acetoacetate, the predominant ketone bodies, are rich in energy. Beta-hydroxybutyrate and acetoacetate transport energy from the liver to other tissues. Acetone forms from the spontaneous decarboxylation of acetoacetate. Acetone is the cause of the sweet odor on the breath in persons with ketoacidosis. [1, 2] Ketone bodies fuel the brain with an alternative source of energy (close to two thirds of its needs) during periods of prolonged fasting or starvation, when the brain cannot use fatty acids for energy. The reference range for ketone is a negative value, at less than 1 mg/dL (< 0.1 mmol/L). [3] Continue reading >>

Ketone Bodies

Ketone Bodies

Sort Ketone Bodies -->Represent 3 molecules that are formed when excess acetyl CoA cannot enter the TCA Cycle -->Represents 3 major molecules: 1)Acetoacetate 2)β-Hydroxybutyrate 3)Acetone -->Normal people produces ketones at a low rate -->Are only formed in the **LIVER**(by liver mitochondria) Reactions that lead to the formation of ketone bodies (***See pwrpt***) 1)2 Acetyl CoA molecules condense to form ***Acetoacetyl-CoA -->Is catalyzed by THIOLASE -->Represent the oppostie of thiolysis step in the oxidation of fatty acids -->Represent the parent compound of the 3 ketone bodies (2)Acetoacetyl CoA then reacts with another mol. of acetyl CoA to form **HMG-CoA* (3-hydroxy-3-methylglutaryl CoA) & *CoA** -->Reaction is catalyzed by **HMG-CoA Synthetase** -->HMG-CoA has 2 fates (can either progress to form ketone bodies OR can enter the pathway of CHOLESTEROL synthesis) -->Represent the **RATE-LIMITING STEP** in the synthesis of ketone bodies (3)HMG-CoA is cleaved to form **Acetoacetate**(First major ketone; represent ~20% of ketones) & another mol. of acetyl CoA -->Catalyzed by **HMG-CoA Lyase** (4) Acetoacetae can lead to the formation of β-hydroxybutyrate (~78% of ketone bodies) & Acetone (~2% of ketone bodies) via 2 separte reactions Interrelationships of the ketone bodies from Acetoacetate (1)Formation of β-hydroxybutyrate -->Acetoacetate will be reduced to form β-hyroxybutyrate in the mitochondrial matrix of the liver cell -->Is a REVERSIBLE RXN. -->Requires 1 mol of NADH (***Dependent on the NADH/NAD ratio inside the mitochondria) -->Catalyzed by β-hydroxybutyrate dehydrogenase (2)Formation of Acetone -->A slower, **spontaneous** decarboxylation to acetone -->In **DIABETIC KETOACIDOSIS, acetone imparts a characteristic smell to the patient's breath Features of Continue reading >>

Ketone Bodies

Ketone Bodies

The term “ketone bodies” refers primarily to two compounds: acetoacetate and β‐hydroxy‐butyrate, which are formed from acetyl‐CoA when the supply of TCA‐cycle intermediates is low, such as in periods of prolonged fasting. They can substitute for glucose in skeletal muscle, and, to some extent, in the brain. The first step in ketone body formation is the condensation of two molecules of acetyl‐CoA in a reverse of the thiolase reaction. The product, acetoacetyl‐CoA, accepts another acetyl group from acetyl‐CoA to form β‐hydroxy‐β‐hydroxymethylglutaryl‐CoA (HMG‐CoA). HMG‐CoA has several purposes: It serves as the initial compound for cholesterol synthesis or it can be cleaved to acetoacetate and acetyl‐CoA. Acetoacetate can be reduced to β‐hydroxybutyrate or can be exported directly to the bloodstream. Acetoacetate and β‐hydroxybutyrate circulate in the blood to provide energy to the tissues. Acetoacetate can also spontaneously decarboxylate to form acetone: Although acetone is a very minor product of normal metabolism, diabetics whose disease is not well‐managed often have high levels of ketone bodies in their circulation. The acetone that is formed from decarboxylation of acetoacetate is excreted through the lungs, causing characteristic “acetone breath.” Continue reading >>

Triacylglycerol Metabolism

Triacylglycerol Metabolism

Various types of lipids occur in the human body, namely This chapter will focus on triacylglycerol; cholesterol will be covered in a separate chapter. The metabolism of polar lipids will not be covered systematically. In contrast to polar lipids and cholesterol, which are found in the membranes of every cell, triacylglycerol is concentrated mostly in adipose (fat) tissue; minor amounts of triacylglycerol occur in other cell types, such as liver epithelia and skeletal muscle fibers. Yet, overall, triacylglycerol is the most abundant lipid species, and the only one with an important role in energy metabolism. Triacylglycerol occurs in human metabolism in two roles, namely1)as a foodstuff, which accounts for a significant fraction of our caloric intake, and 2)as a store of metabolic energy. This store can be replenished using dietary triacylglycerol or through endogenous synthesis from carbohydrates or proteins. The amount of energy stored per gram of tissue is far higher in fat than in any other tissue, for two reasons: 1.One gram of triacylglycerol itself contains more than twice as many calories as one gram of carbohydrates or protein. This is simply because triacylglycerol contains much less oxygen than carbohydrates, in which oxygen contributes half the mass but essentially no metabolic energy. Similarly, the oxygen, nitrogen and sulfur contained in protein detract from its energy density. 2.Triacylglycerol in fat cells coalesces to droplets that are entirely free of water. In contrast, protein and carbohydrates, including glycogen, always remain hydrated, which further diminishes the density of energy storage. Because of its high energy density, it makes sense that most of the excess glucose or protein is converted to fat, while only a limited fraction is stored as g Continue reading >>

Urine - For Ketone, Ketone Bodies (ketonuria)

Urine - For Ketone, Ketone Bodies (ketonuria)

Sample The is done on the urine. Indication It is advised in diabetic patients for the early diagnosis of ketoacidosis. To evaluate the diabetic patient in a coma. Definition Increased ketone bodies in blood are called Ketonemia. Increased excretion in the urine is called Ketonuria. Pathophysiology Ketone bodies are seen in case of decreased availability of carbohydrates like starvation or frequent vomiting. Another possibility is decreased utilization of carbohydrates like diabetes mellitus, and glycogen storage disease. High fat and low carbohydrates diet are ketogenic and increase ketone bodies in the blood. Ketones are the end product of fatty acid catabolism. Ketones are formed when the glucose as a source of energy is not present. This situation happens when there is no insulin so glucose cannot enter the cells. In that case, ketone bodies are the source of energy for the body, particularly to the brain. In case of fasting for 3 to 4 days, then 30 to 40% body energy is provided by the ketone bodies. Ketones bodies are the end product of fatty acid breakdown and consists of : Beta-hydroxybutyric acid. Acetoacetic acid. Acetone. The β- hydroxybutyric acid + acetoacetic acid readily converts to acetone. In the blood: Acetone is the minor amount. Acetoacetate and β- hydroxybutyrate are equal in amount and are the main ketone bodies. in a healthy person, ketones are formed in the liver but there is a negligible amount in urine. The outcome of Increased Ketones in the blood leads to : Electrolyte imbalance. Dehydration. If not corrected then leads to acidosis coma and ultimately death. Ketones are present in the urine when a threshold level of ketones exceed the normal level in the blood. Normal In Urine Ketone bodies are negative. Small amount = < 20 mg/dL. Moderate Continue reading >>

Ketone Bodies

Ketone Bodies

Ketone bodies Acetone Acetoacetic acid (R)-beta-Hydroxybutyric acid Ketone bodies are three water-soluble molecules (acetoacetate, beta-hydroxybutyrate, and their spontaneous breakdown product, acetone) that are produced by the liver from fatty acids[1] during periods of low food intake (fasting), carbohydrate restrictive diets, starvation, prolonged intense exercise,[2], alcoholism or in untreated (or inadequately treated) type 1 diabetes mellitus. These ketone bodies are readily picked up by the extra-hepatic tissues, and converted into acetyl-CoA which then enters the citric acid cycle and is oxidized in the mitochondria for energy.[3] In the brain, ketone bodies are also used to make acetyl-CoA into long-chain fatty acids. Ketone bodies are produced by the liver under the circumstances listed above (i.e. fasting, starving, low carbohydrate diets, prolonged exercise and untreated type 1 diabetes mellitus) as a result of intense gluconeogenesis, which is the production of glucose from non-carbohydrate sources (not including fatty acids).[1] They are therefore always released into the blood by the liver together with newly produced glucose, after the liver glycogen stores have been depleted (these glycogen stores are depleted after only 24 hours of fasting)[1]. When two acetyl-CoA molecules lose their -CoAs, (or Co-enzyme A groups) they can form a (covalent) dimer called acetoacetate. Beta-hydroxybutyrate is a reduced form of acetoacetate, in which the ketone group is converted into an alcohol (or hydroxyl) group (see illustration on the right). Both are 4-carbon molecules, that can readily be converted back into acetyl-CoA by most tissues of the body, with the notable exception of the liver. Acetone is the decarboxylated form of acetoacetate which cannot be converted Continue reading >>

Ketone Bodies Metabolic Pathway (pw:0000069)

Ketone Bodies Metabolic Pathway (pw:0000069)

Description The ketone bodies metabolic pathway is used to convert acetyl-CoA formed in the liver into "ketone bodies": acetone, and more importantly acetoacetate and 3-hydroxybutyrate, which are transported in the blood to extrahepatic tissues where they are converted to acetyl-CoA and oxidized via the citrate cycle pathway for energy. The brain, which usually uses glucose for energy, can utilize ketone bodies under starvation conditions, when glucose is not available. When acetyl-CoA is not being metaboli...(more) Description: ENCODES a protein that exhibits 3-hydroxybutyrate dehydrogenase activity (ortholog); NAD binding (ortholog); oxidoreductase activity, acting on the CH-CH group of donors, NAD or NADP as acceptor (ortholog); INVOLVED IN epithelial cell differentiation (ortholog); fatty acid beta-oxidation (ortholog); heme metabolic process (ortholog); PARTICIPATES IN butanoate metabolic pathway; ketone bodies metabolic pathway; FOUND IN cytoplasm (ortholog); cytosol (ortholog); extracellular exosome (ortholog); INTERACTS WITH 2,3,7,8-tetrachlorodibenzodioxine; 2,4-dinitrotoluene; 2,6-dinitrotoluene Continue reading >>

Ketone Body Formation

Ketone Body Formation

Ketone body formation occurs as an alternative energy source during times of prolonged stress e.g. starvation. It occurs in the liver from an initial substrate of: long chain fatty acids; the fatty acids undergo beta-oxidation by their normal pathway within mitochondria until acetyl-CoA is produced, or ketogenic amino acids; amino acids such as leucine and lysine, released at times of energy depletion, are interconverted only to acetyl-CoA Then, three molecules of acetyl-CoA are effectively joined together in three enzyme steps sequentially catalyzed by: acetyl CoA acetyltransferase HMG-CoA transferase HMG-CoA lyase Coenzyme A is regenerated and the ketone body acetoacetate is formed. Finally, acetoacetate is reduced to another ketone body, D-3-hydroxybutyrate, in a reaction catalyzed by 3-hydroxybutyrate dehydrogenase. This requires NADH. The oxidate state of the liver is such that the forward reaction is generally favoured; this results in more hydroxybutyrate being formed than acetoacetate. Continue reading >>

Ketone Bodies: Formation And Utilisation | Living Organisms | Biology

Ketone Bodies: Formation And Utilisation | Living Organisms | Biology

ADVERTISEMENTS: In this article we will discuss about:- 1. Formation of Ketone Bodies 2. Conditions Leading to Ketosis 3. Source 4. Utilisation 5. Interrelation with Carbohydrate Metabolism 6. Ratio 7. Relation of Ketosis with Blood and Urine Reaction 8. Role of Endocrine. Formation of Ketone Bodies (Ketogenesis): It has been observed that acetyl CoA produced during fatty acid oxidation condense with oxalo-acetic acid for oxidation in the TCA cycle. The oxalo-acetic acid formation is depressed when glucose supply is restricted so that in this condition acetyl CoA cannot be properly metabolized through citric acid cycle. Thus acetyl CoA condenses to form aceto-acetyl CoA which in the liver produces aceto-acetic acid. The aceto-acetic acid is reduced to form β-hydroxybutyric acid which after decarboxylation forms acetones. Acetoacetic acid, acetone and β-hydroxybutyric acid are called ketone bodies. The process of formation of ketone bodies is called ketogenesis. Normally the ketone bodies are utilized without being accumulated in the body, but they may be abnormally accumulated in body fluids known as ketosis and excreted through the urine called ketonuria (or acetonuria). Its accumulation in the blood is called ketonemia. Site of Formation of Ketone Bodies: Liver is perhaps the only site where ketone bodies are normally formed since concentration of ketone bodies have been found to be higher in the hepatic vein than in other veins. Antiketogenic Substances: These are substances which prevent the formation of ketone bodies. They include the following: (1) All carbohydrates, (2) 60% of proteins (antiketogenic amino acids) from which sugar may be formed and (3) 10% of fats (the glycerol part) Conditions Leading to Ketosis: The following conditions produce ketosis: (a) Di Continue reading >>

What Are Ketone Bodies And Why Are They In The Body?

What Are Ketone Bodies And Why Are They In The Body?

If you eat a calorie-restricted diet for several days, you will increase the breakdown of your fat stores. However, many of your tissues cannot convert these fatty acid products directly into ATP, or cellular energy. In addition, glucose is in limited supply and must be reserved for red blood cells -- which can only use glucose for energy -- and brain tissues, which prefer to use glucose. Therefore, your liver converts many of these fatty acids into ketone bodies, which circulate in the blood and provide a fuel source for your muscles, kidneys and brain. Video of the Day Low fuel levels in your body, such as during an overnight fast or while you are dieting, cause hormones to increase the breakdown of fatty acids from your stored fat tissue. These fatty acids travel to the liver, where enzymes break the fatty acids into ketone bodies. The ketone bodies are released into the bloodstream, where they travel to tissues that have the enzymes to metabolize ketone bodies, such as your muscle, brain, kidney and intestinal cells. The breakdown product of ketone bodies goes through a series of steps to form ATP. Conditions of Ketone Body Utilization Your liver will synthesize more ketone bodies for fuel whenever your blood fatty acid levels are elevated. This will happen in response to situations that promote low blood glucose, such as an overnight fast, prolonged calorie deficit, a high-fat and low-carbohydrate diet, or during prolonged low-intensity exercise. If you eat regular meals and do not typically engage in extremely long exercise sessions, the level of ketone bodies in your blood will be highest after an overnight fast. This level will drop when you eat breakfast and will remain low as long as you eat regular meals with moderate to high carbohydrate content. Ketone Bodi Continue reading >>

More in ketosis