diabetestalk.net

Why Does The Body Produce Ketones?

Your Brain On Ketones

Your Brain On Ketones

The modern prescription of high carbohydrate, low fat diets and eating snacks between meals has coincided with an increase in obesity, diabetes, and and increase in the incidence of many mental health disorders, including depression, anxiety, and eating disorders. In addition, many of these disorders are striking the population at younger ages. While most people would agree that diet has a lot to do with the development of obesity and diabetes, many would disagree that what we eat has much to do with our mental health and outlook. I believe that what we eat has a lot to do with the health of our brains, though of course mental illness (like physical illness) has multifactorial causes, and by no means should we diminish the importance of addressing all the causes in each individual. But let's examine the opposite of the modern high carbohydrate, low fat, constant snacking lifestyle and how that might affect the brain. The opposite of a low fat, snacking lifestyle would be the lifestyle our ancestors lived for tens of thousands of generations, the lifestyle for which our brains are primarily evolved. It seems reasonable that we would have had extended periods without food, either because there was none available, or we were busy doing something else. Then we would follow that period with a filling meal of gathered plant and animal products, preferentially selecting the fat. During the day we might have eaten a piece of fruit, or greens, or a grub we dug up, but anything filling or high in calories (such as a starchy tuber) would have to be killed, butchered, and/or carefully prepared before eating. Fortunately, we have a terrific system of fuel for periods of fasting or low carbohydrate eating, our body (and brain) can readily shift from burning glucose to burning what ar Continue reading >>

What Are Ketones And Their Tests?

What Are Ketones And Their Tests?

A ketone test can warn you of a serious diabetes complication called diabetic ketoacidosis, or DKA. An elevated level of this substance in your blood can mean you have very high blood sugar. Too many ketones can trigger DKA, which is a medical emergency. Regular tests you take at home can spot when your ketone levels run too high. Then you can take insulin to lower your blood sugar level or get other treatments to prevent complications. What Exactly Are Ketones? Everyone has them, whether you have diabetes or not. Ketones are chemicals made in your liver. You produce them when you don't have enough of the hormone insulin in your body to turn sugar (or “glucose”) into energy. You need another source, so your body uses fat instead. Your liver turns this fat into ketones, a type of acid, and sends them into your bloodstream. Your muscles and other tissues can then use them for fuel. For a person without diabetes, this process doesn’t become an issue. But when you have diabetes, things can run out of control and you build up too many ketones in your blood. If the level goes too high, it can become life-threatening. Who Needs a Ketone Test? You might need one if you have type 1 diabetes. In this type, your immune system attacks and destroys cells in your pancreas that make insulin. Without it, your blood sugar rises. People with type 2 diabetes can also get high ketones, but it isn't as common as it is with type 1. Tests can show you when your level gets high so you can treat it before you get sick. When Should You Test? Your doctor will probably tell you to test your ketones when: Your blood sugar is higher than 250 milligrams/deciliter (mg/dl) for two days in a row You're sick or you've been injured You want to exercise and your blood sugar level is over 250 mg/dl Continue reading >>

Keto Diet Science: How Your Body Burns Fat

Keto Diet Science: How Your Body Burns Fat

By now, you’ve probably heard about the keto diet. You've probably heard that it all but bans carbs and sugars, or that it's been clinically shown to reduce epileptic seizures in kids, or even that it helps people condition their bodies to burn fat. As we detailed in our recent feature on the keto diet, all of those things are true. But as any bodybuilder knows, you don't need to be on the keto diet to burn fat. Heck, you can do it with a focused meal and exercise plan. So we've been wondering: When your body "burns fat" for energy, what's really going on there? How exactly does the keto diet work? And why the hell is it called the "keto" diet, anyway? Play Video Play Loaded: 0% Progress: 0% Remaining Time -0:00 This is a modal window. Foreground --- White Black Red Green Blue Yellow Magenta Cyan --- Opaque Semi-Opaque Background --- White Black Red Green Blue Yellow Magenta Cyan --- Opaque Semi-Transparent Transparent Window --- White Black Red Green Blue Yellow Magenta Cyan --- Opaque Semi-Transparent Transparent Font Size 50% 75% 100% 125% 150% 175% 200% 300% 400% Text Edge Style None Raised Depressed Uniform Dropshadow Font Family Default Monospace Serif Proportional Serif Monospace Sans-Serif Proportional Sans-Serif Casual Script Small Caps Defaults Done Well strap some protective boxing headgear over those thinking caps, bros, because we’re about to roundhouse kick you in the brain with some KNOWLEDGE. (For a detailed breakdown of the chemistry at work, be sure to check out our references: this explainer on ketone bodies from the University of Waterloo, and this ketosis explainer from Rose-Hulman Institute of Technology [PDF], plus our feature on the keto diet from the July/August issue of Men's Fitness.) Why does the body go into fat-burning mode? For most pe Continue reading >>

What Are Ketone Bodies And Why Are They In The Body?

What Are Ketone Bodies And Why Are They In The Body?

If you eat a calorie-restricted diet for several days, you will increase the breakdown of your fat stores. However, many of your tissues cannot convert these fatty acid products directly into ATP, or cellular energy. In addition, glucose is in limited supply and must be reserved for red blood cells -- which can only use glucose for energy -- and brain tissues, which prefer to use glucose. Therefore, your liver converts many of these fatty acids into ketone bodies, which circulate in the blood and provide a fuel source for your muscles, kidneys and brain. Video of the Day Low fuel levels in your body, such as during an overnight fast or while you are dieting, cause hormones to increase the breakdown of fatty acids from your stored fat tissue. These fatty acids travel to the liver, where enzymes break the fatty acids into ketone bodies. The ketone bodies are released into the bloodstream, where they travel to tissues that have the enzymes to metabolize ketone bodies, such as your muscle, brain, kidney and intestinal cells. The breakdown product of ketone bodies goes through a series of steps to form ATP. Conditions of Ketone Body Utilization Your liver will synthesize more ketone bodies for fuel whenever your blood fatty acid levels are elevated. This will happen in response to situations that promote low blood glucose, such as an overnight fast, prolonged calorie deficit, a high-fat and low-carbohydrate diet, or during prolonged low-intensity exercise. If you eat regular meals and do not typically engage in extremely long exercise sessions, the level of ketone bodies in your blood will be highest after an overnight fast. This level will drop when you eat breakfast and will remain low as long as you eat regular meals with moderate to high carbohydrate content. Ketone Bodi Continue reading >>

Ketosis: What Is Ketosis?

Ketosis: What Is Ketosis?

Ketosis is a normal metabolic process. When the body does not have enough glucose for energy, it burns stored fats instead; this results in a build-up of acids called ketones within the body. Some people encourage ketosis by following a diet called the ketogenic or low-carb diet. The aim of the diet is to try and burn unwanted fat by forcing the body to rely on fat for energy, rather than carbohydrates. Ketosis is also commonly observed in patients with diabetes, as the process can occur if the body does not have enough insulin or is not using insulin correctly. Problems associated with extreme levels of ketosis are more likely to develop in patients with type 1 diabetes compared with type 2 diabetes patients. Ketosis occurs when the body does not have sufficient access to its primary fuel source, glucose. Ketosis describes a condition where fat stores are broken down to produce energy, which also produces ketones, a type of acid. As ketone levels rise, the acidity of the blood also increases, leading to ketoacidosis, a serious condition that can prove fatal. People with type 1 diabetes are more likely to develop ketoacidosis, for which emergency medical treatment is required to avoid or treat diabetic coma. Some people follow a ketogenic (low-carb) diet to try to lose weight by forcing the body to burn fat stores. What is ketosis? In normal circumstances, the body's cells use glucose as their primary form of energy. Glucose is typically derived from dietary carbohydrates, including: sugar - such as fruits and milk or yogurt starchy foods - such as bread and pasta The body breaks these down into simple sugars. Glucose can either be used to fuel the body or be stored in the liver and muscles as glycogen. If there is not enough glucose available to meet energy demands, th Continue reading >>

Ketone Body Metabolism

Ketone Body Metabolism

Ketone body metabolism includes ketone body synthesis (ketogenesis) and breakdown (ketolysis). When the body goes from the fed to the fasted state the liver switches from an organ of carbohydrate utilization and fatty acid synthesis to one of fatty acid oxidation and ketone body production. This metabolic switch is amplified in uncontrolled diabetes. In these states the fat-derived energy (ketone bodies) generated in the liver enter the blood stream and are used by other organs, such as the brain, heart, kidney cortex and skeletal muscle. Ketone bodies are particularly important for the brain which has no other substantial non-glucose-derived energy source. The two main ketone bodies are acetoacetate (AcAc) and 3-hydroxybutyrate (3HB) also referred to as β-hydroxybutyrate, with acetone the third, and least abundant. Ketone bodies are always present in the blood and their levels increase during fasting and prolonged exercise. After an over-night fast, ketone bodies supply 2–6% of the body's energy requirements, while they supply 30–40% of the energy needs after a 3-day fast. When they build up in the blood they spill over into the urine. The presence of elevated ketone bodies in the blood is termed ketosis and the presence of ketone bodies in the urine is called ketonuria. The body can also rid itself of acetone through the lungs which gives the breath a fruity odour. Diabetes is the most common pathological cause of elevated blood ketones. In diabetic ketoacidosis, high levels of ketone bodies are produced in response to low insulin levels and high levels of counter-regulatory hormones. Ketone bodies The term ‘ketone bodies’ refers to three molecules, acetoacetate (AcAc), 3-hydroxybutyrate (3HB) and acetone (Figure 1). 3HB is formed from the reduction of AcAc i Continue reading >>

Ketone Bodies

Ketone Bodies

Ketone bodies Acetone Acetoacetic acid (R)-beta-Hydroxybutyric acid Ketone bodies are three water-soluble molecules (acetoacetate, beta-hydroxybutyrate, and their spontaneous breakdown product, acetone) that are produced by the liver from fatty acids[1] during periods of low food intake (fasting), carbohydrate restrictive diets, starvation, prolonged intense exercise,[2], alcoholism or in untreated (or inadequately treated) type 1 diabetes mellitus. These ketone bodies are readily picked up by the extra-hepatic tissues, and converted into acetyl-CoA which then enters the citric acid cycle and is oxidized in the mitochondria for energy.[3] In the brain, ketone bodies are also used to make acetyl-CoA into long-chain fatty acids. Ketone bodies are produced by the liver under the circumstances listed above (i.e. fasting, starving, low carbohydrate diets, prolonged exercise and untreated type 1 diabetes mellitus) as a result of intense gluconeogenesis, which is the production of glucose from non-carbohydrate sources (not including fatty acids).[1] They are therefore always released into the blood by the liver together with newly produced glucose, after the liver glycogen stores have been depleted (these glycogen stores are depleted after only 24 hours of fasting)[1]. When two acetyl-CoA molecules lose their -CoAs, (or Co-enzyme A groups) they can form a (covalent) dimer called acetoacetate. Beta-hydroxybutyrate is a reduced form of acetoacetate, in which the ketone group is converted into an alcohol (or hydroxyl) group (see illustration on the right). Both are 4-carbon molecules, that can readily be converted back into acetyl-CoA by most tissues of the body, with the notable exception of the liver. Acetone is the decarboxylated form of acetoacetate which cannot be converted Continue reading >>

Ketone Bodies: A Review Of Physiology, Pathophysiology And Application Of Monitoring To Diabetes.

Ketone Bodies: A Review Of Physiology, Pathophysiology And Application Of Monitoring To Diabetes.

Abstract Ketone bodies are produced by the liver and used peripherally as an energy source when glucose is not readily available. The two main ketone bodies are acetoacetate (AcAc) and 3-beta-hydroxybutyrate (3HB), while acetone is the third, and least abundant, ketone body. Ketones are always present in the blood and their levels increase during fasting and prolonged exercise. They are also found in the blood of neonates and pregnant women. Diabetes is the most common pathological cause of elevated blood ketones. In diabetic ketoacidosis (DKA), high levels of ketones are produced in response to low insulin levels and high levels of counterregulatory hormones. In acute DKA, the ketone body ratio (3HB:AcAc) rises from normal (1:1) to as high as 10:1. In response to insulin therapy, 3HB levels commonly decrease long before AcAc levels. The frequently employed nitroprusside test only detects AcAc in blood and urine. This test is inconvenient, does not assess the best indicator of ketone body levels (3HB), provides only a semiquantitative assessment of ketone levels and is associated with false-positive results. Recently, inexpensive quantitative tests of 3HB levels have become available for use with small blood samples (5-25 microl). These tests offer new options for monitoring and treating diabetes and other states characterized by the abnormal metabolism of ketone bodies. Continue reading >>

Diabetes And Ketones

Diabetes And Ketones

Tweet The presence of high levels of ketones in the bloodstream is a common complication of diabetes, which if left untreated can lead to ketoacidosis. Ketones build up when there is insufficient insulin to help fuel the body’s cells. High levels of ketones are therefore more common in people with type 1 diabetes or people with advanced type 2 diabetes. If you are suffering from high levels of ketones and seeking medical advice, contact your GP or diabetes healthcare team as soon as possible. What are ketones? Ketones are an acid remaining when the body burns its own fat. When the body has insufficient insulin, it cannot get glucose from the blood into the body's cells to use as energy and will instead begin to burn fat. The liver converts fatty acids into ketones which are then released into the bloodstream for use as energy. It is normal to have a low level of ketones as ketones will be produced whenever body fat is burned. In people that are insulin dependent, such as people with type 1 diabetes, however, high levels of ketones in the blood can result from taking too little insulin and this can lead to a particularly dangerous condition known as ketoacidosis. How do I test for ketones? Ketone testing can be carried out at home. The most accurate way of testing for ketones is to use a blood glucose meter which can test for ketones as well as blood glucose levels. You can also test urine for ketone levels, however, the testing of urine means that the level you get is representative of your ketone levels up to a few hours ago. Read about testing for ketones and how to interpret the results Who needs to be aware of ketones? The following people with diabetes should be aware of ketones and the symptoms of ketoacidosis: Anyone dependent on insulin – such as all people Continue reading >>

Ketosis: Metabolic Flexibility In Action

Ketosis: Metabolic Flexibility In Action

Ketosis is an energy state that your body uses to provide an alternative fuel when glucose availability is low. It happens to all humans when fasting or when carbohydrate intake is lowered. The process of creating ketones is a normal metabolic alternative designed to keep us alive if we go without food for long periods of time. Eating a diet low in carb and higher in fat enhances this process without the gnawing hunger of fasting. Let’s talk about why ketones are better than glucose for most cellular fuel needs. Legionella Testing Lab - High Quality Lab Results CDC ELITE & NYSDOH ELAP Certified - Fast Results North America Lab Locations legionellatesting.com Body Fuel Basics Normal body cells metabolize food nutrients and oxygen during cellular “respiration”, a set of metabolic pathways in which ATP (adenosine triphosphate), our main cellular energy source is created. Most of this energy production happens in the mitochondria, tiny cell parts which act as powerhouses or fueling stations. There are two primary types of food-based fuel that our cells can use to produce energy: The first cellular fuel is glucose, which is commonly known as blood sugar. Glucose is a product of the starches and sugars (carbohydrates) and protein in our diet. This fuel system is necessary, but it has a limitation. The human body can only store about 1000-1600 calories of glucose in the form of glycogen in our muscles and liver. The amounts stored depend on how much muscle mass is available. Men will be able to store more because they have a greater muscle mass. Since most people use up about 2000 calories a day just being and doing normal stuff, you can see that if the human body depended on only sugar to fuel itself, and food weren’t available for more than a day, the body would run Continue reading >>

Ketone Bodies Formed In The Liver Are Exported To Other Organs

Ketone Bodies Formed In The Liver Are Exported To Other Organs

Ketone Bodies In human beings and most other mammals, acetyl-CoA formed in the liver during oxidation of fatty acids may enter the citric acid cycle (stage 2 of Fig. 16-7) or it may be converted to the "ketone bodies" acetoacetate, D-β-hydroxybutyrate, and acetone for export to other tissues. (The term "bodies" is a historical artifact; these compounds are soluble in blood and urine.) Acetone, produced in smaller quantities than the other ketone bodies, is exhaled. Acetoacetate and D-β-hydroxybutyrate are transported by the blood to the extrahepatic tissues, where they are oxidized via the citric acid cycle to provide much of the energy required by tissues such as skeletal and heart muscle and the renal cortex. The brain, which normally prefers glucose as a fuel, can adapt to the use of acetoacetate or D-β-hydroxybutyrate under starvation conditions, when glucose is unavailable. A major determinant of the pathway taken by acetyl-CoA in liver mitochondria is the availability of oxaloacetate to initiate entry of acetyl-CoA into the citric acid cycle. Under some circumstances (such as starvation) oxaloacetate is drawn out of the citric acid cycle for use in synthesizing glucose. When the oxaloacetate concentration is very low, little acetyl-CoA enters the cycle, and ketone body formation is favored. The production and export of ketone bodies from the liver to extrahepatic tissues allows continued oxidation of fatty acids in the liver when acetyl-CoA is not being oxidized via the citric acid cycle. Overproduction of ketone bodies can occur in conditions of severe starvation and in uncontrolled diabetes. The first step in formation of acetoacetate in the liver (Fig. 16-16) is the enzymatic condensation of two molecules of acetyl-CoA, catalyzed by thiolase; this is simply Continue reading >>

Does Fasting Help Creativity? I Heard After Three Days Of Fasting Your Body Produces Ketones Which Can Help With Creativity. Is This True And Safe?

Does Fasting Help Creativity? I Heard After Three Days Of Fasting Your Body Produces Ketones Which Can Help With Creativity. Is This True And Safe?

Does fasting help creativity? I heard after three days of fasting your body produces ketones which can help with creativity. Is this true and safe? Creativity is an undefined and broad concept, so it's impossible to say that anything helps creativity unless you better define creativity so as to be an observably definable and measurably improvable state. Yes, it's true, after three days [of fasting] the [average] body will produce ketones. The inherited wisdom is that it takes the average woman 48 hours and the average man 72 hours to mobilize ketones and up-cycle into ketosis. And these are more generalized rules of thumb than actual immutable facts of direct experience, e.g. individuals that deep fast seasonally can mobilize full ketosis in less than 24 hours. Yes, it's more than safe – fasting is one of the longest retained evolutionary processes universally distributed to most all humans* for self-regulation of health, hygiene and improved well-being required for human survival. Fasting also still serves many cultural, religious and spiritual intents across the world. Fasting is only contraindicated in exceedingly few circumstances across those of the general population: people in a state of starvation pregnant, diabetic women; nursing women those with anemia people with porphyria And, so far as can be surmised, fasting is contraindicated for only one type of genetic mutation that is exceedingly rare across the general population people with a rare genetic, fatty-acid deficiency of acetyl CoA (preventing ketosis from occurring) Try comparing these above contraindications and lack of side-effects from fasting to any major pharmaceutical and over-the-counter drug and your fears for safety will enjoy a new perspective. *above notes on contraindications as originally a Continue reading >>

Ketone Testing: What You Need To Know

Ketone Testing: What You Need To Know

What are ketones? Ketones are produced when the body burns fat for energy or fuel. They are also produced when you lose weight or if there is not enough insulin to help your body use sugar for energy. Without enough insulin, glucose builds up in the blood. Since the body is unable to use glucose for energy, it breaks down fat instead. When this occurs, ketones form in the blood and spill into the urine. These ketones can make you very sick. How can I test for ketones? You can test to see if your body is making any ketones by doing a simple urine test. There are several products available for ketone testing and they can be purchased, without a prescription, at your pharmacy. The test result can be negative, or show small, moderate, or large quantities of ketones. When should I test for ketones? Anytime your blood glucose is over 250 mg/dl for two tests in a row. When you are ill. Often illness, infections, or injuries will cause sudden high blood glucose and this is an especially important time to check for ketones. When you are planning to exercise and the blood glucose is over 250 mg/dl. If you are pregnant, you should test for ketones each morning before breakfast and any time the blood glucose is over 250 mg/dl. If ketones are positive, what does this mean? There are situations when you might have ketones without the blood glucose being too high. Positive ketones are not a problem when blood glucose levels are within range and you are trying to lose weight. It is a problem if blood glucose levels are high and left untreated. Untreated high blood glucose with positive ketones can lead to a life-threatening condition called diabetic ketoacidosis (DKA). What should I do if the ketone test is positive? Call your diabetes educator or physician, as you may need additional Continue reading >>

Ketosis

Ketosis

There is a lot of confusion about the term ketosis among medical professionals as well as laypeople. It is important to understand when and why nutritional ketosis occurs, and why it should not be confused with the metabolic disorder we call ketoacidosis. Ketosis is a metabolic state where the liver produces small organic molecules called ketone bodies. Most cells in the body can use ketone bodies as a source of energy. When there is a limited supply of external energy sources, such as during prolonged fasting or carbohydrate restriction, ketone bodies can provide energy for most organs. In this situation, ketosis can be regarded as a reasonable, adaptive physiologic response that is essential for life, enabling us to survive periods of famine. Nutritional ketosis should not be confused with ketoacidosis, a metabolic condition where the blood becomes acidic as a result of the accumulation of ketone bodies. Ketoacidosis can have serious consequences and may need urgent medical treatment. The most common forms are diabetic ketoacidosis and alcoholic ketoacidosis. What Is Ketosis? The human body can be regarded as a biologic machine. Machines need energy to operate. Some use gasoline, others use electricity, and some use other power resources. Glucose is the primary fuel for most cells and organs in the body. To obtain energy, cells must take up glucose from the blood. Once glucose enters the cells, a series of metabolic reactions break it down into carbon dioxide and water, releasing energy in the process. The body has an ability to store excess glucose in the form of glycogen. In this way, energy can be stored for later use. Glycogen consists of long chains of glucose molecules and is primarily found in the liver and skeletal muscle. Liver glycogen stores are used to mai Continue reading >>

6 Health Benefits Of Ketogenesis And Ketone Bodies

6 Health Benefits Of Ketogenesis And Ketone Bodies

With heavy coverage in the media, ketogenic diets are all the rage right now. And for a good reason; for some people, they truly work. But what do all these different terms like ketogenesis and ketone bodies actually mean? Firstly, this article takes a look at what the ketogenesis pathway is and what ketone bodies do. Following this, it will examine six potential health benefits of ketones and nutritional ketosis. What is Ketogenesis? Ketogenesis is a biochemical process through which the body breaks down fatty acids into ketone bodies (we’ll come to those in a minute). Synthesis of ketone bodies through ketogenesis kicks in during times of carbohydrate restriction or periods of fasting. When carbohydrate is in short supply, ketones become the default energy source for our body. As a result, a diet to induce ketogenesis should ideally restrict carb intake to a maximum of around 50 grams per day (1, 2). Ketogenesis may also occur at slightly higher levels of carbohydrate intake, but for the full benefits, it is better to aim lower. When ketogenesis takes place, the body produces ketone bodies as an alternative fuel to glucose. This physiological state is known as ‘nutritional ketosis’ – the primary objective of ketogenic diets. There are various methods you can use to test if you are “in ketosis”. Key Point: Ketogenesis is a biological pathway that breaks fats down into a form of energy called ketone bodies. What Are Ketone Bodies? Ketone bodies are water-soluble compounds that act as a form of energy in the body. There are three major types of ketone body; Acetoacetate Beta-hydroxybutyrate Acetone (a compound created through the breakdown of acetoacetate) The first thing to remember is that these ketones satisfy our body’s energy requirements in the same w Continue reading >>

More in ketosis