diabetestalk.net

Why Does Chloride Cause Acidosis?

Hyperchloremic Acidosis

Hyperchloremic Acidosis

Normal albumin-corrected anion gap acidosis Hyperchloremic acidosis is a common acid-base disturbance in critical illness, often mild (standard base excess >-10 mEq/L). Definitions of hyperchloremic acidosis vary. The best are not based on chloride concentrations, but on the presence of metabolic acidosis plus the absence of significant concentrations of lactate or other unmeasured anions. 2. standard base excess less than -3 mEq/L or bicarbonate less than 22 mmol/L, 3. Albumin corrected anion gap normal (5-15 mEq/L). A normal strong ion gap is an alternative indicator of the absence of unmeasured anions, although rarely used clinically and offering little advantage over the albumin corrected anion gap. The degree of respiratory compensation is relevant. It is appropriate if PaCO2 approximates the two numbers after arterial pH decimal point (e.g. pH=7.25, PaCO2=25 mm Hg; this rule applies to any primary metabolic acidosis down to a pH of 7.1). Acidosis is severe if standard base excess is less than -10 mEq/L, or pH is less than 7.3, or bicarbonate is less than 15 mmol/L. Common causes in critical illness are large volume saline administration, large volume colloid infusions (e.g. unbalanced gelatine or starch preparations) following resolution of diabetic keto-acidosis or of other raised anion gap acidosis, and post hypocarbia. Hyperchloremic acidosis often occurs on a background of renal impairment/tubular dysfunction. It is usually well tolerated, especially with appropriate respiratory compensation. The prognosis is largely that of the underlying condition. If associated with hyperkalemia, think of hypo-aldosteronism (Type 4 RTA), especially if diabetic. With persistent hypokalemia, think of RTA Types 1 and 2. Hyperchloremic acidosis is usually well tolerated in the Continue reading >>

Hyperchloremic Acidosis

Hyperchloremic Acidosis

Author: Sai-Ching Jim Yeung, MD, PhD, FACP; Chief Editor: Romesh Khardori, MD, PhD, FACP more... This article covers the pathophysiology and causes of hyperchloremic metabolic acidoses , in particular the renal tubular acidoses (RTAs). [ 1 , 2 ] It also addresses approaches to the diagnosis and management of these disorders. A low plasma bicarbonate (HCO3-) concentration represents, by definition, metabolic acidosis, which may be primary or secondary to a respiratory alkalosis. Loss of bicarbonate stores through diarrhea or renal tubular wasting leads to a metabolic acidosis state characterized by increased plasma chloride concentration and decreased plasma bicarbonate concentration. Primary metabolic acidoses that occur as a result of a marked increase in endogenous acid production (eg, lactic or keto acids) or progressive accumulation of endogenous acids when excretion is impaired by renal insufficiency are characterized by decreased plasma bicarbonate concentration and increased anion gap without hyperchloremia. The initial differentiation of metabolic acidosis should involve a determination of the anion gap (AG). This is usually defined as AG = (Na+) - [(HCO3- + Cl-)], in which Na+ is plasma sodium concentration, HCO3- is bicarbonate concentration, and Cl- is chloride concentration; all concentrations in this formula are in mmol/L (mM or mEq/L) (see also the Anion Gap calculator). The AG value represents the difference between unmeasured cations and anions, ie, the presence of anions in the plasma that are not routinely measured. An increased AG is associated with renal failure, ketoacidosis, lactic acidosis, and ingestion of certain toxins. It can usually be easily identified by evaluating routine plasma chemistry results and from the clinical picture. A normal AG Continue reading >>

Mechanism Of Hyperchloremic Metabolic Acidosis | Anesthesiology | Asa Publications

Mechanism Of Hyperchloremic Metabolic Acidosis | Anesthesiology | Asa Publications

Mechanism of Hyperchloremic Metabolic Acidosis Lawrence R. Miller, MD ; Jonathan H. Waters, MD ; Charlton Provost Department of Anesthesiology FHP, Inc., Fountain Valley, California, Department of Anesthesiology, University of California, Irvine Medical Center, 101 City Drive South, Route 81A, Orange, California 92668. Mechanism of Hyperchloremic Metabolic Acidosis Anesthesiology 2 1996, Vol.84, 482-483.. doi: Anesthesiology 2 1996, Vol.84, 482-483.. doi: Lawrence R. Miller, Jonathan H. Waters, Charlton Provost; Mechanism of Hyperchloremic Metabolic Acidosis. Anesthesiology 1996;84(2):482-483.. 2018 American Society of Anesthesiologists Mechanism of Hyperchloremic Metabolic Acidosis You will receive an email whenever this article is corrected, updated, or cited in the literature. You can manage this and all other alerts in My Account To the Editor:--Several points in the case report "Transient Perioperative Metabolic Acidosis in a Patient with Ileal Bladder Augmentation" [1] merit further discussion. We do not believe that the transient perioperative hyperchloremic metabolic acidosis in this patient required the presence of the ileal bladder augmentation. We accept that prolonged contact of urine with bowel mucosa will allow for water reabsorption, passive chloride reabsorption, and active HCO3sup - secretion, leading to a net HCO sub 3 sup - loss and metabolic acidosis. In this patient, an indwelling urinary catheter was placed preoperatively, and although the catheter was transiently obstructed at the initiation of surgery, the decreased time of contact between the urine and bowel mucosa inherent with bladder drainage mitigates the importance of the ileal augmented bladder. In our opinion, the principal reason for the acidosis was the large chloride load infused into Continue reading >>

Hyperchloremic Acidosis

Hyperchloremic Acidosis

Normal human physiological pH is 7.35 to 7.45. A decrease in pH below this range is acidosis, an increase in this range is alkalosis. Hyperchloremic acidosis is a metabolic disease state disease state where acidosis (pH less than 7.35) with an ionic chloride increase develops.Understanding the physiological pH buffering process is important. The primary pH buffer system in the human body is the HCO3 (Bicarbonate)/CO2 (carbon dioxide) chemical equilibrium system. Where: HCO3 functions as an alkalotic substance.CO2 functions as an acidic substance. Therefore, increases in HCO3 or decreases in CO2 will make blood more alkalotic. The opposite is also true where decreases in HCO3 or an increase in CO2 will make blood more acidic. CO2 levels are physiologically regulated by the pulmonary system through respiration, whereas the HCO3 levels are regulated through the renal system with reabsorption rates. Therefore, hyperchloremic metabolic acidosis is a decrease in HCO3 levels in the blood. Anytime a metabolic acidosis is suspected, it is extremely useful to calculate the anion gap. This is defined as: Where Nais plasma sodium concentration, HCO3 is plasma bicarbonate concentration, and Cl is plasma chloride concentration. The anion gap is a calculation to determine the quantity of ionically active components within the blood that are not routinely measured. Since there are always components not directly measured, we expect this value to not equal 0. The primary unmeasured physiologically is albumen. A normal serum anion gap is measured to be 8 to 16 mEq/L. An increase in the anion gap is associated with renal failure, ketoacidosis, lactic acidosis, and ingestion of toxins, whereas a lowered bicarbonate concentration characterizes a normal anion gap acidosis. The human body is Continue reading >>

Acid-base Physiology

Acid-base Physiology

8.4.1 Is this the same as normal anion gap acidosis? In hyperchloraemic acidosis, the anion-gap is normal (in most cases). The anion that replaces the titrated bicarbonate is chloride and because this is accounted for in the anion gap formula, the anion gap is normal. There are TWO problems in the definition of this type of metabolic acidosis which can cause confusion. Consider the following: What is the difference between a "hyperchloraemic acidosis" and a "normal anion gap acidosis"? These terms are used here as though they were synonymous. This is mostly true, but if hyponatraemia is present the plasma [Cl-] may be normal despite the presence of a normal anion gap acidosis. This could be considered a 'relative hyperchloraemia'. However, you should be aware that in some cases of normal anion-gap acidosis, there will not be a hyperchloraemia if there is a significant hyponatraemia. In a disorder that typically causes a high anion gap disorder there may sometimes be a normal anion gap! The anion gap may still be within the reference range in lactic acidosis. Now this can be misleading to you when you are trying to diagnose the disorder. Once you note the presence of an anion gap within the reference range in a patient with a metabolic acidosis you naturally tend to concentrate on looking for a renal or GIT cause. 1. One possibility is the increase in anions may be too low to push the anion gap out of the reference range. In lactic acidosis, the clinical disorder can be severe but the lactate may not be grossly high (eg lactate of 6mmol/l) and the change in the anion gap may still leave it in the reference range. So the causes of high anion gap acidosis should be considered in patients with hyperchloraemic acidosis if the cause of the acidosis is otherwise not apparent. Continue reading >>

Why Is Saline So Acidic (and Does It Really Matter?)

Why Is Saline So Acidic (and Does It Really Matter?)

Int J Med Sci 2013; 10(6):747-750. doi:10.7150/ijms.5868 Why Is Saline So Acidic (and Does It Really Matter?) Consultant, Intensive Care Unit, Royal Adelaide Hospital; Clinical Senior Lecturer, Discipline of Acute Care Medicine, University of Adelaide, Adelaide, Australia. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License . See for full terms and conditions. Reddi BA. Why Is Saline So Acidic (and Does It Really Matter?). Int J Med Sci 2013; 10(6):747-750. doi:10.7150/ijms.5868. Available from Commercial 0.9% saline solution for infusion has a pH around 5.5. There are many reasons for this acidity, some of them still obscure. It is also true that infusion of normal saline can lead to metabolic acidaemia, yet the link between the acidity of saline solution and the acidaemia it can engender is not straightforward. This commentary draws together the known and putative sources of acidity in saline solutions: it turns out that the acidity of saline solution is essentially unrelated to the acidaemia complicating saline infusion. Keywords: saline, acidaemia, titratable acidity, crystalloid, balanced solution, Grotthuss. One might well think that ordinary commercial 0.9% saline solution for infusion would be neutral, with a pH of 7. In fact it is quite acidic: pH being reported as low as 4.6. 1 Why does this simple solution have a pH so far removed from the physiology it is designed to support? And should junior doctors be concerned about what impact this in vitro acidity has on their patients? It is widely recognized that resuscitation with 0.9% saline can cause acidaemia, but oddly enough the natural assumption that this is because of the intrinsic acidity of the infusion fluid turns out to be wrong. As we shall Continue reading >>

Causes And Effects Of Hyperchloremic Acidosis

Causes And Effects Of Hyperchloremic Acidosis

Causes and effects of hyperchloremic acidosis 1Institute of Child Health, University of Liverpool, Eaton Road, Liverpool L12 2AP, UK This article has been cited by other articles in PMC. Gunnerson and colleagues [ 1 ] found in their retrospective study that critically ill patients with lactate acidosis had a higher mortality compared to patients with hyperchloremic acidosis, whose mortality was not significantly different from patients with no acidosis. Because of its iatrogenic etiology the authors commented that it is reassuring that hyperchloremic acidosis is not associated with an increased mortality. Previous randomized controlled trials have, however, generated concerns regarding the adverse effects of hyperchloremic acidosis associated with rapid isotonic saline administration. Rapid isotonic saline infusion predictably results in hyperchloremic acidosis [ 2 ]. The acidosis is due to a reduction in the strong anion gap by an excessive rise in plasma chloride as well as excessive renal bicarbonate elimination. In a randomized controlled trial with a mixed group of patients undergoing major surgery, isotonic saline infusion was compared to Hartmann's solution with 6% hetastarch with a balanced electrolyte and glucose solution. Two-thirds of patients in the isotonic saline group but none in the balanced fluid group developed hyperchloremic metabolic acidosis [ 3 ]. The hyperchloremic acidosis was associated with reduced gastric mucosal perfusion on gastric tonometry. Another randomized double blind trial of isotonic saline versus lactated Ringer's in patients undergoing aortic reconstructive surgery confirmed this result and the acidosis required interventions like bicarbonate infusion and was associated with the application of more blood products [ 4 ]. Hyperchlor Continue reading >>

Hyperchloremia Why And How - Sciencedirect

Hyperchloremia Why And How - Sciencedirect

Volume 36, Issue 4 , JulyAugust 2016, Pages 347-353 Hyperchloremia Why and howHipercloremia: por qu y cmo Author links open overlay panel Glenn T.Nagami Open Access funded by Sociedad Espaola de Nefrologa Hyperchloremia is a common electrolyte disorder that is associated with a diverse group of clinical conditions. The kidney plays an important role in the regulation of chloride concentration through a variety of transporters that are present along the nephron. Nevertheless, hyperchloremia can occur when water losses exceed sodium and chloride losses, when the capacity to handle excessive chloride is overwhelmed, or when the serum bicarbonate is low with a concomitant rise in chloride as occurs with a normal anion gap metabolic acidosis or respiratory alkalosis. The varied nature of the underlying causes of the hyperchloremia will, to a large extent, determine how to treat this electrolyte disturbance. La hipercloremia es una alteracin electroltica frecuente que se asocia a una serie de distintos trastornos clnicos. El rin desempea una funcin importante en la regulacin de la concentracin de cloruro a travs de diversos transportadores que se encuentran a lo largo de la nefrona. Sin embargo, puede aparecer hipercloremia cuando la prdida hdrica sea mayor que la de sodio y cloruro; cuando se sobrepase la capacidad de excretar el cloruro en exceso; o cuando la concentracin srica de bicarbonato sea baja y al mismo tiempo haya un aumento de cloruro, como sucede en la acidosis metablica con brecha aninica normal o en la alcalosis respiratoria. La heterognea naturaleza de las causas subyacentes de la hipercloremia determinar, en gran medida, el modo de tratar esta alteracin electroltica. Continue reading >>

Final Diagnosis -- Hypochloremic Metabolic Alkalosis

Final Diagnosis -- Hypochloremic Metabolic Alkalosis

FINAL DIAGNOSIS HYPOCHLOREMIC METABOLIC ALKALOSIS. I. INTRODUCTION Metabolic alkalosis is an acid-base disorder in which the pH of the blood is elevated beyond the normal range of 7.35-7.45. This metabolic condition occurs mainly due to decreased hydrogen ion concentration in the blood, leading to compensatory increased levels of serum bicarbonate, or alternatively, as a direct result of increased bicarbonate concentrations. An elevated PaCO2 is often present as a result of compensatory alveolar hypoventilation. II. CAUSES OF METABOLIC ALKALOSIS The five main major causes of metabolic alkalosis are. Loss of hydrogen ions - Vomiting or nasogastric suction Primary mineralocorticoid excess Renal Hydrogen Loss - Primary mineralocorticoid excess Loop or thiazide diuretics Posthypercapnic alkalosis Hypercalcemia and the milk-alkali syndrome Shift of hydrogen ions into intracellular space - Hypokalemia. Alkalotic agents - Alkalotic agents in excess, such as bicarbonate or antacids. Contraction alkalosis - Due to loss of water in the extracellular space from diuretic use. Sweat losses in cystic fibrosis Villous adenoma or factitious diarrhea III. PHYSIOLOGY OF BICARBONATE HOMEOSTASIS IN THE BODY Systemic arterial pH is maintained between 7.35 and 7.45 by extracellular and intracellular buffering via respiratory and renal mechanisms [1]. The control of arterial CO2 tension by central nervous system and respiratory system and control of plasma bicarbonate by kidneys stabilize the arterial pH by excretion or retention of acid and alkali. This balance is represented by the Henderson-Hassalbalch equation given by Figure 1. Henderson-Hassalbalch equation. Where HCO3- represents in the plasma bicarbonate concentration and pCO2 is the plasma carbon dioxide tension in the blood. At norm Continue reading >>

Adverse Effects Of Rapid Isotonic Saline Infusion

Adverse Effects Of Rapid Isotonic Saline Infusion

Adverse effects of rapid isotonic saline infusion We are experimenting with display styles that make it easier to read articles in PMC. The ePub format uses eBook readers, which have several "ease of reading" features already built in. The ePub format is best viewed in the iBooks reader. You may notice problems with the display of certain parts of an article in other eReaders. Generating an ePub file may take a long time, please be patient. Adverse effects of rapid isotonic saline infusion Neville et al reported on a randomised controlled trial of hypotonic versus isotonic saline for rehydration of children with gastroenteritis. They found that isotonic saline was superior with regards to correction of hyponatraemia. 1 The majority of patients in the study received a rapid replacement protocol which entailed the infusion of 40 ml/kg of isotonic saline over 4 hours in the isotonic saline arm of the study. The authors did not report on important known adverse effects associated with rapid infusion of isotonic saline which have been reported in previous randomised controlled trials of volume support with isotonic saline versus other fluids. Rapid isotonic saline infusion predictably results in hyperchloraemic acidosis. 2 The acidosis is due to a reduction in the strong anion gap by an excessive rise in plasma chloride as well as excessive renal bicarbonate elimination. 2 In a randomised controlled trial with a mixed group of patients undergoing major surgery, isotonic saline infusion was compared to Hartmann's solution with 6% hetastarch and a balanced electrolyte and glucose solution. Two thirds of patients in the saline group but none in the balanced fluid group developed postoperative hyperchloraemic metabolic acidosis. 3 The hyperchloraemic acidosis was associated wit Continue reading >>

Hyperchloremia (high Chloride Levels)

Hyperchloremia (high Chloride Levels)

Hyperchloremia is an electrolyte imbalance that occurs when theres too much chloride in the blood. Chloride is an important electrolyte that is responsible for maintaining the acid-base (pH) balance in your body, regulating fluids, and transmitting nerve impulses. The normal range for chloride in adults is roughly between 98 and 107 milliequivalents of chloride per liter of blood (mEq/L). Your kidneys play an important role in the regulation of chloride in your body, so an imbalance in this electrolyte may be related to a problem with these organs. It may also be caused by other conditions, like diabetes or severe dehydration , which can affect the ability of your kidneys to maintain chloride balance. The symptoms that may indicate hyperchloremia are usually those linked to the underlying cause of the high chloride level. Often this is acidosis , in which the blood is overly acidic. These symptoms may include: Like sodium, potassium, and other electrolytes, the concentration of chloride in your body is carefully regulated by your kidneys. The kidneys are two bean-shaped organs located just below your rib cage on both sides of your spine. They are responsible for filtering your blood and keeping its composition stable, which allows your body to function properly. Hyperchloremia occurs when the levels of chloride in the blood become too high. There are several ways that hyperchloremia can occur. These include: intake of too much saline solution while in the hospital, such as during a surgery Hyperchloremic acidosis, or hyperchloremic metabolic acidosis, occurs when a loss of bicarbonate (alkali) tips the pH balance in your blood toward becoming too acidic (metabolic acidosis). In response, your body holds onto chloride, causing hyperchloremia. In hyperchloremic acidosis, Continue reading >>

Is Correcting Hyperchloremic Acidosis Beneficial?

Is Correcting Hyperchloremic Acidosis Beneficial?

You are here: Home / PULMCrit / Is correcting hyperchloremic acidosis beneficial? Is correcting hyperchloremic acidosis beneficial? An elderly woman presents with renal failure due to severe dehydration from diarrhea. She has a hyperchloremic acidosis from diarrhea with a chloride of 115 mEq/L, bicarbonate of 15 mEq/L, and a normal anion gap. During her volume resuscitation, should isotonic bicarbonate be used to correct her hyperchloremic acidosis? Does correcting her hyperchloremic acidosis actually help her, or does this just make her numbers better? The use of bicarbonate for treatment of metabolic acidosis is controversial. However, this controversy centers primarily around use of bicarbonate for management of lactic acidosis or ketoacidosis.Treatment of these disorders requires reversing the underlying disease process, with bicarbonate offering little if any benefit.Hyperchloremic metabolic acidosis is different.Whether due to bicarbonate loss or volume repletion with normal saline, the primary problems is a bicarbonate deficiency.Treating this with bicarbonate is a logical and accepted approach: Giving bicarbonate to a patient with a true bicarbonate deficit is not controversial. Controversy arises when the decrease in bicarbonate concentration is the result of its conversion to another base, which, given time, can be converted back to bicarbonate However, clinicians are often reluctant to treat hyperchloremic metabolic acidosis with bicarbonate, since the benefits of treatment are unclear.This post will attempt to clarify the rationale for treatment. Resuscitation with balanced crystalloids improves renal function There is growing evidence that resuscitation with normal saline impairs renal blood flow and function ( Young 2014 ).For example, Chowdhury 2012 inve Continue reading >>

Sid Hyperchloremic Acidosis

Sid Hyperchloremic Acidosis

Strong ions are cations and anions that exist as charged particles dissociated from their partner ions at physiologic pH. The SID (Strong Ion Difference) is the difference between the positively- and negatively-charged strong ions in plasma. This method of evaluating acid-base disorders was developed to help determine the mechanism of the disorder rather than simply categorizing them into metabolic vs. respiratory acidosis/alkalosis as with the Henderson-Hasselbalch equation. Strong cations predominate in the plasma at physiologic pH leading to a net positive plasma charge of approximately +40: SID = [strong cations] [strong anions] = [Na+ + K+ + Ca2+ + Mg2+] [Cl- + lactate- + SO42-] Disturbances that increase the SID increase the blood pH while disorders that decrease the SID lower the plasma pH. According to the law of electroneutrality the sum of positive charges is equal to the sum of negative charges. Therefore the SID must be equal to the sum of weak anions in the body (such as bicarbonate, albumin, and phosphate). Hyperchloremic acidosis may result from chloride replacing lost bicarbonate. Such bicarbonate-wasting conditions may be seen in the kidneys (renal tubular acidosis) or the GI tract (diarrhea). This may also occur with aggressive volume resuscitation with normal saline (>30cc/kg/hr) due to excessive chloride administration impairing bicarbonate resorption in the kidneys. The strong ion difference of normal saline is 0 (Na+ = 154mEq/L and Cl- = 154mEq/L SID = 154 154 = 0). Therefore, aggressive administration of NS will decrease the plasma SID causing an acidosis. Administering a solution with a high SID such as sodium bicarbonate should be expected to treat this strong ion acidosis. Continue reading >>

Normal Saline Intoxication - Deranged Physiology

Normal Saline Intoxication - Deranged Physiology

Uncontrolled pancreatic secretions as a cause of acidosis The overzealous administration of sodium chloride causes a normal anion gap metabolic acidosis by decreasing the strong ion difference. This is the archetypal normal anion gap acidosis. Previously discussed calculations suggest that every bag of saline increases the serum chloride by 3mmol/L. In Stewarts terms, normal saline has a strong ion difference of 0mmol/L (given how equal the concentrations of sodium and chloride are), and thus adding it to a body fluid will decrease the strong ion difference. The strong ion difference of Hartmanns, on the other hand, is 28mmol/L, and so it has a much gentler acidifying effect. This has been demonstrated experimentally in a cohort of 5 septic patients; and the theory is discussed in detail here . Change in strong ion difference following the infusion of normal saline The above graph is adopted from Lobo et al, who in 2003 infused a series of healthy volunteers with 2000ml of normal saline to study the difference between sodium chloride and Hartmanns solution. Now, enough saline-bashing. If we remain faithful to the interpretation of acid base disorders in terms of the strong ion difference, we will find that any other fluid which has a low string ion difference will produce a similar picture; perhaps not by increasing the chloride (if it contains no chloride) but by forcing the body fluid to equilibrate with a fluid which has an SID of 0mmol/L Continue reading >>

Normal Anion Gap Metabolic Acidosis

Normal Anion Gap Metabolic Acidosis

Home | Critical Care Compendium | Normal Anion Gap Metabolic Acidosis Normal Anion Gap Metabolic Acidosis (NAGMA) HCO3 loss and replaced with Cl- -> anion gap normal if hyponatraemia is present the plasma [Cl-] may be normal despite the presence of a normal anion gap acidosis -> this could be considered a ‘relative hyperchloraemia’. Extras – RTA, ingestion of oral acidifying salts, recovery phase of DKA loss of bicarbonate with chloride replacement -> hyperchloraemic acidosis secretions into the large and small bowel are mostly alkaline with a bicarbonate level higher than that in plasma. some typical at risk clinical situations are: external drainage of pancreatic or biliary secretions (eg fistulas) this should be easily established by history normally 85% of filtered bicarbonate is reabsorbed in the proximal tubule and the remaining 15% is reabsorbed in the rest of the tubule in patients receiving acetazolamide (or other carbonic anhydrase inhibitors), proximal reabsorption of bicarbonate is decreased resulting in increased distal delivery and HCO3- appears in urine this results in a hyperchloraemic metabolic acidosis and is essentially a form of proximal renal tubular acidosis but is usually not classified as such. hyperchloraemic metabolic acidosis commonly develops during therapy of diabetic ketoacidosis with normal saline oral administration of CaCl2 or NH4Cl is equivalent to giving an acid load both of these salts are used in acid loading tests for the diagnosis of renal tubular acidosis CaCl2 reacts with bicarbonate in the small bowel resulting in the production of insoluble CaCO3 and H+ the hepatic metabolism of NH4+ to urea results in an equivalent production of H+ REASONS WHY ANION GAP MAY BE NORMAL DESPITE A ‘HIGH ANION GAP METABOLIC ACIDOSIS’ 1. Continue reading >>

More in ketosis