diabetestalk.net

Why Does Potassium Increase In Dka?

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Initial Evaluation Initial evaluation of patients with DKA includes diagnosis and treatment of precipitating factors (Table 14–18). The most common precipitating factor is infection, followed by noncompliance with insulin therapy.3 While insulin pump therapy has been implicated as a risk factor for DKA in the past, most recent studies show that with proper education and practice using the pump, the frequency of DKA is the same for patients on pump and injection therapy.19 Common causes by frequency Other causes Selected drugs that may contribute to diabetic ketoacidosis Infection, particularly pneumonia, urinary tract infection, and sepsis4 Inadequate insulin treatment or noncompliance4 New-onset diabetes4 Cardiovascular disease, particularly myocardial infarction5 Acanthosis nigricans6 Acromegaly7 Arterial thrombosis, including mesenteric and iliac5 Cerebrovascular accident5 Hemochromatosis8 Hyperthyroidism9 Pancreatitis10 Pregnancy11 Atypical antipsychotic agents12 Corticosteroids13 FK50614 Glucagon15 Interferon16 Sympathomimetic agents including albuterol (Ventolin), dopamine (Intropin), dobutamine (Dobutrex), terbutaline (Bricanyl),17 and ritodrine (Yutopar)18 DIFFERENTIAL DIAGNOSIS Three key features of diabetic acidosis are hyperglycemia, ketosis, and acidosis. The conditions that cause these metabolic abnormalities overlap. The primary differential diagnosis for hyperglycemia is hyperosmolar hyperglycemic state (Table 23,20), which is discussed in the Stoner article21 on page 1723 of this issue. Common problems that produce ketosis include alcoholism and starvation. Metabolic states in which acidosis is predominant include lactic acidosis and ingestion of drugs such as salicylates and methanol. Abdominal pain may be a symptom of ketoacidosis or part of the inci Continue reading >>

Potassium Balance In Acid-base Disorders

Potassium Balance In Acid-base Disorders

INTRODUCTION There are important interactions between potassium and acid-base balance that involve both transcellular cation exchanges and alterations in renal function [1]. These changes are most pronounced with metabolic acidosis but can also occur with metabolic alkalosis and, to a lesser degree, respiratory acid-base disorders. INTERNAL POTASSIUM BALANCE Acid-base disturbances cause potassium to shift into and out of cells, a phenomenon called "internal potassium balance" [2]. An often-quoted study found that the plasma potassium concentration will rise by 0.6 mEq/L for every 0.1 unit reduction of the extracellular pH [3]. However, this estimate was based upon only five patients with a variety of disturbances, and the range was very broad (0.2 to 1.7 mEq/L). This variability in the rise or fall of the plasma potassium in response to changes in extracellular pH was confirmed in subsequent studies [2,4]. Metabolic acidosis — In metabolic acidosis, more than one-half of the excess hydrogen ions are buffered in the cells. In this setting, electroneutrality is maintained in part by the movement of intracellular potassium into the extracellular fluid (figure 1). Thus, metabolic acidosis results in a plasma potassium concentration that is elevated in relation to total body stores. The net effect in some cases is overt hyperkalemia; in other patients who are potassium depleted due to urinary or gastrointestinal losses, the plasma potassium concentration is normal or even reduced [5,6]. There is still a relative increase in the plasma potassium concentration, however, as evidenced by a further fall in the plasma potassium concentration if the acidemia is corrected. A fall in pH is much less likely to raise the plasma potassium concentration in patients with lactic acidosis Continue reading >>

The Power Of Potassium

The Power Of Potassium

We’ve talked about several different minerals in past blog entries. Potassium is the mineral of choice for this week’s post for several reasons, and it’s a mineral that people with kidney problems should be sure to pay close attention to. What potassium does in the body First, let’s explore what potassium does in the body. This mineral is often referred to as an “electrolyte.” Electrolytes are electrically charged particles, called ions, which our cells use to maintain voltage across our cell membranes and carry electrical impulses, such as nerve impulses, to other cells. (Bet you didn’t think you had all this electrical activity in your body, did you?) Some of the main electrolytes in our bodies, besides potassium, are sodium, chloride, calcium, and magnesium. Your kidneys help regulate the amount of electrolytes in the body. Potassium’s job is to help nerve conduction, help regulate your heartbeat, and help your muscles contract. It also works to maintain proper fluid balance between your cells and body fluids. The body is a fine-tuned machine in that, as long as it’s healthy and functioning properly, things will work as they should. This means that, as long as your kidneys are working up to par, they’ll regulate the amount of potassium that your body needs. However, people with diabetes who have kidney disease need to be especially careful of their potassium intake, as levels can get too high in the body when the kidneys don’t work as they should. Too much potassium is just as dangerous as too little. Your physician can measure the amount of potassium in your blood with a simple blood test. A normal, or “safe” level of potassium is between 3.7 and 5.2 milliequivalents per liter (mEq/L). Levels below or above this range are a cause for concer Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Print Overview Diabetic ketoacidosis is a serious complication of diabetes that occurs when your body produces high levels of blood acids called ketones. The condition develops when your body can't produce enough insulin. Insulin normally plays a key role in helping sugar (glucose) — a major source of energy for your muscles and other tissues — enter your cells. Without enough insulin, your body begins to break down fat as fuel. This process produces a buildup of acids in the bloodstream called ketones, eventually leading to diabetic ketoacidosis if untreated. If you have diabetes or you're at risk of diabetes, learn the warning signs of diabetic ketoacidosis — and know when to seek emergency care. Symptoms Diabetic ketoacidosis signs and symptoms often develop quickly, sometimes within 24 hours. For some, these signs and symptoms may be the first indication of having diabetes. You may notice: Excessive thirst Frequent urination Nausea and vomiting Abdominal pain Weakness or fatigue Shortness of breath Fruity-scented breath Confusion More-specific signs of diabetic ketoacidosis — which can be detected through home blood and urine testing kits — include: High blood sugar level (hyperglycemia) High ketone levels in your urine When to see a doctor If you feel ill or stressed or you've had a recent illness or injury, check your blood sugar level often. You might also try an over-the-counter urine ketones testing kit. Contact your doctor immediately if: You're vomiting and unable to tolerate food or liquid Your blood sugar level is higher than your target range and doesn't respond to home treatment Your urine ketone level is moderate or high Seek emergency care if: Your blood sugar level is consistently higher than 300 milligrams per deciliter (mg/dL), or 16.7 mill Continue reading >>

Hyperkalemia (high Blood Potassium)

Hyperkalemia (high Blood Potassium)

How does hyperkalemia affect the body? Potassium is critical for the normal functioning of the muscles, heart, and nerves. It plays an important role in controlling activity of smooth muscle (such as the muscle found in the digestive tract) and skeletal muscle (muscles of the extremities and torso), as well as the muscles of the heart. It is also important for normal transmission of electrical signals throughout the nervous system within the body. Normal blood levels of potassium are critical for maintaining normal heart electrical rhythm. Both low blood potassium levels (hypokalemia) and high blood potassium levels (hyperkalemia) can lead to abnormal heart rhythms. The most important clinical effect of hyperkalemia is related to electrical rhythm of the heart. While mild hyperkalemia probably has a limited effect on the heart, moderate hyperkalemia can produce EKG changes (EKG is a reading of theelectrical activity of the heart muscles), and severe hyperkalemia can cause suppression of electrical activity of the heart and can cause the heart to stop beating. Another important effect of hyperkalemia is interference with functioning of the skeletal muscles. Hyperkalemic periodic paralysis is a rare inherited disorder in which patients can develop sudden onset of hyperkalemia which in turn causes muscle paralysis. The reason for the muscle paralysis is not clearly understood, but it is probably due to hyperkalemia suppressing the electrical activity of the muscle. Common electrolytes that are measured by doctors with blood testing include sodium, potassium, chloride, and bicarbonate. The functions and normal range values for these electrolytes are described below. Hypokalemia, or decreased potassium, can arise due to kidney diseases; excessive losses due to heavy sweating Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Diabetes mellitus is the name given to a group of conditions whose common hallmark is a raised blood glucose concentration (hyperglycemia) due to an absolute or relative deficiency of the pancreatic hormone insulin. In the UK there are 1.4 million registered diabetic patients, approximately 3 % of the population. In addition, an estimated 1 million remain undiagnosed. It is a growing health problem: In 1998, the World Health Organization (WHO) predicted a doubling of the worldwide prevalence of diabetes from 150 million to 300 million by 2025. For a very tiny minority, diabetes is a secondary feature of primary endocrine disease such as acromegaly (growth hormone excess) or Cushing’s syndrome (excess corticosteroid), and for these patients successful treatment of the primary disease cures diabetes. Most diabetic patients, however, are classified as suffering either type 1 or type 2 diabetes. Type 1 diabetes Type 1 diabetes, which accounts for around 15 % of the total diabetic population, is an autoimmune disease of the pancreas in which the insulin-producing β-cells of the pancreas are selectively destroyed, resulting in an absolute insulin deficiency. The condition arises in genetically susceptible individuals exposed to undefined environmental insult(s) (possibly viral infection) early in life. It usually becomes clinically evident and therefore diagnosed during late childhood, with peak incidence between 11 and 13 years of age, although the autoimmune-mediated β-cell destruction begins many years earlier. There is currently no cure and type 1 diabetics have an absolute life-long requirement for daily insulin injections to survive. Type 2 diabetes This is the most common form of diabetes: around 85 % of the diabetic population has type 2 diabetes. The primary prob Continue reading >>

Why Is There Hyperkalemia In Diabetic Ketoacidosis?

Why Is There Hyperkalemia In Diabetic Ketoacidosis?

Lack of insulin, thus no proper metabolism of glucose, ketones form, pH goes down, H+ concentration rises, our body tries to compensate by exchanging K+ from inside the cells for H+ outside the cells, hoping to lower H+ concentration, but at the same time elevating serum potassium. Most people are seriously dehydrated, so are in acute kidney failure, thus the kidneys aren’t able to excrete the excess of potassium from the blood, compounding the problem. On the other hand, many in reality are severely potassium depleted, so once lots of fluid so rehydration and a little insulin is administered serum potassium will plummet, so needs to be monitored 2 hourly - along with glucose, sodium and kidney function - to prevent severe hypokalemia causing fatal arrhythmias, like we experienced decades ago when this wasn’t so well understood yet. In practice, once the patient started peeing again, we started adding potassium chloride to our infusion fluids, the surplus potassium would be peed out by our kidneys so no risk for hyperkalemia. Continue reading >>

Diabetic Ketoacidosis (dka)

Diabetic Ketoacidosis (dka)

Diabetic ketoacidosis is an acute metabolic complication of diabetes characterized by hyperglycemia, hyperketonemia, and metabolic acidosis. Hyperglycemia causes an osmotic diuresis with significant fluid and electrolyte loss. DKA occurs mostly in type 1 diabetes mellitus (DM). It causes nausea, vomiting, and abdominal pain and can progress to cerebral edema, coma, and death. DKA is diagnosed by detection of hyperketonemia and anion gap metabolic acidosis in the presence of hyperglycemia. Treatment involves volume expansion, insulin replacement, and prevention of hypokalemia. Diabetic ketoacidosis (DKA) is most common among patients with type 1 diabetes mellitus and develops when insulin levels are insufficient to meet the body’s basic metabolic requirements. DKA is the first manifestation of type 1 DM in a minority of patients. Insulin deficiency can be absolute (eg, during lapses in the administration of exogenous insulin) or relative (eg, when usual insulin doses do not meet metabolic needs during physiologic stress). Common physiologic stresses that can trigger DKA include Some drugs implicated in causing DKA include DKA is less common in type 2 diabetes mellitus, but it may occur in situations of unusual physiologic stress. Ketosis-prone type 2 diabetes is a variant of type 2 diabetes, which is sometimes seen in obese individuals, often of African (including African-American or Afro-Caribbean) origin. People with ketosis-prone diabetes (also referred to as Flatbush diabetes) can have significant impairment of beta cell function with hyperglycemia, and are therefore more likely to develop DKA in the setting of significant hyperglycemia. SGLT-2 inhibitors have been implicated in causing DKA in both type 1 and type 2 DM. Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Practice Essentials Diabetic ketoacidosis (DKA) is an acute, major, life-threatening complication of diabetes that mainly occurs in patients with type 1 diabetes, but it is not uncommon in some patients with type 2 diabetes. This condition is a complex disordered metabolic state characterized by hyperglycemia, ketoacidosis, and ketonuria. Signs and symptoms The most common early symptoms of DKA are the insidious increase in polydipsia and polyuria. The following are other signs and symptoms of DKA: Nausea and vomiting; may be associated with diffuse abdominal pain, decreased appetite, and anorexia History of failure to comply with insulin therapy or missed insulin injections due to vomiting or psychological reasons or history of mechanical failure of insulin infusion pump Altered consciousness (eg, mild disorientation, confusion); frank coma is uncommon but may occur when the condition is neglected or with severe dehydration/acidosis Signs and symptoms of DKA associated with possible intercurrent infection are as follows: See Clinical Presentation for more detail. Diagnosis On examination, general findings of DKA may include the following: Characteristic acetone (ketotic) breath odor In addition, evaluate patients for signs of possible intercurrent illnesses such as MI, UTI, pneumonia, and perinephric abscess. Search for signs of infection is mandatory in all cases. Testing Initial and repeat laboratory studies for patients with DKA include the following: Serum electrolyte levels (eg, potassium, sodium, chloride, magnesium, calcium, phosphorus) Note that high serum glucose levels may lead to dilutional hyponatremia; high triglyceride levels may lead to factitious low glucose levels; and high levels of ketone bodies may lead to factitious elevation of creatinine levels. Continue reading >>

Diabetic Ketoacidosis - Symptoms

Diabetic Ketoacidosis - Symptoms

A A A Diabetic Ketoacidosis Diabetic ketoacidosis (DKA) results from dehydration during a state of relative insulin deficiency, associated with high blood levels of sugar level and organic acids called ketones. Diabetic ketoacidosis is associated with significant disturbances of the body's chemistry, which resolve with proper therapy. Diabetic ketoacidosis usually occurs in people with type 1 (juvenile) diabetes mellitus (T1DM), but diabetic ketoacidosis can develop in any person with diabetes. Since type 1 diabetes typically starts before age 25 years, diabetic ketoacidosis is most common in this age group, but it may occur at any age. Males and females are equally affected. Diabetic ketoacidosis occurs when a person with diabetes becomes dehydrated. As the body produces a stress response, hormones (unopposed by insulin due to the insulin deficiency) begin to break down muscle, fat, and liver cells into glucose (sugar) and fatty acids for use as fuel. These hormones include glucagon, growth hormone, and adrenaline. These fatty acids are converted to ketones by a process called oxidation. The body consumes its own muscle, fat, and liver cells for fuel. In diabetic ketoacidosis, the body shifts from its normal fed metabolism (using carbohydrates for fuel) to a fasting state (using fat for fuel). The resulting increase in blood sugar occurs, because insulin is unavailable to transport sugar into cells for future use. As blood sugar levels rise, the kidneys cannot retain the extra sugar, which is dumped into the urine, thereby increasing urination and causing dehydration. Commonly, about 10% of total body fluids are lost as the patient slips into diabetic ketoacidosis. Significant loss of potassium and other salts in the excessive urination is also common. The most common Continue reading >>

Diabetic Ketoacidosis Producing Extreme Hyperkalemia In A Patient With Type 1 Diabetes On Hemodialysis

Diabetic Ketoacidosis Producing Extreme Hyperkalemia In A Patient With Type 1 Diabetes On Hemodialysis

Go to: Abstract Diabetic ketoacidosis (DKA) is a critical complication of type 1 diabetes associated with water and electrolyte disorders. Here, we report a case of DKA with extreme hyperkalemia (9.0 mEq/L) in a patient with type 1 diabetes on hemodialysis. He had a left frontal cerebral infarction resulting in inability to manage his continuous subcutaneous insulin infusion pump. Electrocardiography showed typical changes of hyperkalemia, including absent P waves, prolonged QRS interval and tented T waves. There was no evidence of total body water deficit. After starting insulin and rapid hemodialysis, the serum potassium level was normalized. Although DKA may present with hypokalemia, rapid hemodialysis may be necessary to resolve severe hyperkalemia in a patient with renal failure. Learning points: Patients with type 1 diabetes on hemodialysis may develop ketoacidosis because of discontinuation of insulin treatment. Patients on hemodialysis who develop ketoacidosis may have hyperkalemia because of anuria. Absolute insulin deficit alters potassium distribution between the intracellular and extracellular space, and anuria abolishes urinary excretion of potassium. Rapid hemodialysis along with intensive insulin therapy can improve hyperkalemia, while fluid infusions may worsen heart failure in patients with ketoacidosis who routinely require hemodialysis. Go to: Background Diabetic ketoacidosis (DKA) is a very common endocrinology emergency. It is usually associated with severe circulatory volume depletion. Management of fluids, metabolic acidosis and electrolyte disorders is mandatory. In DKA, mild-to-moderate elevation of serum potassium is usually seen despite total body potassium wasting (1). After intravenous insulin infusion to treat DKA, even if the initial serum Continue reading >>

Diabetic Ketoacidosis Treatment & Management

Diabetic Ketoacidosis Treatment & Management

Approach Considerations Managing diabetic ketoacidosis (DKA) in an intensive care unit during the first 24-48 hours always is advisable. When treating patients with DKA, the following points must be considered and closely monitored: It is essential to maintain extreme vigilance for any concomitant process, such as infection, cerebrovascular accident, myocardial infarction, sepsis, or deep venous thrombosis. It is important to pay close attention to the correction of fluid and electrolyte loss during the first hour of treatment. This always should be followed by gradual correction of hyperglycemia and acidosis. Correction of fluid loss makes the clinical picture clearer and may be sufficient to correct acidosis. The presence of even mild signs of dehydration indicates that at least 3 L of fluid has already been lost. Patients usually are not discharged from the hospital unless they have been able to switch back to their daily insulin regimen without a recurrence of ketosis. When the condition is stable, pH exceeds 7.3, and bicarbonate is greater than 18 mEq/L, the patient is allowed to eat a meal preceded by a subcutaneous (SC) dose of regular insulin. Insulin infusion can be discontinued 30 minutes later. If the patient is still nauseated and cannot eat, dextrose infusion should be continued and regular or ultra–short-acting insulin should be administered SC every 4 hours, according to blood glucose level, while trying to maintain blood glucose values at 100-180 mg/dL. The 2011 JBDS guideline recommends the intravenous infusion of insulin at a weight-based fixed rate until ketosis has subsided. Should blood glucose fall below 14 mmol/L (250 mg/dL), 10% glucose should be added to allow for the continuation of fixed-rate insulin infusion. [19, 20] In established patient Continue reading >>

Hyperkalaemia In Diabetic Ketoacidosis

Hyperkalaemia In Diabetic Ketoacidosis

Dear Editor, I have a brief comment on the informative ‘Lesson of the week’ by Moulik and colleagues, describing an association between hyperkalaemia and an ECG pattern suggesting acute myocardial infarction in a patient with diabetic ketoacidosis (DKA). One of the mechanisms of hyperkalaemia in DKA stated at the beginning of the Discussion is not strictly correct. It is inorganic acids, and not organic acids (including lactic acid), that cause hyperkalaemia as a result of potassium ions leaving cells in ‘exchange’ for hydrogen ion entry (and their intracellular buffering). In DKA, the key mechanism is lack of insulin, which is probably the most important short-term regulator of plasma potassium concentration (through stimulation of the cell ‘sodium’ pump – Na,K-ATPase) and defence against acute hyperkalaemia resulting from our daily intake of potassium (~80 mmol): The extracellular pool of potassium is around 65 mmol and could almost double after a single steak meal (~50 mmol), which is too rapid a change for compensatory renal excretion. In DKA, an additional mechanism is the osmotic shrinkage of cells as a result of the high plasma glucose concentration (and plasma osmolality), which steepens the intracellular to extracellular potassium concentration gradient and thereby causes an increase in potassium ion loss from cells. Of course, these observations do not materially alter the management of DKA, but only serve to emphasise the importance of inulin administration, glucose control and re-salination over the use (though not excluding it in severe metabolic acidosis) of bicarbonate, bearing in mind that such patients have usually become potassium depleted as a consequence of earlier increased renal losses, and therefore risk developing significant hypoka Continue reading >>

Severe Hyperkalaemia In Association With Diabetic Ketoacidosis In A Patient Presenting With Severe Generalized Muscle Weakness

Severe Hyperkalaemia In Association With Diabetic Ketoacidosis In A Patient Presenting With Severe Generalized Muscle Weakness

Diabetic ketoacidosis (DKA) is an acute, life‐threatening metabolic complication of diabetes mellitus. Hyperglycaemia, ketosis (ketonaemia or ketonuria) and acidosis are the cardinal features of DKA [1]. Other features that indicate the severity of DKA include volume depletion, acidosis and concurrent electrolyte disturbances, especially abnormalities of potassium homeostasis [1,2]. We describe a type 2 diabetic patient presenting with severe generalized muscle weakness and electrocardiographic evidence of severe hyperkalaemia in association with DKA and discuss the related pathophysiology. A 65‐year‐old male was admitted because of impaired mental status. He was a known insulin‐treated diabetic on quinapril (20 mg once daily) and was taking oral ampicillin 500 mg/day because of dysuria which had started 5 days prior to admission. He was disoriented in place and time with severe generalized muscle weakness; he was apyrexial (temperature 36.4°C), tachycardic (120 beats/min) and tachypneic (25 respirations/min) with cold extremities (supine blood pressure was 100/60 mmHg). An electrocardiogram (ECG) showed absent P waves, widening of QRS (‘sine wave’ in leads I, II, V5 and V6), depression of ST segments and tall peaked symmetrical T waves in leads V3–V6 (Figure 1). Blood glucose was 485 mg/dl, plasma creatinine 5.1 mg/dl (reference range (r.r.) 0.6–1.2 mg/dl, measured by the Jaffe method), urea 270 mg/dl (r.r. 11–54 mg/dl), albumin 4.2 g/dl (r.r. 3.4–4.7 g/dl), sodium 136 mmol/l (r.r. 135–145 mmol/l), chloride 102 mmol/l (r.r. 98–107 mmol/l), potassium 8.3 mmol/l (r.r. 3.5–5.4 mmol/l), phosphorus 1.6 mmol/l (r.r. 0.8–1.45 mmol/l) and magnesium 0.62 mmol/l (r.r. 0.75–1.25 mmol/l). A complete blood count revealed leukocytosis (12 090/µl with Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Abbas E. Kitabchi, PhD., MD., FACP, FACE Professor of Medicine & Molecular Sciences and Maston K. Callison Professor in the Division of Endocrinology, Diabetes & Metabolism UT Health Science Center, 920 Madison Ave., 300A, Memphis, TN 38163 Aidar R. Gosmanov, M.D., Ph.D., D.M.Sc. Assistant Professor of Medicine, Division of Endocrinology, Diabetes & Metabolism, The University of Tennessee Health Science Center, 920 Madison Avenue, Suite 300A, Memphis, TN 38163 Clinical Recognition Omission of insulin and infection are the two most common precipitants of DKA. Non-compliance may account for up to 44% of DKA presentations; while infection is less frequently observed in DKA patients. Acute medical illnesses involving the cardiovascular system (myocardial infarction, stroke, acute thrombosis) and gastrointestinal tract (bleeding, pancreatitis), diseases of endocrine axis (acromegaly, Cushing`s syndrome, hyperthyroidism) and impaired thermo-regulation or recent surgical procedures can contribute to the development of DKA by causing dehydration, increase in insulin counter-regulatory hormones, and worsening of peripheral insulin resistance. Medications such as diuretics, beta-blockers, corticosteroids, second-generation anti-psychotics, and/or anti-convulsants may affect carbohydrate metabolism and volume status and, therefore, could precipitateDKA. Other factors: psychological problems, eating disorders, insulin pump malfunction, and drug abuse. It is now recognized that new onset T2DM can manifest with DKA. These patients are obese, mostly African Americans or Hispanics and have undiagnosed hyperglycemia, impaired insulin secretion, and insulin action. A recent report suggests that cocaine abuse is an independent risk factor associated with DKA recurrence. Pathophysiology In Continue reading >>

More in ketosis