diabetestalk.net

Why Does Potassium Rise In Acidosis?

Ph Of The Blooe - 8 - Potassium And Ph - M J Bookallil

Ph Of The Blooe - 8 - Potassium And Ph - M J Bookallil

It is commonly considered that there are associations between potassium and hydrogen ion metabolism. One such is an association between K+ states and alkalosis. It is often stated as a cause and effect relationship, i.e. that the low K+ states will produce an metabolic alkalosis. This hypothesis has been refuted a number of times. An alkalosis can occur without a K+ abnormality (acute pyloric obstruction) and a stable K+ abnormality without an alkalosis ( Kassirer et al, (b) 1966 ; Jones et al, 1982 ). In a K+ deficient state an alkalosis can develop as the K deficiency is corrected (Belich et al, 1966) and conversely a metabolic acidosis can be induced by means of K+ deprivation with a resulting K+ deficiency ( Burnell et al, 1974 ). An alkalosis causes renal loss of K but the low K state ( Kassirer et al, 1966a ) does not per se seem to cause an alkalosis. (This is well discussed in review articles by Schwartz et al, 1968 and 1978 ). In any case, if an alkalosis and a low K state co-exist, both have to be corrected. Potassium salts of organic acids will not correct the alkalosis associated with a potassium deficiency ( Aber et al, 1962 ). Sodium chloride will correct the alkalosis ( Kassirer et al (b) 1966 ) but will not correct the potassium deficiency, i.e. the potassium deficiency must be corrected and the alkalosis must be corrected. Potassium chloride is, therefore, usually the correct management together with sodium chloride. Another common idea is that pH changes produce or are consistently associated with changes in serum potassium concentrations. A fall in pH is said to raise the potassium concentration and visa versa. Such alterations can be induced by for example some acids but not others. Changes which do occur differ in magnitude. Factors, which may alte Continue reading >>

Alkalosis

Alkalosis

Your blood is made up of acids and bases. The amount of acids and bases in your blood can be measured on a pH scale. It’s important to maintain the correct balance between acids and bases. Even a slight change can cause health problems. Normally, your blood should have a slightly higher amount of bases than acids. Alkalosis occurs when your body has too many bases. It can occur due to decreased blood levels of carbon dioxide, which is an acid. It can also occur due to increased blood levels of bicarbonate, which is a base. This condition may also be related to other underlying health issues such as low potassium, or hypokalemia. The earlier it’s detected and treated, the better the outcome is. Acid-base balance » There are five main types of alkalosis. Respiratory alkalosis Respiratory alkalosis occurs when there isn’t enough carbon dioxide in your bloodstream. It’s often caused by: hyperventilation, which commonly occurs with anxiety high fever lack of oxygen salicylate poisoning being in high altitudes Metabolic alkalosis Metabolic alkalosis develops when your body loses too much acid or gains too much base. This can be attributed to: excess vomiting, which causes electrolyte loss overuse of diuretics a large loss of potassium or sodium in a short amount of time antacids accidental ingestion of bicarbonate, which can be found in baking soda laxatives alcohol abuse Hypochloremic alkalosis Hypochloremic alkalosis occurs when there’s a significant decline of chloride in your body. This can be due to prolonged vomiting or sweating. Chloride is an important chemical needed to maintain balance in bodily fluids, and it’s an essential part of your body’s digestive fluids. Hypokalemic alkalosis Hypokalemic alkalosis occurs when your body lacks the normal amount Continue reading >>

Effects Of Ph On Potassium: New Explanations For Old Observations

Effects Of Ph On Potassium: New Explanations For Old Observations

Go to: Abstract Maintenance of extracellular K+ concentration within a narrow range is vital for numerous cell functions, particularly electrical excitability of heart and muscle. Potassium homeostasis during intermittent ingestion of K+ involves rapid redistribution of K+ into the intracellular space to minimize increases in extracellular K+ concentration, and ultimate elimination of the K+ load by renal excretion. Recent years have seen great progress in identifying the transporters and channels involved in renal and extrarenal K+ homeostasis. Here we apply these advances in molecular physiology to understand how acid-base disturbances affect serum potassium. The effects of acid-base balance on serum potassium are well known.1 Maintenance of extracellular K+ concentration within a narrow range is vital for numerous cell functions, particularly electrical excitability of heart and muscle.2 However, maintenance of normal extracellular K+ (3.5 to 5 mEq/L) is under two potential threats. First, as illustrated in Figure 1, because some 98% of the total body content of K+ resides within cells, predominantly skeletal muscle, small acute shifts of intracellular K+ into or out of the extracellular space can cause severe, even lethal, derangements of extracellular K+ concentration. As described in Figure 1, many factors in addition to acid-base perturbations modulate internal K+ distribution including insulin, catecholamines, and hypertonicity.3,4 Rapid redistribution of K+ into the intracellular space is essential for minimizing increases in extracellular K+ concentration during acute K+ loads. Second, as also illustrated in Figure 1, in steady state the typical daily K+ ingestion of about 70 mEq/d would be sufficient to cause large changes in extracellular K+ were it not for Continue reading >>

Hyperkalemia

Hyperkalemia

JOYCE C. HOLLANDER-RODRIGUEZ, M.D., and JAMES F. CALVERT, JR., M.D., Oregon Health & Science University, Portland, Oregon Am Fam Physician. 2006 Jan 15;73(2):283-290. Hyperkalemia is a potentially life-threatening metabolic problem caused by inability of the kidneys to excrete potassium, impairment of the mechanisms that move potassium from the circulation into the cells, or a combination of these factors. Acute episodes of hyperkalemia commonly are triggered by the introduction of a medication affecting potassium homeostasis; illness or dehydration also can be triggers. In patients with diabetic nephropathy, hyperkalemia may be caused by the syndrome of hyporeninemic hypoaldosteronism. The presence of typical electrocardiographic changes or a rapid rise in serum potassium indicates that hyperkalemia is potentially life threatening. Urine potassium, creatinine, and osmolarity should be obtained as a first step in determining the cause of hyperkalemia, which directs long-term treatment. Intravenous calcium is effective in reversing electrocardiographic changes and reducing the risk of arrhythmias but does not lower serum potassium. Serum potassium levels can be lowered acutely by using intravenous insulin and glucose, nebulized beta2 agonists, or both. Sodium polystyrene therapy, sometimes with intravenous furosemide and saline, is then initiated to lower total body potassium levels. The prevalence of hyperkalemia in hospitalized patients is between 1 and 10 percent.1 Although the exact prevalence of hyperkalemia in community-based medical practice is unknown, potassium elevation is a common, potentially life-threatening problem most often occuring in patients with chronic renal failure or other illnesses that reduce renal potassium excretion (Table 12,3). In these patie Continue reading >>

Hypokalaemia And Metabolic Acidosis

Hypokalaemia And Metabolic Acidosis

Home | Education | Hypokalaemia and Metabolic Acidosis 35 year old Aboriginal female presents with a 2/52 Hx of weakness, thirst and nausea. Presents to ED unable to lift her hands. Admitted 3/12 ago with something similar but doesnt know what it was and her medical notes are not immediately available. No other past medical history of note. Examination reveals a quiet, dehydrated lady with generalised non-lateralising weakness in all 4 limbs. Bedside venous blood gas results included: Sinus rhythm with sinus arrhythmia at a rate of 72 bpm. U waves noted most prominently in leads V1-V3 Sinus arrhythmia [sinus rhythm with slight variation (>0.16 seconds) in the sinus cycles] Normal anion gap metabolic acidosis. The 2 most common causes in ED Other causes are many and varied. There are several mnemonics out there the most recent edition of Rosen suggests: F-USED CARS Basically (and rather obviously), a metabolic acidosis is caused by either excess acid or a loss of alkali. Excess acid may be produced by the body itself or may be exogenous. Calculating the anion gap is used in the context of having made a diagnosis of a metabolic acidosis to help determine possible causes. Its an artificial but pragmatic concept based on the fact that with normal physiology there will be more unmeasured anions (predominantly Albumin, Phosphate and Sulphate) than cations on routine blood testing. Most people dont use potassium in the equation resulting in a normal range of 8-12. (12-16 if potassium included), although in this case it wouldnt have made much difference! A wide anion gap in the setting of a metabolic acidosis (or High Anion Gap Metabolic Acidosis [HAGMA]) suggests there is excess unmeasured anion / acid. Keeping it simple, there are only 4 causes: Essentially a state of excess Continue reading >>

Biomedx Blog On Live Blood Microscope Training Biological Terrain Medicine - Metabolic Acidosis

Biomedx Blog On Live Blood Microscope Training Biological Terrain Medicine - Metabolic Acidosis

Measure, Manage, See More in Health @ biomedx.com This is the condition where someone is systemically too acid. The extracellular plasma fluid has a low pH wherein the H+ concentration is high and the bicarbonate level is low. Just as in metabolic alkalosis, metabolic acidosis engages first the bodys acid-base second to second chemical buffering system, and if more assistance is required it turns to the minute by minute buffering ability of the lungs. So here we see a compensatory rise in breath rate as the body says "hey, Ive got to get rid of some of this acid so lets blow off some CO2". But you will recall that the lungs are only good for about 50-75% of the job at which point the kidneys will engage. So first clue to metabolic acidosis is a rise in breath rate. Recall normal breath rate is at about 14 breaths per minute. When you start moving much above this start looking at the urine and saliva pH pattern. Here we are blowing off CO2 - so low CO2 means low carbonic acid which means a rise in saliva pH. The kidneys will dump as much H+ as they can, and it will be going out with ammonium ions (NH4+). Sodium ions are conserved in this process. The rate of ammonium secretion depends on the pH of the urine and the duration of the acidosis. pH is the independent variable, ammonium is the dependent variable , i.e. NH4+ going out depends on urine pH value and how long acidosis as been around. If pH is lowered, ammonium output increases, if urine pH is raised, ammonium decreases. The magnitude of the response depends on the duration of acidosis. If the duration has been severe, more ammonium will be excreted at a given pH. An example from Davenports text The ABC of Acid Base Chemistry: A normal man excretes 30 millimoles of ammonium a day when his urine pH is 5, but he may Continue reading >>

Metabolic Acidosis: Causes, Symptoms, And Treatment

Metabolic Acidosis: Causes, Symptoms, And Treatment

The Terrible Effects of Acid Acid corrosion is a well-known fact. Acid rain can peel the paint off of a car. Acidifying ocean water bleaches and destroys coral reefs. Acid can burn a giant hole through metal. It can also burn holes, called cavities, into your teeth. I think I've made my point. Acid, regardless of where it's at, is going to hurt. And when your body is full of acid, then it's going to destroy your fragile, soft, internal organs even more quickly than it can destroy your bony teeth and chunks of thick metal. What Is Metabolic Acidosis? The condition that fills your body with proportionately too much acid is known as metabolic acidosis. Metabolic acidosis refers to a physiological state characterized by an increase in the amount of acid produced or ingested by the body, the decreased renal excretion of acid, or bicarbonate loss from the body. Metabolism is a word that refers to a set of biochemical processes within your body that produce energy and sustain life. If these processes go haywire, due to disease, then they can cause an excess production of hydrogen (H+) ions. These ions are acidic, and therefore the level of acidity in your body increases, leading to acidemia, an abnormally low pH of the blood, <7.35. The pH of the blood mimics the overall physiological state in the body. In short, a metabolic process is like a power plant producing energy. If a nuclear power plant goes haywire for any reason, then we know what the consequences will be: uncontrolled and excessive nuclear energetic reactions leading to the leakage of large amounts of radioactive material out into the environment. In our body, this radioactive material is acid (or hydrogen ions). Acidemia can also occur if the kidneys are sick and they do not excrete enough hydrogen ions out of th Continue reading >>

The Plasma Potassium Concentration In Metabolic Acidosis: A Re-evaluation

The Plasma Potassium Concentration In Metabolic Acidosis: A Re-evaluation

Volume 11, Issue 3 , March 1988, Pages 220-224 The Plasma Potassium Concentration in Metabolic Acidosis: A Re-evaluation Get rights and content The purpose of these investigations was to describe the mechanisms responsible for the change in the plasma [K] during the development and maintenance of hyperchloremic metabolic acidosis. Acute metabolic acidosis produced by HCl infusion resulted in a prompt rise in the plasma [K], whereas no change was observed during acute respiratory acidosis in the dog. After 3 to 5 days of acidosis due to NH4Cl feeding, dogs became hypokalemic; this fall in the plasma [K] was due largely to increased urine K excretion. Despite hypokalemia, aldosterone levels were not low, and the calculated transtubular [K] gradient was relatively high, suggesting renal aldosterone action. Thus, rather than anticipating hyperkalemia in patients with chronic metabolic acidosis due to a HCl load, the finding of hyperkalemia should suggest that the rate of urinary K excretion is lower than expected (ie, there are low aldosterone levels or failure of the kidney to respond to this hormone). Continue reading >>

Potassium And Acidosis

Potassium And Acidosis

Balance among electrically charged atoms and molecules is essential to maintaining chemical equilibrium in your body. Potassium is the most abundant, positively charged atom inside your cells. Because acids and potassium both have a positive electrical charge in your body, their concentrations are interdependent. Medical conditions that cause an overabundance of acids in your blood, known as acidosis, may affect your blood potassium level, and vice versa. Video of the Day Metabolic acidosis is an abnormally low blood pH caused by overproduction of acids or failure of your kidneys to rid the body of acids normally. With metabolic acidosis, your blood has an abnormally high level of positively charged hydrogen atoms, or hydrogen ions. To reduce the acidity of your blood, hydrogen ions move from your circulation into your cells in exchange for potassium. The exchange of hydrogen for potassium ions helps relieve the severity of acidosis but may cause an abnormally high level of blood potassium, or hyperkalemia. Drs. Kimberley Evans and Arthur Greenberg reported in a September 2005 article published in the "Journal of Intensive Care Medicine" that there is a 0.3 to 1.3 mmol/L increase in blood potassium for every 0.1 decrease in pH with metabolic acidosis. Metabolic Acidosis Recovery Correction of the underlying medical problem responsible for metabolic acidosis typically leads to normalization of your blood pH. Although blood potassium is typically elevated with metabolic acidosis, a substantial amount of your total body potassium stores can be lost through the kidneys, causing a total body deficit. As your blood pH returns to normal, potassium moves from your bloodstream back into your cells. If your total body potassium stores have been depleted, your blood concentration Continue reading >>

On The Relationship Between Potassium And Acid-base Balance

On The Relationship Between Potassium And Acid-base Balance

The notion that acid-base and potassium homeostasis are linked is well known. Students of laboratory medicine will learn that in general acidemia (reduced blood pH) is associated with increased plasma potassium concentration (hyperkalemia), whilst alkalemia (increased blood pH) is associated with reduced plasma potassium concentration (hypokalemia). A frequently cited mechanism for these findings is that acidosis causes potassium to move from cells to extracellular fluid (plasma) in exchange for hydrogen ions, and alkalosis causes the reverse movement of potassium and hydrogen ions. As a recently published review makes clear, all the above may well be true, but it represents a gross oversimplification of the complex ways in which disorders of acid-base affect potassium metabolism and disorders of potassium affect acid-base balance. The review begins with an account of potassium homeostasis with particular detailed attention to the renal handling of potassium and regulation of potassium excretion in urine. This discussion includes detail of the many cellular mechanisms of potassium reabsorption and secretion throughout the renal tubule and collecting duct that ensure, despite significant variation in dietary intake, that plasma potassium remains within narrow, normal limits. There follows discussion of the ways in which acid-base disturbances affect these renal cellular mechanisms of potassium handling. For example, it is revealed that acidosis decreases potassium secretion in the distal renal tubule directly by effect on potassium secretory channels and indirectly by increasing ammonia production. The clinical consequences of the physiological relation between acid-base and potassium homeostasis are addressed under three headings: Hyperkalemia in Acidosis; Hypokalemia w Continue reading >>

High Serum Potassium Levels And Cardiac Arrest

High Serum Potassium Levels And Cardiac Arrest

The amount of potassium (K+) in the blood determines the excitability of nerve and muscle cells, including the heart muscle or myocardium. When potassium levels in the blood rise, this reduces the electrical potential and can lead to potentially fatal abnormal heart rhythms. High serum potassium levels also called hyperkalemia can be life-threatening and requires immediate therapy. There are several conditions which can significantly affect serum potassium levels and cause them to rise. Metabolic acidosis causes a decrease in serum pH which has a direct effect on serum levels of potassium. When serum pH drops (metabolic acidosis) serum potassium rises, and potassium shifts from intracellular to extracellular (into the blood). Another condition that is a common cause of hyperkalemia is end-stage renal disease. When the kidneys fail, they can no longer remove excess potassium, and it accumulates in the blood. Signs and symptoms of hyperkalemia include weakness, ascending paralysis, and respiratory failure. There are some ECG signs that may suggest hyperkalemia. Mild hyperkalemia can cause peaked T waves. As potassium levels continue to rise, you may see flattened p-waves, prolonged PR-interval, and other anomalies. If hyperkalemia is left untreated you may see idioventricular rhythms and a sine-wave pattern. Severe hyperkalemia can lead to asystolic cardiac arrest. The treatment of hyperkalemia depends on the severity and the patient’s clinical presentation. For mild hyperkalemia removal of potassium from the body is achieved with diuretics which cause the release of potassium in the urine. One example of a diuretic which does not spare potassium is furosemide. Resins like Kayexalate can also be used to remove potassium from the body. Kayexalate can be administered oral Continue reading >>

5.4 Metabolic Acidosis - Metabolic Effects

5.4 Metabolic Acidosis - Metabolic Effects

5.4 Metabolic Acidosis - Metabolic Effects A metabolic acidosis can cause significant physiological effects, particularly affecting the respiratory and cardiovascular systems. Hyperventilation ( Kussmaul respirations ) - this is the compensatory response Shift of oxyhaemoglobin dissociation curve (ODC) to the right Decreased 2,3 DPG levels in red cells (shifting the ODC back to the left) Sympathetic overactivity (incl tachycardia, vasoconstriction,decreased arrhythmia threshold) Resistance to the effects of catecholamines Increased bone resorption (chronic acidosis only) Shift of K+ out of cells causing hyperkalaemia 5.4.2 Some Effects have Opposing Actions. The cardiac stimulatory effects of sympathetic activity and release of catecholamines usually counteract the direct myocardial depression while plasma pH remains above 7.2. At systemic pH values less than this, the direct depression of contractility usually predominates. The direct vasodilatation is offset by the indirect sympathetically mediated vasoconstriction and cardiac stimulation during a mild acidosis. The venoconstriction shifts blood centrally and this causes pulmonary congestion. Pulmonary artery pressure usually rises during acidosis. The shift of the oxygen dissociation curve to the right due to the acidosis occurs rapidly. After 6 hours of acidosis, the red cell levels of 2,3 DPG have declined enough to shift the oxygen dissociation curve (ODC) back to normal. Acidosis is commonly said to cause hyperkalaemia by a shift of potassium out of cells. The effect on potassium levels is extremely variable and indirect effects due to the type of acidosis present are much more important. For example hyperkalaemia is due to renal failure in uraemic acidosis rather than the acidosis. Significant potassium loss du Continue reading >>

Metabolic Acidosis

Metabolic Acidosis

Practice Essentials Metabolic acidosis is a clinical disturbance characterized by an increase in plasma acidity. Metabolic acidosis should be considered a sign of an underlying disease process. Identification of this underlying condition is essential to initiate appropriate therapy. (See Etiology, DDx, Workup, and Treatment.) Understanding the regulation of acid-base balance requires appreciation of the fundamental definitions and principles underlying this complex physiologic process. Go to Pediatric Metabolic Acidosis and Emergent Management of Metabolic Acidosis for complete information on those topics. Continue reading >>

Potassium Balance In Acid-base Disorders

Potassium Balance In Acid-base Disorders

INTRODUCTION There are important interactions between potassium and acid-base balance that involve both transcellular cation exchanges and alterations in renal function [1]. These changes are most pronounced with metabolic acidosis but can also occur with metabolic alkalosis and, to a lesser degree, respiratory acid-base disorders. INTERNAL POTASSIUM BALANCE Acid-base disturbances cause potassium to shift into and out of cells, a phenomenon called "internal potassium balance" [2]. An often-quoted study found that the plasma potassium concentration will rise by 0.6 mEq/L for every 0.1 unit reduction of the extracellular pH [3]. However, this estimate was based upon only five patients with a variety of disturbances, and the range was very broad (0.2 to 1.7 mEq/L). This variability in the rise or fall of the plasma potassium in response to changes in extracellular pH was confirmed in subsequent studies [2,4]. Metabolic acidosis — In metabolic acidosis, more than one-half of the excess hydrogen ions are buffered in the cells. In this setting, electroneutrality is maintained in part by the movement of intracellular potassium into the extracellular fluid (figure 1). Thus, metabolic acidosis results in a plasma potassium concentration that is elevated in relation to total body stores. The net effect in some cases is overt hyperkalemia; in other patients who are potassium depleted due to urinary or gastrointestinal losses, the plasma potassium concentration is normal or even reduced [5,6]. There is still a relative increase in the plasma potassium concentration, however, as evidenced by a further fall in the plasma potassium concentration if the acidemia is corrected. A fall in pH is much less likely to raise the plasma potassium concentration in patients with lactic acidosis Continue reading >>

Hyperkalemia

Hyperkalemia

Hyperkalemia, also spelled hyperkalaemia, is an elevated level of potassium (K+) in the blood serum.[1] Normal potassium levels are between 3.5 and 5.0 mmol/L (3.5 and 5.0 mEq/L) with levels above 5.5 mmol/L defined as hyperkalemia.[3][4] Typically this results in no symptoms.[1] Occasionally when severe it results in palpitations, muscle pain, muscle weakness, or numbness.[1][2] An abnormal heart rate can occur which can result in cardiac arrest and death.[1][3] Common causes include kidney failure, hypoaldosteronism, and rhabdomyolysis.[1] A number of medications can also cause high blood potassium including spironolactone, NSAIDs, and angiotensin converting enzyme inhibitors.[1] The severity is divided into mild (5.5-5.9 mmol/L), moderate (6.0-6.4 mmol/L), and severe (>6.5 mmol/L).[3] High levels can also be detected on an electrocardiogram (ECG).[3] Pseudohyperkalemia, due to breakdown of cells during or after taking the blood sample, should be ruled out.[1][2] Initial treatment in those with ECG changes is calcium gluconate.[1][3] Medications that might worsen the condition should be stopped and a low potassium diet should be recommended.[1] Other medications used include dextrose with insulin, salbutamol, and sodium bicarbonate.[1][5] Measures to remove potassium from the body include furosemide, polystyrene sulfonate, and hemodialysis.[1] Hemodialysis is the most effective method.[3] The use of polystyrene sulfonate, while common, is poorly supported by evidence.[6] Hyperkalemia is rare among those who are otherwise healthy.[7] Among those who are in hospital, rates are between 1% and 2.5%.[2] It increases the overall risk of death by at least ten times.[2][7] The word "hyperkalemia" is from hyper- meaning high; kalium meaning potassium; and -emia, meaning "in th Continue reading >>

More in ketosis