diabetestalk.net

Why Is Potassium Given In Diabetic Ketoacidosis?

Diabetic Ketoacidosis - Symptoms

Diabetic Ketoacidosis - Symptoms

A A A Diabetic Ketoacidosis Diabetic ketoacidosis (DKA) results from dehydration during a state of relative insulin deficiency, associated with high blood levels of sugar level and organic acids called ketones. Diabetic ketoacidosis is associated with significant disturbances of the body's chemistry, which resolve with proper therapy. Diabetic ketoacidosis usually occurs in people with type 1 (juvenile) diabetes mellitus (T1DM), but diabetic ketoacidosis can develop in any person with diabetes. Since type 1 diabetes typically starts before age 25 years, diabetic ketoacidosis is most common in this age group, but it may occur at any age. Males and females are equally affected. Diabetic ketoacidosis occurs when a person with diabetes becomes dehydrated. As the body produces a stress response, hormones (unopposed by insulin due to the insulin deficiency) begin to break down muscle, fat, and liver cells into glucose (sugar) and fatty acids for use as fuel. These hormones include glucagon, growth hormone, and adrenaline. These fatty acids are converted to ketones by a process called oxidation. The body consumes its own muscle, fat, and liver cells for fuel. In diabetic ketoacidosis, the body shifts from its normal fed metabolism (using carbohydrates for fuel) to a fasting state (using fat for fuel). The resulting increase in blood sugar occurs, because insulin is unavailable to transport sugar into cells for future use. As blood sugar levels rise, the kidneys cannot retain the extra sugar, which is dumped into the urine, thereby increasing urination and causing dehydration. Commonly, about 10% of total body fluids are lost as the patient slips into diabetic ketoacidosis. Significant loss of potassium and other salts in the excessive urination is also common. The most common Continue reading >>

Management Of Adult Diabetic Ketoacidosis

Management Of Adult Diabetic Ketoacidosis

Go to: Abstract Diabetic ketoacidosis (DKA) is a rare yet potentially fatal hyperglycemic crisis that can occur in patients with both type 1 and 2 diabetes mellitus. Due to its increasing incidence and economic impact related to the treatment and associated morbidity, effective management and prevention is key. Elements of management include making the appropriate diagnosis using current laboratory tools and clinical criteria and coordinating fluid resuscitation, insulin therapy, and electrolyte replacement through feedback obtained from timely patient monitoring and knowledge of resolution criteria. In addition, awareness of special populations such as patients with renal disease presenting with DKA is important. During the DKA therapy, complications may arise and appropriate strategies to prevent these complications are required. DKA prevention strategies including patient and provider education are important. This review aims to provide a brief overview of DKA from its pathophysiology to clinical presentation with in depth focus on up-to-date therapeutic management. Keywords: DKA treatment, insulin, prevention, ESKD Go to: Introduction In 2009, there were 140,000 hospitalizations for diabetic ketoacidosis (DKA) with an average length of stay of 3.4 days.1 The direct and indirect annual cost of DKA hospitalizations is 2.4 billion US dollars. Omission of insulin is the most common precipitant of DKA.2,3 Infections, acute medical illnesses involving the cardiovascular system (myocardial infarction, stroke) and gastrointestinal tract (bleeding, pancreatitis), diseases of the endocrine axis (acromegaly, Cushing’s syndrome), and stress of recent surgical procedures can contribute to the development of DKA by causing dehydration, increase in insulin counter-regulatory hor Continue reading >>

Severe Hyperkalaemia In Association With Diabetic Ketoacidosis In A Patient Presenting With Severe Generalized Muscle Weakness

Severe Hyperkalaemia In Association With Diabetic Ketoacidosis In A Patient Presenting With Severe Generalized Muscle Weakness

Diabetic ketoacidosis (DKA) is an acute, life‐threatening metabolic complication of diabetes mellitus. Hyperglycaemia, ketosis (ketonaemia or ketonuria) and acidosis are the cardinal features of DKA [1]. Other features that indicate the severity of DKA include volume depletion, acidosis and concurrent electrolyte disturbances, especially abnormalities of potassium homeostasis [1,2]. We describe a type 2 diabetic patient presenting with severe generalized muscle weakness and electrocardiographic evidence of severe hyperkalaemia in association with DKA and discuss the related pathophysiology. A 65‐year‐old male was admitted because of impaired mental status. He was a known insulin‐treated diabetic on quinapril (20 mg once daily) and was taking oral ampicillin 500 mg/day because of dysuria which had started 5 days prior to admission. He was disoriented in place and time with severe generalized muscle weakness; he was apyrexial (temperature 36.4°C), tachycardic (120 beats/min) and tachypneic (25 respirations/min) with cold extremities (supine blood pressure was 100/60 mmHg). An electrocardiogram (ECG) showed absent P waves, widening of QRS (‘sine wave’ in leads I, II, V5 and V6), depression of ST segments and tall peaked symmetrical T waves in leads V3–V6 (Figure 1). Blood glucose was 485 mg/dl, plasma creatinine 5.1 mg/dl (reference range (r.r.) 0.6–1.2 mg/dl, measured by the Jaffe method), urea 270 mg/dl (r.r. 11–54 mg/dl), albumin 4.2 g/dl (r.r. 3.4–4.7 g/dl), sodium 136 mmol/l (r.r. 135–145 mmol/l), chloride 102 mmol/l (r.r. 98–107 mmol/l), potassium 8.3 mmol/l (r.r. 3.5–5.4 mmol/l), phosphorus 1.6 mmol/l (r.r. 0.8–1.45 mmol/l) and magnesium 0.62 mmol/l (r.r. 0.75–1.25 mmol/l). A complete blood count revealed leukocytosis (12 090/µl with Continue reading >>

Initial Potassium Replacement In Diabetic Ketoacidosis: The Unnoticed Area Of Gap

Initial Potassium Replacement In Diabetic Ketoacidosis: The Unnoticed Area Of Gap

Initial Potassium Replacement in Diabetic Ketoacidosis: The Unnoticed Area of Gap We are experimenting with display styles that make it easier to read articles in PMC. The ePub format uses eBook readers, which have several "ease of reading" features already built in. The ePub format is best viewed in the iBooks reader. You may notice problems with the display of certain parts of an article in other eReaders. Generating an ePub file may take a long time, please be patient. Initial Potassium Replacement in Diabetic Ketoacidosis: The Unnoticed Area of Gap Diabetic ketoacidosis is an acute complication of diabetes mellitus (DM). It affects all the types of DM and hence is a continuous threat for all the diabetes patients ( 1 ). DKA is a well-studied disease. Among the precipitating causes, mostly reported factors are non-compliance of patients with the antidiabetic treatment, and infection; others, however, may not have any precipitating cause ( 1 , 2 ). The progress of disease is very simple; lack of insulin causes hyperglycemia and inability of glucose to enter the cell. In-turn, triglycerides are broken down to free fatty acids which are used as a source of energy ( 1 , 3 , 4 ). In due process, the end-product of this metabolic derangement, i.e., ketones, cause acidification of blood causing major disruption in homeostasis. Similar to pathophysiology, the treatment of DKA is also simple and encompasses administration of insulin to achieve euglycaemia, and administration of crystalloid or colloidal solution to attain euvolaemia and euelectrolytaemia ( 1 3 ). Nevertheless, by the time patient reports for medical attention, these simple derangements and the rectification pathway have had gone significant derailment with potassium being the most affected ion throughout the Continue reading >>

Diabetic Ketoacidosis Treatment & Management

Diabetic Ketoacidosis Treatment & Management

Approach Considerations Managing diabetic ketoacidosis (DKA) in an intensive care unit during the first 24-48 hours always is advisable. When treating patients with DKA, the following points must be considered and closely monitored: It is essential to maintain extreme vigilance for any concomitant process, such as infection, cerebrovascular accident, myocardial infarction, sepsis, or deep venous thrombosis. It is important to pay close attention to the correction of fluid and electrolyte loss during the first hour of treatment. This always should be followed by gradual correction of hyperglycemia and acidosis. Correction of fluid loss makes the clinical picture clearer and may be sufficient to correct acidosis. The presence of even mild signs of dehydration indicates that at least 3 L of fluid has already been lost. Patients usually are not discharged from the hospital unless they have been able to switch back to their daily insulin regimen without a recurrence of ketosis. When the condition is stable, pH exceeds 7.3, and bicarbonate is greater than 18 mEq/L, the patient is allowed to eat a meal preceded by a subcutaneous (SC) dose of regular insulin. Insulin infusion can be discontinued 30 minutes later. If the patient is still nauseated and cannot eat, dextrose infusion should be continued and regular or ultra–short-acting insulin should be administered SC every 4 hours, according to blood glucose level, while trying to maintain blood glucose values at 100-180 mg/dL. The 2011 JBDS guideline recommends the intravenous infusion of insulin at a weight-based fixed rate until ketosis has subsided. Should blood glucose fall below 14 mmol/L (250 mg/dL), 10% glucose should be added to allow for the continuation of fixed-rate insulin infusion. [19, 20] In established patient Continue reading >>

Management Of Diabetic Ketoacidosis And Other Hyperglycemic Emergencies

Management Of Diabetic Ketoacidosis And Other Hyperglycemic Emergencies

Understand the management of patients with diabetic ketoacidosis and other hyperglycemic emergencies. ​ The acute onset of hyperglycemia with attendant metabolic derangements is a common presentation in all forms of diabetes mellitus. The most current data from the National Diabetes Surveillance Program of the Centers for Disease Control and Prevention estimate that during 2005-2006, at least 120,000 hospital discharges for diabetic ketoacidosis (DKA) occurred in the United States,(1) with an unknown number of discharges related to hyperosmolar hyperglycemic state (HHS). The clinical presentations of DKA and HHS can overlap, but they are usually separately characterized by the presence of ketoacidosis and the degree of hyperglycemia and hyperosmolarity, though HHS will occasionally have some mild degree of ketosis. DKA is defined by a plasma glucose level >250 mg/dL, arterial pH <7.3, the presence of serum ketones, a serum bicarbonate measure <18 mEq/L, and a high anion gap metabolic acidosis. The level of normal anion gap may vary slightly by individual institutional standards. The anion gap also needs to be corrected in the presence of hypoalbuminemia, a common condition in the critically ill. Adjusted anion gap = observed anion gap + 0.25 * ([normal albumin]-[observed albumin]), where the given albumin concentrations are in g/L; if given in g/dL, the correction factor is 2.5.(3) HHS is defined by a plasma glucose level >600 mg/dL, with an effective serum osmolality >320 mOsm/kg. HHS was originally named hyperosmolar hyperglycemic nonketotic coma; however, this name was changed because relatively few patients exhibit coma-like symptoms. Effective serum osmolality = 2*([Na] + [K]) + glucose (mg/dL)/18.(2) Urea is freely diffusible across cell membranes, thus it will Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Abbas E. Kitabchi, PhD., MD., FACP, FACE Professor of Medicine & Molecular Sciences and Maston K. Callison Professor in the Division of Endocrinology, Diabetes & Metabolism UT Health Science Center, 920 Madison Ave., 300A, Memphis, TN 38163 Aidar R. Gosmanov, M.D., Ph.D., D.M.Sc. Assistant Professor of Medicine, Division of Endocrinology, Diabetes & Metabolism, The University of Tennessee Health Science Center, 920 Madison Avenue, Suite 300A, Memphis, TN 38163 Clinical Recognition Omission of insulin and infection are the two most common precipitants of DKA. Non-compliance may account for up to 44% of DKA presentations; while infection is less frequently observed in DKA patients. Acute medical illnesses involving the cardiovascular system (myocardial infarction, stroke, acute thrombosis) and gastrointestinal tract (bleeding, pancreatitis), diseases of endocrine axis (acromegaly, Cushing`s syndrome, hyperthyroidism) and impaired thermo-regulation or recent surgical procedures can contribute to the development of DKA by causing dehydration, increase in insulin counter-regulatory hormones, and worsening of peripheral insulin resistance. Medications such as diuretics, beta-blockers, corticosteroids, second-generation anti-psychotics, and/or anti-convulsants may affect carbohydrate metabolism and volume status and, therefore, could precipitateDKA. Other factors: psychological problems, eating disorders, insulin pump malfunction, and drug abuse. It is now recognized that new onset T2DM can manifest with DKA. These patients are obese, mostly African Americans or Hispanics and have undiagnosed hyperglycemia, impaired insulin secretion, and insulin action. A recent report suggests that cocaine abuse is an independent risk factor associated with DKA recurrence. Pathophysiology In Continue reading >>

Hyperkalaemia In Diabetic Ketoacidosis

Hyperkalaemia In Diabetic Ketoacidosis

Dear Editor, I have a brief comment on the informative ‘Lesson of the week’ by Moulik and colleagues, describing an association between hyperkalaemia and an ECG pattern suggesting acute myocardial infarction in a patient with diabetic ketoacidosis (DKA). One of the mechanisms of hyperkalaemia in DKA stated at the beginning of the Discussion is not strictly correct. It is inorganic acids, and not organic acids (including lactic acid), that cause hyperkalaemia as a result of potassium ions leaving cells in ‘exchange’ for hydrogen ion entry (and their intracellular buffering). In DKA, the key mechanism is lack of insulin, which is probably the most important short-term regulator of plasma potassium concentration (through stimulation of the cell ‘sodium’ pump – Na,K-ATPase) and defence against acute hyperkalaemia resulting from our daily intake of potassium (~80 mmol): The extracellular pool of potassium is around 65 mmol and could almost double after a single steak meal (~50 mmol), which is too rapid a change for compensatory renal excretion. In DKA, an additional mechanism is the osmotic shrinkage of cells as a result of the high plasma glucose concentration (and plasma osmolality), which steepens the intracellular to extracellular potassium concentration gradient and thereby causes an increase in potassium ion loss from cells. Of course, these observations do not materially alter the management of DKA, but only serve to emphasise the importance of inulin administration, glucose control and re-salination over the use (though not excluding it in severe metabolic acidosis) of bicarbonate, bearing in mind that such patients have usually become potassium depleted as a consequence of earlier increased renal losses, and therefore risk developing significant hypoka Continue reading >>

Review Of Diabetic Ketoacidosis Management

Review Of Diabetic Ketoacidosis Management

Review of Diabetic Ketoacidosis Management Department of Clinical Health Professions Department of Clinical Health Professions ABSTRACT: Diabetic ketoacidosis (DKA) is a medical emergency caused by insulin deficiency. It is characterized by hyperglycemia, metabolic acidosis, and ketoacidosis. DKA arises from lack of insulin, with or without a precipitating event that leads to a cascade of pathophysiological changes. The goals of DKA treatment are to normalize volume status, hyperglycemia, electrolytes, and ketoacidosis. Pharmacists in community or ambulatory-care settings can assist in preventing DKA, while inpatient pharmacists play a role in management of DKA. Diabetic ketoacidosis (DKA) is a serious medical emergency caused by insulin deficiency that takes a significant toll on the U.S. healthcare system.1,2 There are over 500,000 hospital days per year and $2.4 billion in medical costs attributed to DKA alone. DKA has high rates of morbidity and mortality, especially in younger type 1 diabetic patients. It is the most common cause of death for those under the age of 24 years with type 1 diabetes.3 It is estimated that 27% to 37% of patients with DKA are newly diagnosed with diabetes, usually type 1.1 Trauma, infection, or surgery may increase the risk of DKA in patients with type 2 diabetes.3 Mortality with DKA is generally associated with the underlying illness or comorbidity.1,3,4 Generally, DKA may be characterized by significant hyperglycemia, metabolic acidosis, and ketoacidosis. However, DKA may present in various ways, from euglycemia to severe hyperglycemia with or without dehydration and coma.3-5 The treatment approach for each patient is highly individualized based on a patients clinical factors.5 Simply put, DKA is caused by too little insulin and a resp Continue reading >>

Diabetic Ketoacidosis (dka)

Diabetic Ketoacidosis (dka)

Diabetic ketoacidosis is an acute metabolic complication of diabetes characterized by hyperglycemia, hyperketonemia, and metabolic acidosis. Hyperglycemia causes an osmotic diuresis with significant fluid and electrolyte loss. DKA occurs mostly in type 1 diabetes mellitus (DM). It causes nausea, vomiting, and abdominal pain and can progress to cerebral edema, coma, and death. DKA is diagnosed by detection of hyperketonemia and anion gap metabolic acidosis in the presence of hyperglycemia. Treatment involves volume expansion, insulin replacement, and prevention of hypokalemia. Diabetic ketoacidosis (DKA) is most common among patients with type 1 diabetes mellitus and develops when insulin levels are insufficient to meet the body’s basic metabolic requirements. DKA is the first manifestation of type 1 DM in a minority of patients. Insulin deficiency can be absolute (eg, during lapses in the administration of exogenous insulin) or relative (eg, when usual insulin doses do not meet metabolic needs during physiologic stress). Common physiologic stresses that can trigger DKA include Some drugs implicated in causing DKA include DKA is less common in type 2 diabetes mellitus, but it may occur in situations of unusual physiologic stress. Ketosis-prone type 2 diabetes is a variant of type 2 diabetes, which is sometimes seen in obese individuals, often of African (including African-American or Afro-Caribbean) origin. People with ketosis-prone diabetes (also referred to as Flatbush diabetes) can have significant impairment of beta cell function with hyperglycemia, and are therefore more likely to develop DKA in the setting of significant hyperglycemia. SGLT-2 inhibitors have been implicated in causing DKA in both type 1 and type 2 DM. Continue reading >>

Diabetic Ketoacidosis: Evaluation And Treatment

Diabetic Ketoacidosis: Evaluation And Treatment

Diabetic ketoacidosis is characterized by a serum glucose level greater than 250 mg per dL, a pH less than 7.3, a serum bicarbonate level less than 18 mEq per L, an elevated serum ketone level, and dehydration. Insulin deficiency is the main precipitating factor. Diabetic ketoacidosis can occur in persons of all ages, with 14 percent of cases occurring in persons older than 70 years, 23 percent in persons 51 to 70 years of age, 27 percent in persons 30 to 50 years of age, and 36 percent in persons younger than 30 years. The case fatality rate is 1 to 5 percent. About one-third of all cases are in persons without a history of diabetes mellitus. Common symptoms include polyuria with polydipsia (98 percent), weight loss (81 percent), fatigue (62 percent), dyspnea (57 percent), vomiting (46 percent), preceding febrile illness (40 percent), abdominal pain (32 percent), and polyphagia (23 percent). Measurement of A1C, blood urea nitrogen, creatinine, serum glucose, electrolytes, pH, and serum ketones; complete blood count; urinalysis; electrocardiography; and calculation of anion gap and osmolar gap can differentiate diabetic ketoacidosis from hyperosmolar hyperglycemic state, gastroenteritis, starvation ketosis, and other metabolic syndromes, and can assist in diagnosing comorbid conditions. Appropriate treatment includes administering intravenous fluids and insulin, and monitoring glucose and electrolyte levels. Cerebral edema is a rare but severe complication that occurs predominantly in children. Physicians should recognize the signs of diabetic ketoacidosis for prompt diagnosis, and identify early symptoms to prevent it. Patient education should include information on how to adjust insulin during times of illness and how to monitor glucose and ketone levels, as well as i Continue reading >>

Management Of Diabetic Ketoacidosis In Adults

Management Of Diabetic Ketoacidosis In Adults

Management of diabetic ketoacidosis in adults Management of diabetic ketoacidosis in adults Insulin (blue dots) promotes glucose uptake in the liver and muscles, controlling blood sugar. Despite these losses, the increased delivery of potassium to the ECF from the intracellular space usually causes the serum concentration of potassium to be normal and, in some cases, high. This regular concentration of the ECF potassium creates the illusion of normalcy, despite the fact that total body potassium stores are almost always low. This concept becomes important in understanding the risk of potentially devastating hypokalemia in treating DKA. Insulin administration causes a rapid shift of potassium out of the ECF and into the cells. In addition, fluid resuscitation can be expected to cause a dilutional decrease in serum potassium concentration. For this reason, the ADA recommendations encompass a three-tiered approach to potassium regulation during fluid and insulin therapy for DKA: Patients with a serum potassium concentration >5.2 mEq/L should receive insulin and IV fluid without potassium, but the level should be checked every two hours.3 Patients with a serum potassium concentration between 3.3 and 5.2 mEq/L should have 20-30 mEq of potassium added to each liter of IV fluid with a goal to maintain a level of 4.0-5.0 mEq/L.3 The addition of potassium to the infusion should be delayed until urine output has been established. Patients with a serum potassium concentration <3.3 mEq/L should receive 20.0-30.0 mEq/hr of potassium until the concentration exceeds 3.3 mEq/L. These patients should not receive IV insulin until the serum potassium concentration is >3.3.3 Other electrolytes. Sodium: Sodium concentration may vary. Both sodium and water are lost during osmotic diuresis; Continue reading >>

Board Review: Diabetic Ketoacidosis And Total Body Potassium

Board Review: Diabetic Ketoacidosis And Total Body Potassium

A 23 y/o M with a PMHx of Type 1 DM arrives to your ED reporting nausea, vomiting and elevated blood sugars on his home monitor. His initial blood work indicates he is in DKA. For which of the following potassium levels should initiation of an insulin drip be delayed for potassium repletion? (scroll down for the answer) a) < 3.0 mEq/L b) < 3.3 mEq/L c) < 3.5 mEq/L d) < 3.8 mEq/L e) < 4.0 mEq/L The correct answer is b) < 3.3 mEq/L Following the American Diabetes Association guidelines for the treatment of DKA, patients with hypokalemia on initial labs of 3.3 mEq/L or less must have potassium replacement with a delay in insulin treatment until the potassium concentration is restored to > 3.3 mEq/L Patients in DKA are low in total body potassium and their serum concentration is falsely elevated due to extracellular shift. On average, patients will have a potassium deficit of 3-5 mEq/kg. Treatment with insulin will cause a shift of potassium intracellularly which can lead to severe hypokalemia and cardiac dysrhythmia. All DKA patients will require potassium replacement to prevent hypokalemia. Generally 20mEq of potassium in each liter of fluid given will maintain a normal serum potassium concentration. The ADA Guidelines for DKA can be found here: A Core review of Hypokalemia in the ED was recently posted on emDOCs by Dr. Swaminathan, see it here: Continue reading >>

What Causes Potassium And Sodium Loss In Diabetic Ketoacidosis (dka)?

What Causes Potassium And Sodium Loss In Diabetic Ketoacidosis (dka)?

What causes potassium and sodium loss in diabetic ketoacidosis (DKA)? Glucosuria leads to osmotic diuresis, dehydration and hyperosmolarity. Severe dehydration, if not properly compensated, may lead to impaired renal function. Hyperglycemia, osmotic diuresis, serum hyperosmolarity, and metabolic acidosis result in severe electrolyte disturbances. The most characteristic disturbance is total body potassium loss. This loss is not mirrored in serum potassium levels, which may be low, within the reference range, or even high. Potassium loss is caused by a shift of potassium from the intracellular to the extracellular space in an exchange with hydrogen ions that accumulate extracellularly in acidosis. Much of the shifted extracellular potassium is lost in urine because of osmotic diuresis. Patients with initial hypokalemia are considered to have severe and serious total body potassium depletion. High serum osmolarity also drives water from intracellular to extracellular space, causing dilutional hyponatremia. Sodium also is lost in the urine during the osmotic diuresis. Glaser NS, Marcin JP, Wootton-Gorges SL, et al. Correlation of clinical and biochemical findings with diabetic ketoacidosis-related cerebral edema in children using magnetic resonance diffusion-weighted imaging. J Pediatr. 2008 Jun 25. [Medline] . Umpierrez GE, Jones S, Smiley D, et al. Insulin analogs versus human insulin in the treatment of patients with diabetic ketoacidosis: a randomized controlled trial. Diabetes Care. 2009 Jul. 32(7):1164-9. [Medline] . [Full Text] . Herrington WG, Nye HJ, Hammersley MS, Watkinson PJ. Are arterial and venous samples clinically equivalent for the estimation of pH, serum bicarbonate and potassium concentration in critically ill patients?. Diabet Med. 2012 Jan. 29(1):32-5 Continue reading >>

Hyperkalemia (high Blood Potassium)

Hyperkalemia (high Blood Potassium)

How does hyperkalemia affect the body? Potassium is critical for the normal functioning of the muscles, heart, and nerves. It plays an important role in controlling activity of smooth muscle (such as the muscle found in the digestive tract) and skeletal muscle (muscles of the extremities and torso), as well as the muscles of the heart. It is also important for normal transmission of electrical signals throughout the nervous system within the body. Normal blood levels of potassium are critical for maintaining normal heart electrical rhythm. Both low blood potassium levels (hypokalemia) and high blood potassium levels (hyperkalemia) can lead to abnormal heart rhythms. The most important clinical effect of hyperkalemia is related to electrical rhythm of the heart. While mild hyperkalemia probably has a limited effect on the heart, moderate hyperkalemia can produce EKG changes (EKG is a reading of theelectrical activity of the heart muscles), and severe hyperkalemia can cause suppression of electrical activity of the heart and can cause the heart to stop beating. Another important effect of hyperkalemia is interference with functioning of the skeletal muscles. Hyperkalemic periodic paralysis is a rare inherited disorder in which patients can develop sudden onset of hyperkalemia which in turn causes muscle paralysis. The reason for the muscle paralysis is not clearly understood, but it is probably due to hyperkalemia suppressing the electrical activity of the muscle. Common electrolytes that are measured by doctors with blood testing include sodium, potassium, chloride, and bicarbonate. The functions and normal range values for these electrolytes are described below. Hypokalemia, or decreased potassium, can arise due to kidney diseases; excessive losses due to heavy sweating Continue reading >>

More in ketosis