diabetestalk.net

Why Is Potassium High In Ketoacidosis

Management Of Diabetic Ketoacidosis In Children And Adolescents

Management Of Diabetic Ketoacidosis In Children And Adolescents

Objectives After completing this article, readers should be able to: Describe the typical presentation of diabetic ketoacidosis in children. Discuss the treatment of diabetic ketoacidosis. Explain the potential complications of diabetic ketoacidosis that can occur during treatment. Introduction Diabetic ketoacidosis (DKA) represents a profound insulin-deficient state characterized by hyperglycemia (>200 mg/dL [11.1 mmol/L]) and acidosis (serum pH <7.3, bicarbonate <15 mEq/L [15 mmol/L]), along with evidence of an accumulation of ketoacids in the blood (measurable serum or urine ketones, increased anion gap). Dehydration, electrolyte loss, and hyperosmolarity contribute to the presentation and potential complications. DKA is the most common cause of death in children who have type 1 diabetes. Therefore, the best treatment of DKA is prevention through early recognition and diagnosis of diabetes in a child who has polydipsia and polyuria and through careful attention to the treatment of children who have known diabetes, particularly during illnesses. Presentation Patients who have DKA generally present with nausea and vomiting. In individuals who have no previous diagnosis of diabetes mellitus, a preceding history of polyuria, polydipsia, and weight loss usually can be elicited. With significant ketosis, patients may have a fruity breath. As the DKA becomes more severe, patients develop lethargy due to the acidosis and hyperosmolarity; in severe DKA, they may present with coma. Acidosis and ketosis cause an ileus that can lead to abdominal pain severe enough to raise concern for an acutely inflamed abdomen, and the elevation of the stress hormones epinephrine and cortisol in DKA can lead to an elevation in the white blood cell count, suggesting infection. Thus, leukocytosi Continue reading >>

Electrolyte Imbalance In Diabetic Ketoacidosis

Electrolyte Imbalance In Diabetic Ketoacidosis

If you have diabetes, it's important to be familiar with diabetic ketoacidosis (DKA). DKA is a serious complication of diabetes that occurs when lack of insulin and high blood sugar lead to potentially life-threatening chemical imbalances. The good news is DKA is largely preventable. Although DKA is more common with type 1 diabetes, it can also occur with type 2 diabetes. High blood sugar causes excessive urination and spillage of sugar into the urine. This leads to loss of body water and dehydration as well as loss of important electrolytes, including sodium and potassium. The level of another electrolyte, bicarbonate, also falls as the body tries to compensate for excessively acidic blood. Video of the Day Insulin helps blood sugar move into cells, where it is used for energy production. When insulin is lacking, cells must harness alternative energy by breaking down fat. Byproducts of this alternative process are called ketones. High concentrations of ketones acidify the blood, hence the term "ketoacidosis." Acidosis causes unpleasant symptoms like nausea, vomiting and rapid breathing. Bicarbonate is an electrolyte that normally counteracts blood acidity. In DKA, the bicarbonate level falls as ketone production increases and acidosis progresses. Treatment of DKA includes prompt insulin supplementation to lower blood sugar, which leads to gradual restoration of the bicarbonate level. Potassium may be low in DKA because this electrolyte is lost due to excessive urination or vomiting. When insulin is used to treat DKA, it can further lower the blood potassium by pushing it into cells. Symptoms associated with low potassium include fatigue, muscle weakness, muscle cramps and an irregular heart rhythm. Severely low potassium can lead to life-threatening heart rhythm abnorm Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Initial Evaluation Initial evaluation of patients with DKA includes diagnosis and treatment of precipitating factors (Table 14–18). The most common precipitating factor is infection, followed by noncompliance with insulin therapy.3 While insulin pump therapy has been implicated as a risk factor for DKA in the past, most recent studies show that with proper education and practice using the pump, the frequency of DKA is the same for patients on pump and injection therapy.19 Common causes by frequency Other causes Selected drugs that may contribute to diabetic ketoacidosis Infection, particularly pneumonia, urinary tract infection, and sepsis4 Inadequate insulin treatment or noncompliance4 New-onset diabetes4 Cardiovascular disease, particularly myocardial infarction5 Acanthosis nigricans6 Acromegaly7 Arterial thrombosis, including mesenteric and iliac5 Cerebrovascular accident5 Hemochromatosis8 Hyperthyroidism9 Pancreatitis10 Pregnancy11 Atypical antipsychotic agents12 Corticosteroids13 FK50614 Glucagon15 Interferon16 Sympathomimetic agents including albuterol (Ventolin), dopamine (Intropin), dobutamine (Dobutrex), terbutaline (Bricanyl),17 and ritodrine (Yutopar)18 DIFFERENTIAL DIAGNOSIS Three key features of diabetic acidosis are hyperglycemia, ketosis, and acidosis. The conditions that cause these metabolic abnormalities overlap. The primary differential diagnosis for hyperglycemia is hyperosmolar hyperglycemic state (Table 23,20), which is discussed in the Stoner article21 on page 1723 of this issue. Common problems that produce ketosis include alcoholism and starvation. Metabolic states in which acidosis is predominant include lactic acidosis and ingestion of drugs such as salicylates and methanol. Abdominal pain may be a symptom of ketoacidosis or part of the inci Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Practice Essentials Diabetic ketoacidosis (DKA) is an acute, major, life-threatening complication of diabetes that mainly occurs in patients with type 1 diabetes, but it is not uncommon in some patients with type 2 diabetes. This condition is a complex disordered metabolic state characterized by hyperglycemia, ketoacidosis, and ketonuria. Signs and symptoms The most common early symptoms of DKA are the insidious increase in polydipsia and polyuria. The following are other signs and symptoms of DKA: Nausea and vomiting; may be associated with diffuse abdominal pain, decreased appetite, and anorexia History of failure to comply with insulin therapy or missed insulin injections due to vomiting or psychological reasons or history of mechanical failure of insulin infusion pump Altered consciousness (eg, mild disorientation, confusion); frank coma is uncommon but may occur when the condition is neglected or with severe dehydration/acidosis Signs and symptoms of DKA associated with possible intercurrent infection are as follows: See Clinical Presentation for more detail. Diagnosis On examination, general findings of DKA may include the following: Characteristic acetone (ketotic) breath odor In addition, evaluate patients for signs of possible intercurrent illnesses such as MI, UTI, pneumonia, and perinephric abscess. Search for signs of infection is mandatory in all cases. Testing Initial and repeat laboratory studies for patients with DKA include the following: Serum electrolyte levels (eg, potassium, sodium, chloride, magnesium, calcium, phosphorus) Note that high serum glucose levels may lead to dilutional hyponatremia; high triglyceride levels may lead to factitious low glucose levels; and high levels of ketone bodies may lead to factitious elevation of creatinine levels. Continue reading >>

Understanding And Treating Diabetic Ketoacidosis

Understanding And Treating Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a serious metabolic disorder that can occur in animals with diabetes mellitus (DM).1,2 Veterinary technicians play an integral role in managing and treating patients with this life-threatening condition. In addition to recognizing the clinical signs of this disorder and evaluating the patient's response to therapy, technicians should understand how this disorder occurs. DM is caused by a relative or absolute lack of insulin production by the pancreatic b-cells or by inactivity or loss of insulin receptors, which are usually found on membranes of skeletal muscle, fat, and liver cells.1,3 In dogs and cats, DM is classified as either insulin-dependent (the body is unable to produce sufficient insulin) or non-insulin-dependent (the body produces insulin, but the tissues in the body are resistant to the insulin).4 Most dogs and cats that develop DKA have an insulin deficiency. Insulin has many functions, including the enhancement of glucose uptake by the cells for energy.1 Without insulin, the cells cannot access glucose, thereby causing them to undergo starvation.2 The unused glucose remains in the circulation, resulting in hyperglycemia. To provide cells with an alternative energy source, the body breaks down adipocytes, releasing free fatty acids (FFAs) into the bloodstream. The liver subsequently converts FFAs to triglycerides and ketone bodies. These ketone bodies (i.e., acetone, acetoacetic acid, b-hydroxybutyric acid) can be used as energy by the tissues when there is a lack of glucose or nutritional intake.1,2 The breakdown of fat, combined with the body's inability to use glucose, causes many pets with diabetes to present with weight loss, despite having a ravenous appetite. If diabetes is undiagnosed or uncontrolled, a series of metab Continue reading >>

Why Is There Hyperkalemia In Diabetic Ketoacidosis?

Why Is There Hyperkalemia In Diabetic Ketoacidosis?

Diabetic ketoacidosis is a complicated condition which can be caused if you are unable to effectively treat and manage your diabetes. In this condition, ketones are accumulated in the blood which can adversely affect your health. It can be a fatal condition and may cause a lot of complications. One such complication in diabetic ketoacidosis is the onset of hyperkalemia or the high levels of potassium in the blood. In this article, we shall try to understand as to why hyperkalemia is caused in diabetic ketoacidosis? So, read on “Why is There Hyperkalemia in Diabetic Ketoacidosis?” What is Diabetic Ketoacidosis and Hyperkalemia? Diabetic ketoacidosis is a serious complication that is faced by many patients suffering from diabetes. In this condition, excess blood acids called ketones are produced by the body. The above condition should not be taken lightly and should be immediately treated as the same can cause diabetic coma, and eventually the death of the patient. Hyperkalemia refers to abnormally high levels of potassium in the blood of an individual. For a healthy individual, the level of potassium is around 3.5 to 5 milliequivalents per liter. If you have potassium levels higher than that, that is somewhere in between 5.1 to 6 milliequivalents per liter, then you have a mild level of hyperkalemia. Similarly, if the level of potassium in your blood is somewhere between 6.1 to 7 milliequivalents per liter, you have moderate hyperkalemia. Anything above that, you may be suffering from what is known as severe hyperkalemia. Relation Between Diabetic Ketoacidosis and Hyperkalemia There appears to be a strong relationship between hyperkalemia and diabetic ketoacidosis. In the paragraph that follows, we shall try to analyze and understand the same: If you have diabetes an Continue reading >>

Magnesium, Calcium, Potassium And Diabetes

Magnesium, Calcium, Potassium And Diabetes

When it comes to minerals such as magnesium, calcium and potassium, people with diabetes may get too much of a good thing. While these minerals benefit your body in some ways, in others they are related to diabetes. Learn how these well-known minerals may have an impact on diabetes and other related health issues. Often referred to as one of the building blocks to life, magnesium is transported from your blood into your cells by insulin. When you have a magnesium deficiency, you may develop insulin resistance. This can be a precursor to conditions such as diabetes or heart disease. Insulin regulates the entry of sugar into the cells to create energy. A diet that includes the right amount of magnesium can help reduce your risk of developing these health conditions. The Recommended Daily Allowance (RDA) for magnesium for adult men is 410 to 420 mg/d and 310 to 320 mg/d for women, depending on your age. Recent studies show magnesium levels tend to be lower in people with diabetes. Other conditions linked to magnesium deficiency include cardiovascular disease, hypertension, and ketoacidosis as well as calcium deficiency and potassium deficiency. Certain diabetes medications can raise magnesium levels, such as Pioglitazone and Metformin. Include foods in your diet that have plenty of magnesium, such as almonds, whole grains and spinach. Your doctor may recommend taking magnesium supplements to help improve your insulin sensitivity and reduce your blood pressure. Always consult with your physician before taking magnesium supplements. Too much magnesium can lead to toxicity. Symptoms include nausea, muscle weakness, hypotension, irregular heartbeat and urine retention. Your doctor may decide to measure your serum magnesium levels. Potassium is frequently called an electrolyte Continue reading >>

Diabetic Ketoacidosis (dka)

Diabetic Ketoacidosis (dka)

Diabetic ketoacidosis is an acute metabolic complication of diabetes characterized by hyperglycemia, hyperketonemia, and metabolic acidosis. Hyperglycemia causes an osmotic diuresis with significant fluid and electrolyte loss. DKA occurs mostly in type 1 diabetes mellitus (DM). It causes nausea, vomiting, and abdominal pain and can progress to cerebral edema, coma, and death. DKA is diagnosed by detection of hyperketonemia and anion gap metabolic acidosis in the presence of hyperglycemia. Treatment involves volume expansion, insulin replacement, and prevention of hypokalemia. Diabetic ketoacidosis (DKA) is most common among patients with type 1 diabetes mellitus and develops when insulin levels are insufficient to meet the body’s basic metabolic requirements. DKA is the first manifestation of type 1 DM in a minority of patients. Insulin deficiency can be absolute (eg, during lapses in the administration of exogenous insulin) or relative (eg, when usual insulin doses do not meet metabolic needs during physiologic stress). Common physiologic stresses that can trigger DKA include Some drugs implicated in causing DKA include DKA is less common in type 2 diabetes mellitus, but it may occur in situations of unusual physiologic stress. Ketosis-prone type 2 diabetes is a variant of type 2 diabetes, which is sometimes seen in obese individuals, often of African (including African-American or Afro-Caribbean) origin. People with ketosis-prone diabetes (also referred to as Flatbush diabetes) can have significant impairment of beta cell function with hyperglycemia, and are therefore more likely to develop DKA in the setting of significant hyperglycemia. SGLT-2 inhibitors have been implicated in causing DKA in both type 1 and type 2 DM. Continue reading >>

Diabetic Ketoacidosis In Dogs

Diabetic Ketoacidosis In Dogs

My dog is diabetic. He has been doing pretty well overall, but recently he became really ill. He stopped eating well, started drinking lots of water, and got really weak. His veterinarian said that he had a condition called “ketoacidosis,” and he had to spend several days in the hospital. I’m not sure I understand this disorder. Diabetic ketoacidosis is a medical emergency that occurs when there is not enough insulin in the body to control blood sugar (glucose) levels. The body can’t use glucose properly without insulin, so blood glucose levels get very high, and the body creates ketone bodies as an emergency fuel source. When these are broken down, it creates byproducts that cause the body’s acid/base balance to shift, and the body becomes more acidic (acidosis), and it can’t maintain appropriate fluid balance. The electrolyte (mineral) balance becomes disrupted which can lead to abnormal heart rhythms and abnormal muscle function. If left untreated, diabetic ketoacidosis is fatal. How could this disorder have happened? If a diabetic dog undergoes a stress event of some kind, the body secretes stress hormones that interfere with appropriate insulin activity. Examples of stress events that can lead to diabetic ketoacidosis include infection, inflammation, and heart disease. What are the signs of diabetic ketoacidosis? The signs of diabetic ketoacidosis include: Excessive thirst/drinking Increased urination Lethargy Weakness Vomiting Increased respiratory rate Decreased appetite Weight loss (unplanned) with muscle wasting Dehydration Unkempt haircoat These same clinical signs can occur with other medical conditions, so it is important for your veterinarian to perform appropriate diagnostic tests to determine if diabetic ketoacidosis in truly the issue at hand Continue reading >>

Hyperkalaemia In Diabetic Ketoacidosis

Hyperkalaemia In Diabetic Ketoacidosis

Dear Editor, I have a brief comment on the informative ‘Lesson of the week’ by Moulik and colleagues, describing an association between hyperkalaemia and an ECG pattern suggesting acute myocardial infarction in a patient with diabetic ketoacidosis (DKA). One of the mechanisms of hyperkalaemia in DKA stated at the beginning of the Discussion is not strictly correct. It is inorganic acids, and not organic acids (including lactic acid), that cause hyperkalaemia as a result of potassium ions leaving cells in ‘exchange’ for hydrogen ion entry (and their intracellular buffering). In DKA, the key mechanism is lack of insulin, which is probably the most important short-term regulator of plasma potassium concentration (through stimulation of the cell ‘sodium’ pump – Na,K-ATPase) and defence against acute hyperkalaemia resulting from our daily intake of potassium (~80 mmol): The extracellular pool of potassium is around 65 mmol and could almost double after a single steak meal (~50 mmol), which is too rapid a change for compensatory renal excretion. In DKA, an additional mechanism is the osmotic shrinkage of cells as a result of the high plasma glucose concentration (and plasma osmolality), which steepens the intracellular to extracellular potassium concentration gradient and thereby causes an increase in potassium ion loss from cells. Of course, these observations do not materially alter the management of DKA, but only serve to emphasise the importance of inulin administration, glucose control and re-salination over the use (though not excluding it in severe metabolic acidosis) of bicarbonate, bearing in mind that such patients have usually become potassium depleted as a consequence of earlier increased renal losses, and therefore risk developing significant hypoka Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

The Facts Diabetic ketoacidosis (DKA) is a condition that may occur in people who have diabetes, most often in those who have type 1 (insulin-dependent) diabetes. It involves the buildup of toxic substances called ketones that make the blood too acidic. High ketone levels can be readily managed, but if they aren't detected and treated in time, a person can eventually slip into a fatal coma. DKA can occur in people who are newly diagnosed with type 1 diabetes and have had ketones building up in their blood prior to the start of treatment. It can also occur in people already diagnosed with type 1 diabetes that have missed an insulin dose, have an infection, or have suffered a traumatic event or injury. Although much less common, DKA can occasionally occur in people with type 2 diabetes under extreme physiologic stress. Causes With type 1 diabetes, the pancreas is unable to make the hormone insulin, which the body's cells need in order to take in glucose from the blood. In the case of type 2 diabetes, the pancreas is unable to make sufficient amounts of insulin in order to take in glucose from the blood. Glucose, a simple sugar we get from the foods we eat, is necessary for making the energy our cells need to function. People with diabetes can't get glucose into their cells, so their bodies look for alternative energy sources. Meanwhile, glucose builds up in the bloodstream, and by the time DKA occurs, blood glucose levels are often greater than 22 mmol/L (400 mg/dL) while insulin levels are very low. Since glucose isn't available for cells to use, fat from fat cells is broken down for energy instead, releasing ketones. Ketones accumulate in the blood, causing it to become more acidic. As a result, many of the enzymes that control the body's metabolic processes aren't able Continue reading >>

Diabetic Ketoacidosis Producing Extreme Hyperkalemia In A Patient With Type 1 Diabetes On Hemodialysis

Diabetic Ketoacidosis Producing Extreme Hyperkalemia In A Patient With Type 1 Diabetes On Hemodialysis

Hodaka Yamada1, Shunsuke Funazaki1, Masafumi Kakei1, Kazuo Hara1 and San-e Ishikawa2[1] Division of Endocrinology and Metabolism, Jichi Medical University Saitama Medical Center, Saitama, Japan [2] Division of Endocrinology and Metabolism, International University of Health and Welfare Hospital, Nasushiobara, Japan Summary Diabetic ketoacidosis (DKA) is a critical complication of type 1 diabetes associated with water and electrolyte disorders. Here, we report a case of DKA with extreme hyperkalemia (9.0 mEq/L) in a patient with type 1 diabetes on hemodialysis. He had a left frontal cerebral infarction resulting in inability to manage his continuous subcutaneous insulin infusion pump. Electrocardiography showed typical changes of hyperkalemia, including absent P waves, prolonged QRS interval and tented T waves. There was no evidence of total body water deficit. After starting insulin and rapid hemodialysis, the serum potassium level was normalized. Although DKA may present with hypokalemia, rapid hemodialysis may be necessary to resolve severe hyperkalemia in a patient with renal failure. Patients with type 1 diabetes on hemodialysis may develop ketoacidosis because of discontinuation of insulin treatment. Patients on hemodialysis who develop ketoacidosis may have hyperkalemia because of anuria. Absolute insulin deficit alters potassium distribution between the intracellular and extracellular space, and anuria abolishes urinary excretion of potassium. Rapid hemodialysis along with intensive insulin therapy can improve hyperkalemia, while fluid infusions may worsen heart failure in patients with ketoacidosis who routinely require hemodialysis. Background Diabetic ketoacidosis (DKA) is a very common endocrinology emergency. It is usually associated with severe circulatory Continue reading >>

Diabetic Ketoacidosis (dka)

Diabetic Ketoacidosis (dka)

Snap Shot A 12 year old boy, previously healthy, is admitted to the hospital after 2 days of polyuria, polyphagia, nausea, vomiting and abdominal pain. Vital signs are: Temp 37C, BP 103/63 mmHg, HR 112, RR 30. Physical exam shows a lethargic boy. Labs are notable for WBC 16,000, Glucose 534, K 5.9, pH 7.13, PCO2 is 20 mmHg, PO2 is 90 mmHg. Introduction Complication of type I diabetes result of ↓ insulin, ↑ glucagon, growth hormone, catecholamine Precipitated by infections drugs (steroids, thiazide diuretics) noncompliance pancreatitis undiagnosed DM Presentation Symptoms abdominal pain vomiting Physical exam Kussmaul respiration increased tidal volume and rate as a result of metabolic acidosis fruity, acetone odor severe hypovolemia coma Evaluation Serology blood glucose levels > 250 mg/dL due to ↑ gluconeogenesis and glycogenolysis arterial pH < 7.3 ↑ anion gap due to ketoacidosis, lactic acidosis ↓ HCO3- consumed in an attempt to buffer the increased acid hyponatremia dilutional hyponatremia glucose acts as an osmotic agent and draws water from ICF to ECF hyperkalemia acidosis results in ICF/ECF exchange of H+ for K+ moderate ketonuria and ketonemia due to ↑ lipolysis β-hydroxybutyrate > acetoacetate β-hydroxybutyrate not detected with normal ketone body tests hypertriglyceridemia due to ↓ in capillary lipoprotein lipase activity activated by insulin leukocytosis due to stress-induced cortisol release H2PO4- is increased in urine, as it is titratable acid used to buffer the excess H+ that is being excreted Treatment Fluids Insulin with glucose must prevent resultant hypokalemia and hypophosphatemia labs may show pseudo-hyperkalemia prior to administartion of fluid and insulin due to transcellular shift of potassium out of the cells to balance the H+ be Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Professor of Pediatric Endocrinology University of Khartoum, Sudan Introduction DKA is a serious acute complications of Diabetes Mellitus. It carries significant risk of death and/or morbidity especially with delayed treatment. The prognosis of DKA is worse in the extremes of age, with a mortality rates of 5-10%. With the new advances of therapy, DKA mortality decreases to > 2%. Before discovery and use of Insulin (1922) the mortality was 100%. Epidemiology DKA is reported in 2-5% of known type 1 diabetic patients in industrialized countries, while it occurs in 35-40% of such patients in Africa. DKA at the time of first diagnosis of diabetes mellitus is reported in only 2-3% in western Europe, but is seen in 95% of diabetic children in Sudan. Similar results were reported from other African countries . Consequences The latter observation is annoying because it implies the following: The late diagnosis of type 1 diabetes in many developing countries particularly in Africa. The late presentation of DKA, which is associated with risk of morbidity & mortality Death of young children with DKA undiagnosed or wrongly diagnosed as malaria or meningitis. Pathophysiology Secondary to insulin deficiency, and the action of counter-regulatory hormones, blood glucose increases leading to hyperglycemia and glucosuria. Glucosuria causes an osmotic diuresis, leading to water & Na loss. In the absence of insulin activity the body fails to utilize glucose as fuel and uses fats instead. This leads to ketosis. Pathophysiology/2 The excess of ketone bodies will cause metabolic acidosis, the later is also aggravated by Lactic acidosis caused by dehydration & poor tissue perfusion. Vomiting due to an ileus, plus increased insensible water losses due to tachypnea will worsen the state of dehydr Continue reading >>

Diabetic Ketoacidosis (dka)

Diabetic Ketoacidosis (dka)

Diabetic ketoacidosis is an acute metabolic complication of diabetes characterized by hyperglycemia, hyperketonemia, and metabolic acidosis. Hyperglycemia causes an osmotic diuresis with significant fluid and electrolyte loss. DKA occurs mostly in type 1 diabetes mellitus (DM). It causes nausea, vomiting, and abdominal pain and can progress to cerebral edema, coma, and death. DKA is diagnosed by detection of hyperketonemia and anion gap metabolic acidosis in the presence of hyperglycemia. Treatment involves volume expansion, insulin replacement, and prevention of hypokalemia. Diabetic ketoacidosis (DKA) is most common among patients with type 1 diabetes mellitus and develops when insulin levels are insufficient to meet the body’s basic metabolic requirements. DKA is the first manifestation of type 1 DM in a minority of patients. Insulin deficiency can be absolute (eg, during lapses in the administration of exogenous insulin) or relative (eg, when usual insulin doses do not meet metabolic needs during physiologic stress). Common physiologic stresses that can trigger DKA include Some drugs implicated in causing DKA include DKA is less common in type 2 diabetes mellitus, but it may occur in situations of unusual physiologic stress. Ketosis-prone type 2 diabetes is a variant of type 2 diabetes, which is sometimes seen in obese individuals, often of African (including African-American or Afro-Caribbean) origin. People with ketosis-prone diabetes (also referred to as Flatbush diabetes) can have significant impairment of beta cell function with hyperglycemia, and are therefore more likely to develop DKA in the setting of significant hyperglycemia. SGLT-2 inhibitors have been implicated in causing DKA in both type 1 and type 2 DM. Continue reading >>

More in ketosis