diabetestalk.net

Why Does Ketoacidosis Cause Hypokalemia

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a potentially life-threatening complication of diabetes mellitus.[1] Signs and symptoms may include vomiting, abdominal pain, deep gasping breathing, increased urination, weakness, confusion, and occasionally loss of consciousness.[1] A person's breath may develop a specific smell.[1] Onset of symptoms is usually rapid.[1] In some cases people may not realize they previously had diabetes.[1] DKA happens most often in those with type 1 diabetes, but can also occur in those with other types of diabetes under certain circumstances.[1] Triggers may include infection, not taking insulin correctly, stroke, and certain medications such as steroids.[1] DKA results from a shortage of insulin; in response the body switches to burning fatty acids which produces acidic ketone bodies.[3] DKA is typically diagnosed when testing finds high blood sugar, low blood pH, and ketoacids in either the blood or urine.[1] The primary treatment of DKA is with intravenous fluids and insulin.[1] Depending on the severity, insulin may be given intravenously or by injection under the skin.[3] Usually potassium is also needed to prevent the development of low blood potassium.[1] Throughout treatment blood sugar and potassium levels should be regularly checked.[1] Antibiotics may be required in those with an underlying infection.[6] In those with severely low blood pH, sodium bicarbonate may be given; however, its use is of unclear benefit and typically not recommended.[1][6] Rates of DKA vary around the world.[5] In the United Kingdom, about 4% of people with type 1 diabetes develop DKA each year, while in Malaysia the condition affects about 25% a year.[1][5] DKA was first described in 1886 and, until the introduction of insulin therapy in the 1920s, it was almost univ Continue reading >>

Practice Essentials

Practice Essentials

Hypokalemia is generally defined as a serum potassium level of less than 3.5 mEq/L (3.5 mmol/L). Moderate hypokalemia is a serum level of 2.5-3.0 mEq/L, and severe hypokalemia is a level of less than 2.5 mEq/L. Hypokalemia is a potentially life-threatening imbalance that may be iatrogenically induced. Hypokalemia may result from inadequate potassium intake, increased potassium excretion, or a shift of potassium from the extracellular to the intracellular space. Increased excretion is the most common mechanism. Poor intake or an intracellular shift by itself is a distinctly uncommon cause, but several causes often are present simultaneously. (See Etiology.) Gitelman syndrome is an autosomal recessive disorder characterized by hypokalemic metabolic alkalosis and low blood pressure. See the image below. Signs and symptoms Patients are often asymptomatic, particularly those with mild hypokalemia. Symptoms that are present are often from the underlying cause of the hypokalemia rather than the hypokalemia itself. The symptoms of hypokalemia are nonspecific and predominantly are related to muscular or cardiac function. Complaints may include the following: Weakness and fatigue (most common) Psychological symptoms (eg, psychosis, delirium, hallucinations, depression) Physical findings are often within the reference range. Abnormal findings may reflect the underlying disorder. Severe hypokalemia may manifest as bradycardia with cardiovascular collapse. Cardiac arrhythmias and acute respiratory failure from muscle paralysis are life-threatening complications that require immediate diagnosis. See Presentation for more detail. Diagnosis In most cases, the cause of hypokalemia is apparent from the history and physical examination. First-line studies include measurement of urine pota Continue reading >>

Hypokalemia

Hypokalemia

Hypokalemia, also spelled hypokalaemia, is a low level of potassium (K+) in the blood serum.[1] Normal potassium levels are between 3.5 and 5.0 mmol/L (3.5 and 5.0 mEq/L) with levels below 3.5 mmol/L defined as hypokalemia.[1][2] Mildly low levels do not typically cause symptoms.[3] Symptoms may include feeling tired, leg cramps, weakness, and constipation.[1] It increases the risk of an abnormal heart rhythm, which are often too slow, and can cause cardiac arrest.[1][3] Causes of hypokalemia include diarrhea, medications like furosemide and steroids, dialysis, diabetes insipidus, hyperaldosteronism, hypomagnesemia, and not enough intake in the diet.[1] It is classified as severe when levels are less than 2.5 mmol/L.[1] Low levels can also be detected on an electrocardiogram (ECG).[1] Hyperkalemia refers to a high level of potassium in the blood serum.[1] The speed at which potassium should be replaced depends on whether or not there are symptoms or ECG changes.[1] Mildly low levels can be managed with changes in the diet.[3] Potassium supplements can be either taken by mouth or intravenously.[3] If given by intravenous, generally less than 20 mmol are given over an hour.[1] High concentration solutions (>40 mmol/L) should be given in a central line if possible.[3] Magnesium replacement may also be required.[1] Hypokalemia is one of the most common water–electrolyte imbalances.[4] It affects about 20% of people admitted to hospital.[4] The word "hypokalemia" is from hypo- means "under"; kalium meaning potassium, and -emia means "condition of the blood".[5] Play media Video explanation Signs and symptoms[edit] Mild hypokalemia is often without symptoms, although it may cause elevation of blood pressure,[6] and can provoke the development of an abnormal heart rhythm. Se Continue reading >>

Starvation Ketoacidosis: A Cause Of Severe Anion Gap Metabolic Acidosis In Pregnancy

Starvation Ketoacidosis: A Cause Of Severe Anion Gap Metabolic Acidosis In Pregnancy

Copyright © 2014 Nupur Sinha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Pregnancy is a diabetogenic state characterized by relative insulin resistance, enhanced lipolysis, elevated free fatty acids and increased ketogenesis. In this setting, short period of starvation can precipitate ketoacidosis. This sequence of events is recognized as “accelerated starvation.” Metabolic acidosis during pregnancy may have adverse impact on fetal neural development including impaired intelligence and fetal demise. Short periods of starvation during pregnancy may present as severe anion gap metabolic acidosis (AGMA). We present a 41-year-old female in her 32nd week of pregnancy, admitted with severe AGMA with pH 7.16, anion gap 31, and bicarbonate of 5 mg/dL with normal lactate levels. She was intubated and accepted to medical intensive care unit. Urine and serum acetone were positive. Evaluation for all causes of AGMA was negative. The diagnosis of starvation ketoacidosis was established in absence of other causes of AGMA. Intravenous fluids, dextrose, thiamine, and folic acid were administered with resolution of acidosis, early extubation, and subsequent normal delivery of a healthy baby at full term. Rapid reversal of acidosis and favorable outcome are achieved with early administration of dextrose containing fluids. 1. Introduction A relative insulin deficient state has been well described in pregnancy. This is due to placentally derived hormones including glucagon, cortisol, and human placental lactogen which are increased in periods of stress [1]. The insulin resistance increases with gestational age Continue reading >>

Diabetic Ketoacidosis: Evaluation And Treatment

Diabetic Ketoacidosis: Evaluation And Treatment

Diabetic ketoacidosis is characterized by a serum glucose level greater than 250 mg per dL, a pH less than 7.3, a serum bicarbonate level less than 18 mEq per L, an elevated serum ketone level, and dehydration. Insulin deficiency is the main precipitating factor. Diabetic ketoacidosis can occur in persons of all ages, with 14 percent of cases occurring in persons older than 70 years, 23 percent in persons 51 to 70 years of age, 27 percent in persons 30 to 50 years of age, and 36 percent in persons younger than 30 years. The case fatality rate is 1 to 5 percent. About one-third of all cases are in persons without a history of diabetes mellitus. Common symptoms include polyuria with polydipsia (98 percent), weight loss (81 percent), fatigue (62 percent), dyspnea (57 percent), vomiting (46 percent), preceding febrile illness (40 percent), abdominal pain (32 percent), and polyphagia (23 percent). Measurement of A1C, blood urea nitrogen, creatinine, serum glucose, electrolytes, pH, and serum ketones; complete blood count; urinalysis; electrocardiography; and calculation of anion gap and osmolar gap can differentiate diabetic ketoacidosis from hyperosmolar hyperglycemic state, gastroenteritis, starvation ketosis, and other metabolic syndromes, and can assist in diagnosing comorbid conditions. Appropriate treatment includes administering intravenous fluids and insulin, and monitoring glucose and electrolyte levels. Cerebral edema is a rare but severe complication that occurs predominantly in children. Physicians should recognize the signs of diabetic ketoacidosis for prompt diagnosis, and identify early symptoms to prevent it. Patient education should include information on how to adjust insulin during times of illness and how to monitor glucose and ketone levels, as well as i Continue reading >>

Understanding And Treating Diabetic Ketoacidosis

Understanding And Treating Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a serious metabolic disorder that can occur in animals with diabetes mellitus (DM).1,2 Veterinary technicians play an integral role in managing and treating patients with this life-threatening condition. In addition to recognizing the clinical signs of this disorder and evaluating the patient's response to therapy, technicians should understand how this disorder occurs. DM is caused by a relative or absolute lack of insulin production by the pancreatic b-cells or by inactivity or loss of insulin receptors, which are usually found on membranes of skeletal muscle, fat, and liver cells.1,3 In dogs and cats, DM is classified as either insulin-dependent (the body is unable to produce sufficient insulin) or non-insulin-dependent (the body produces insulin, but the tissues in the body are resistant to the insulin).4 Most dogs and cats that develop DKA have an insulin deficiency. Insulin has many functions, including the enhancement of glucose uptake by the cells for energy.1 Without insulin, the cells cannot access glucose, thereby causing them to undergo starvation.2 The unused glucose remains in the circulation, resulting in hyperglycemia. To provide cells with an alternative energy source, the body breaks down adipocytes, releasing free fatty acids (FFAs) into the bloodstream. The liver subsequently converts FFAs to triglycerides and ketone bodies. These ketone bodies (i.e., acetone, acetoacetic acid, b-hydroxybutyric acid) can be used as energy by the tissues when there is a lack of glucose or nutritional intake.1,2 The breakdown of fat, combined with the body's inability to use glucose, causes many pets with diabetes to present with weight loss, despite having a ravenous appetite. If diabetes is undiagnosed or uncontrolled, a series of metab Continue reading >>

Diabetic Ketoacidosis Producing Extreme Hyperkalemia In A Patient With Type 1 Diabetes On Hemodialysis

Diabetic Ketoacidosis Producing Extreme Hyperkalemia In A Patient With Type 1 Diabetes On Hemodialysis

Hodaka Yamada1, Shunsuke Funazaki1, Masafumi Kakei1, Kazuo Hara1 and San-e Ishikawa2[1] Division of Endocrinology and Metabolism, Jichi Medical University Saitama Medical Center, Saitama, Japan [2] Division of Endocrinology and Metabolism, International University of Health and Welfare Hospital, Nasushiobara, Japan Summary Diabetic ketoacidosis (DKA) is a critical complication of type 1 diabetes associated with water and electrolyte disorders. Here, we report a case of DKA with extreme hyperkalemia (9.0 mEq/L) in a patient with type 1 diabetes on hemodialysis. He had a left frontal cerebral infarction resulting in inability to manage his continuous subcutaneous insulin infusion pump. Electrocardiography showed typical changes of hyperkalemia, including absent P waves, prolonged QRS interval and tented T waves. There was no evidence of total body water deficit. After starting insulin and rapid hemodialysis, the serum potassium level was normalized. Although DKA may present with hypokalemia, rapid hemodialysis may be necessary to resolve severe hyperkalemia in a patient with renal failure. Patients with type 1 diabetes on hemodialysis may develop ketoacidosis because of discontinuation of insulin treatment. Patients on hemodialysis who develop ketoacidosis may have hyperkalemia because of anuria. Absolute insulin deficit alters potassium distribution between the intracellular and extracellular space, and anuria abolishes urinary excretion of potassium. Rapid hemodialysis along with intensive insulin therapy can improve hyperkalemia, while fluid infusions may worsen heart failure in patients with ketoacidosis who routinely require hemodialysis. Background Diabetic ketoacidosis (DKA) is a very common endocrinology emergency. It is usually associated with severe circulatory Continue reading >>

Hyperkalemia (high Blood Potassium)

Hyperkalemia (high Blood Potassium)

How does hyperkalemia affect the body? Potassium is critical for the normal functioning of the muscles, heart, and nerves. It plays an important role in controlling activity of smooth muscle (such as the muscle found in the digestive tract) and skeletal muscle (muscles of the extremities and torso), as well as the muscles of the heart. It is also important for normal transmission of electrical signals throughout the nervous system within the body. Normal blood levels of potassium are critical for maintaining normal heart electrical rhythm. Both low blood potassium levels (hypokalemia) and high blood potassium levels (hyperkalemia) can lead to abnormal heart rhythms. The most important clinical effect of hyperkalemia is related to electrical rhythm of the heart. While mild hyperkalemia probably has a limited effect on the heart, moderate hyperkalemia can produce EKG changes (EKG is a reading of theelectrical activity of the heart muscles), and severe hyperkalemia can cause suppression of electrical activity of the heart and can cause the heart to stop beating. Another important effect of hyperkalemia is interference with functioning of the skeletal muscles. Hyperkalemic periodic paralysis is a rare inherited disorder in which patients can develop sudden onset of hyperkalemia which in turn causes muscle paralysis. The reason for the muscle paralysis is not clearly understood, but it is probably due to hyperkalemia suppressing the electrical activity of the muscle. Common electrolytes that are measured by doctors with blood testing include sodium, potassium, chloride, and bicarbonate. The functions and normal range values for these electrolytes are described below. Hypokalemia, or decreased potassium, can arise due to kidney diseases; excessive losses due to heavy sweating Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

4 Evaluation 5 Management Defining features include hyperglycemia (glucose > 250mg/dl), acidosis (pH < 7.3), and ketonemia/ketonuria Leads to osmotic diuresis and depletion of electrolytes including sodium, magnesium, calcium and phosphorous. Further dehydration impairs glomerular filtration rate (GFR) and contributes to acute renal failure Due to lipolysis / accumulation of of ketoacids (represented by increased anion gap) Compensatory respiratory alkalosis (i.e. tachypnea and hyperpnea - Kussmaul breathing) Breakdown of adipose creates first acetoacetate leading to conversion to beta-hydroxybutyrate Causes activation of RAAS in addition to the osmotic diuresis Cation loss (in exchange for chloride) worsens metabolic acidosis May be the initial presenting of an unrecognized T1DM patient Presenting signs/symptoms include altered mental status, tachypnea, abdominal pain, hypotension, decreased urine output. Perform a thorough neurologic exam (cerebral edema increases mortality significantly, especially in children) Assess for possible inciting cause (especially for ongoing infection; see Differential Diagnosis section) Ill appearance. Acetone breath. Drowsiness with decreased reflexes Tachypnea (Kussmaul's breathing) Signs of dehydration with dry mouth and dry mucosa. Perform a thorough neurologic exam as cerebral edema increases mortality significantly, especially in children There may be signs from underlying cause (eg pneumonia) Differential Diagnosis Insulin or oral hypoglycemic medication non-compliance Infection Intra-abdominal infections Steroid use Drug abuse Pregnancy Diabetic ketoacidosis (DKA) Diagnosis is made based on the presence of acidosis and ketonemia in the setting of diabetes. Bicarb may be normal due to compensatory and contraction alcoholosis so the Continue reading >>

Diabetic Ketoacidosis And Hyperglycemic Hyperosmolar Syndrome

Diabetic Ketoacidosis And Hyperglycemic Hyperosmolar Syndrome

In Brief Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic syndrome (HHS) are two acute complications of diabetes that can result in increased morbidity and mortality if not efficiently and effectively treated. Mortality rates are 2–5% for DKA and 15% for HHS, and mortality is usually a consequence of the underlying precipitating cause(s) rather than a result of the metabolic changes of hyperglycemia. Effective standardized treatment protocols, as well as prompt identification and treatment of the precipitating cause, are important factors affecting outcome. The two most common life-threatening complications of diabetes mellitus include diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar syndrome (HHS). Although there are important differences in their pathogenesis, the basic underlying mechanism for both disorders is a reduction in the net effective concentration of circulating insulin coupled with a concomitant elevation of counterregulatory hormones (glucagon, catecholamines, cortisol, and growth hormone). These hyperglycemic emergencies continue to be important causes of morbidity and mortality among patients with diabetes. DKA is reported to be responsible for more than 100,000 hospital admissions per year in the United States1 and accounts for 4–9% of all hospital discharge summaries among patients with diabetes.1 The incidence of HHS is lower than DKA and accounts for <1% of all primary diabetic admissions.1 Most patients with DKA have type 1 diabetes; however, patients with type 2 diabetes are also at risk during the catabolic stress of acute illness.2 Contrary to popular belief, DKA is more common in adults than in children.1 In community-based studies, more than 40% of African-American patients with DKA were >40 years of age and more than 2 Continue reading >>

What Is Hypokalemia?

What Is Hypokalemia?

What is hypokalemia? Hypokalemia is the technical term for a low potassium level. Potassium, represented by K on the periodic table of elements, is one of the most important components of the blood. Mild hypokalemia is diagnosed with a serum potassium level less than 3.5 mEq/L, and severe hypokalemia is usually less than 2.5 mEq/L. This common condition has numerous causes; quite a few problematic symptoms; and standard, effective treatments. Causes of Hypokalemia The causes of hypokalemia fall into three categories: poor intake increased excretion and potassium shifts. Poor intake is rather easy to understand: the patient merely does not take in enough potassium. This may result from eating disorders, dental problems, and poverty. Failure to replace potassium can lead to symptoms ranging from mild to severe. Increased excretion of potassium is usually seen in the cases of vomiting and diarrhoea. In these conditions, the potassium is excreted far faster than the patient can replace it. Some medications, such as diuretics, can cause potassium loss. Excessive urination, such as that which occurs with diabetes, is another culprit. Perhaps more difficult to understand is the shift of fluids in the body that can cause a hypokalemic state. If a patient experiences paralysis for an extended period, potassium may leave the blood and leach into the interstitial space. High doses of insulin can also cause a potassium shift that decreases the availability of the nutrient in the blood. Finally, high doses of beta agonists commonly used in COPD are possible causes of low serum potassium. Symptoms of Hypokalemia As noted, symptoms can range from mild to severe, most falling in the mild category. In fact, many patients are hypokalemic for long periods and have few to no symptoms becau Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Introduction Diabetic ketoacidosis (DKA) is a dangerous complication of diabetes caused by a lack of insulin in the body. Diabetic ketoacidosis occurs when the body is unable to use blood sugar (glucose) because there isn't enough insulin. Instead, it breaks down fat as an alternative source of fuel. This causes a build-up of a by-product called ketones. Most cases of diabetic ketoacidosis occur in people with type 1 diabetes, although it can also be a complication of type 2 diabetes. Symptoms of diabetic ketoacidosis include: passing large amounts of urine feeling very thirsty vomiting abdominal pain Seek immediate medical assistance if you have any of these symptoms and your blood sugar levels are high. Read more about the symptoms of diabetic ketoacidosis. Who is affected by diabetic ketoacidosis? Diabetic ketoacidosis is a relatively common complication in people with diabetes, particularly children and younger adults who have type 1 diabetes. Younger children under four years of age are thought to be most at risk. In about 1 in 4 cases, diabetic ketoacidosis develops in people who were previously unaware they had type 1 diabetes. Diabetic ketoacidosis accounts for around half of all diabetes-related hospital admissions in people with type 1 diabetes. Diabetic ketoacidosis triggers These include: infections and other illnesses not keeping up with recommended insulin injections Read more about potential causes of diabetic ketoacidosis. Diagnosing diabetic ketoacidosis This is a relatively straightforward process. Blood tests can be used to check your glucose levels and any chemical imbalances, such as low levels of potassium. Urine tests can be used to estimate the number of ketones in your body. Blood and urine tests can also be used to check for an underlying infec Continue reading >>

Potassium Balance In Acid-base Disorders

Potassium Balance In Acid-base Disorders

INTRODUCTION There are important interactions between potassium and acid-base balance that involve both transcellular cation exchanges and alterations in renal function [1]. These changes are most pronounced with metabolic acidosis but can also occur with metabolic alkalosis and, to a lesser degree, respiratory acid-base disorders. INTERNAL POTASSIUM BALANCE Acid-base disturbances cause potassium to shift into and out of cells, a phenomenon called "internal potassium balance" [2]. An often-quoted study found that the plasma potassium concentration will rise by 0.6 mEq/L for every 0.1 unit reduction of the extracellular pH [3]. However, this estimate was based upon only five patients with a variety of disturbances, and the range was very broad (0.2 to 1.7 mEq/L). This variability in the rise or fall of the plasma potassium in response to changes in extracellular pH was confirmed in subsequent studies [2,4]. Metabolic acidosis — In metabolic acidosis, more than one-half of the excess hydrogen ions are buffered in the cells. In this setting, electroneutrality is maintained in part by the movement of intracellular potassium into the extracellular fluid (figure 1). Thus, metabolic acidosis results in a plasma potassium concentration that is elevated in relation to total body stores. The net effect in some cases is overt hyperkalemia; in other patients who are potassium depleted due to urinary or gastrointestinal losses, the plasma potassium concentration is normal or even reduced [5,6]. There is still a relative increase in the plasma potassium concentration, however, as evidenced by a further fall in the plasma potassium concentration if the acidemia is corrected. A fall in pH is much less likely to raise the plasma potassium concentration in patients with lactic acidosis Continue reading >>

Hyperglycemia & Low Potassium

Hyperglycemia & Low Potassium

Hyperglycemia, or high blood sugar, is a potentially serious health condition affecting individuals with diabetes. Hyperglycemia can trigger a severe depletion of potassium, a mineral that serves many critical functions in the human body. Carefully follow medical advice for diabetes management including dietary restrictions and medication to minimize the impact of hyperglycemia and the potential for total body potassium depletion. Video of the Day Potassium is a necessary dietary mineral which must be consumed daily, as it is easily soluble and flushes out in the urine, according to Dr. Elson M. Haas of Periodic Paralysis International. Potassium is the primary mineral found inside of human body cells, while sodium is the primary mineral found outside the body cells. Potassium and sodium must be maintained in careful balance. Potassium is plentiful in fresh fruits, vegetables and whole grains, but is easily lost in the cooking process. Consuming an excess of sodium in relation to potassium can lead to high blood pressure and other negative health consequences. Hyperglycemia, or high serum glucose levels, happens occasionally in nearly all diabetics but must be carefully monitored and corrected as it may lead to serious complications like diabetic ketoacidosis and diabetic coma, according to the MayoClinic.com. In addition to high blood glucose levels, symptoms of hyperglycemia include frequent urination and increased thirst. Hyperglycemia results from too little insulin or inefficient insulin use and may also occur due to stress or illness, according to the American Diabetes Association. Low Potassium Effects Potassium deficiency can be caused by dietary insufficiency, chronic illness, heavy sweating, or the prolonged use of diuretics or laxatives, according to Dr. Elso Continue reading >>

Hypothermia And Hypokalemia In A Patient With Diabetic Ketoacidosis

Hypothermia And Hypokalemia In A Patient With Diabetic Ketoacidosis

We present the case of a 36-year-old man with type-1 diabetes who was hospitalized with diabetic ketoacidosis (DKA). On admission, he had hypothermia, hypokalemia and combined metabolic and respiratory alkalosis, in addition to hyperglycemia. Hypothermia, hypokalemia and metabolic alkalosis, with a concurrent respiratory alkalosis, are not commonly seen in DKA. After admission, intravenous infusion of 0.45% saline was administered, which resulted in the development of pure metabolic acidosis. After starting insulin infusion, hypokalemia and hypophosphatemia became evident and finally resulted in massive rhabdomyolysis. Hyperkalemia accompanying oliguric acute kidney injury (AKI) warranted initiation of hemodialysis (HD) on Day-five. On the 45th hospital day, his urine output started to increase and a total of 22 HD sessions were required. We believe that in this case severe dehydration, hypothermia and hypokalemia might have contributed to the initial symptoms of DKA as well as the prolongation of AKI. How to cite this article: Saito O, Saito T, Sugase T, Kusano E, Nagata D. Hypothermia and hypokalemia in a patient with diabetic ketoacidosis. Saudi J Kidney Dis Transpl 2015;26:580-3 Diabetic ketoacidosis (DKA) is a combination of the biochemical triad of hyperglycemia, ketonemia and metabolic acidosis. [1] Initial hypokalemia in DKA is a rare finding, with an incidence of 4-10%. [2] Hypothermia is rarely seen in patients with DKA, and the prognosis of this association is poor, with a mortality of 60% in the Western countries. [3] Also, combined metabolic and respiratory alkalosis is rarely seen in DKA, with an incidence of 7.5%. [4] We herewith report the case of a 36-year-old man with type-1 diabetes who was admitted to the hospital with DKA in association with hypothe Continue reading >>

More in ketosis