diabetestalk.net

Why Do You Get Kussmaul Breathing In Dka?

Diabetic Ketoacidosis And Hyperglycemic Hyperosmolar Syndrome

Diabetic Ketoacidosis And Hyperglycemic Hyperosmolar Syndrome

In Brief Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic syndrome (HHS) are two acute complications of diabetes that can result in increased morbidity and mortality if not efficiently and effectively treated. Mortality rates are 2–5% for DKA and 15% for HHS, and mortality is usually a consequence of the underlying precipitating cause(s) rather than a result of the metabolic changes of hyperglycemia. Effective standardized treatment protocols, as well as prompt identification and treatment of the precipitating cause, are important factors affecting outcome. The two most common life-threatening complications of diabetes mellitus include diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar syndrome (HHS). Although there are important differences in their pathogenesis, the basic underlying mechanism for both disorders is a reduction in the net effective concentration of circulating insulin coupled with a concomitant elevation of counterregulatory hormones (glucagon, catecholamines, cortisol, and growth hormone). These hyperglycemic emergencies continue to be important causes of morbidity and mortality among patients with diabetes. DKA is reported to be responsible for more than 100,000 hospital admissions per year in the United States1 and accounts for 4–9% of all hospital discharge summaries among patients with diabetes.1 The incidence of HHS is lower than DKA and accounts for <1% of all primary diabetic admissions.1 Most patients with DKA have type 1 diabetes; however, patients with type 2 diabetes are also at risk during the catabolic stress of acute illness.2 Contrary to popular belief, DKA is more common in adults than in children.1 In community-based studies, more than 40% of African-American patients with DKA were >40 years of age and more than 2 Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Practice Essentials Diabetic ketoacidosis (DKA) is an acute, major, life-threatening complication of diabetes that mainly occurs in patients with type 1 diabetes, but it is not uncommon in some patients with type 2 diabetes. This condition is a complex disordered metabolic state characterized by hyperglycemia, ketoacidosis, and ketonuria. Signs and symptoms The most common early symptoms of DKA are the insidious increase in polydipsia and polyuria. The following are other signs and symptoms of DKA: Nausea and vomiting; may be associated with diffuse abdominal pain, decreased appetite, and anorexia History of failure to comply with insulin therapy or missed insulin injections due to vomiting or psychological reasons or history of mechanical failure of insulin infusion pump Altered consciousness (eg, mild disorientation, confusion); frank coma is uncommon but may occur when the condition is neglected or with severe dehydration/acidosis Signs and symptoms of DKA associated with possible intercurrent infection are as follows: See Clinical Presentation for more detail. Diagnosis On examination, general findings of DKA may include the following: Characteristic acetone (ketotic) breath odor In addition, evaluate patients for signs of possible intercurrent illnesses such as MI, UTI, pneumonia, and perinephric abscess. Search for signs of infection is mandatory in all cases. Testing Initial and repeat laboratory studies for patients with DKA include the following: Serum electrolyte levels (eg, potassium, sodium, chloride, magnesium, calcium, phosphorus) Note that high serum glucose levels may lead to dilutional hyponatremia; high triglyceride levels may lead to factitious low glucose levels; and high levels of ketone bodies may lead to factitious elevation of creatinine levels. Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Diabetes mellitus is the name given to a group of conditions whose common hallmark is a raised blood glucose concentration (hyperglycemia) due to an absolute or relative deficiency of the pancreatic hormone insulin. In the UK there are 1.4 million registered diabetic patients, approximately 3 % of the population. In addition, an estimated 1 million remain undiagnosed. It is a growing health problem: In 1998, the World Health Organization (WHO) predicted a doubling of the worldwide prevalence of diabetes from 150 million to 300 million by 2025. For a very tiny minority, diabetes is a secondary feature of primary endocrine disease such as acromegaly (growth hormone excess) or Cushing’s syndrome (excess corticosteroid), and for these patients successful treatment of the primary disease cures diabetes. Most diabetic patients, however, are classified as suffering either type 1 or type 2 diabetes. Type 1 diabetes Type 1 diabetes, which accounts for around 15 % of the total diabetic population, is an autoimmune disease of the pancreas in which the insulin-producing β-cells of the pancreas are selectively destroyed, resulting in an absolute insulin deficiency. The condition arises in genetically susceptible individuals exposed to undefined environmental insult(s) (possibly viral infection) early in life. It usually becomes clinically evident and therefore diagnosed during late childhood, with peak incidence between 11 and 13 years of age, although the autoimmune-mediated β-cell destruction begins many years earlier. There is currently no cure and type 1 diabetics have an absolute life-long requirement for daily insulin injections to survive. Type 2 diabetes This is the most common form of diabetes: around 85 % of the diabetic population has type 2 diabetes. The primary prob Continue reading >>

What Is Kussmaul Breathing?

What Is Kussmaul Breathing?

People with diabetes mellitus, especially type 1 diabetes and rarely in type 2 diabetes, tend to burn fatty acids which brings changes in the breathing patterns. Apart from diabetes, other forms of metabolic acidosis also result in Kussmaul breathing . The breathing is usually involuntary, in an effort by the body to get rid of unnecessary acids. Read on to find out more about Kussmaul breathing . In type 1 diabetics, when the body runs out of insulin or is not provided with enough insulin (especially during the times of excessive physical activity), it starts to burn fatty acids to produce energy. Burning fatty acids produces ketones as waste products which are released into the blood stream increasing the acidity of the blood (diabetic ketoacidosis). If the kidneys fail to discharge this excess acids through urine or if there is too many of acid units than the kidneys can process, the only way the body can reduce acidity is through respiration. In the beginning the breathing pattern is usually rapid, short, and shallow, and as the acidosis progresses it becomes slow, deep, and long to exhale the acids. This is similar to hyperventilation with characteristics of air hunger and results in a decrease in partial pressure of carbon dioxide and bicarbonate levels in the blood. The reason behind this abnormal breathing pattern is differentiated by the presence of high blood sugar levels from other forms of ketoacidosis. The presence of high blood sugar levels indicates diabetic ketoacidosis. In less severe cases of metabolic acidosis or diabetic ketoacidosis, the breathing usually comes back to normal when the blood’s composition becomes normal. Severe cases of acidosis along with this type of breathing can lead to coma. If you find yourself or someone you know suffering f Continue reading >>

Symptoms Of Kussmaul Respirations: Its Causes And Treatment

Symptoms Of Kussmaul Respirations: Its Causes And Treatment

Kussmaul respiration is an abnormal pattern of respiration characterized by deep and hurried breathing. It is one of the most distinctive feature of diabetic ketoacidosis, a serious metabolic complication of diabetes with associated dysfunction of kidneys. Kussmaul breathing causes low level of carbon dioxide in the blood. When the acid content in the blood increases as in metabolic acidosis, diabetic acidosis, or kidney failure, there is increased desire by the patient to breathe deep and rapidly. As a result carbon dioxide saturation in blood decreases. In the beginning, it is shallow and rapid respiration, however, as the condition worsens, it leads to rapid and fast breathing. The patient seems to be gasping for air. This type of abnormal breathing is called Kussmaul respiration. What Causes Kussmaul Respirations? Kussmaul breathing is a condition which results from low level of carbon dioxide in blood. This abnormal form of respiration is commonly seen in people having diabetic ketoacidosis. Kussmaul respiration is deep and fast breathing. Deep breathing and rapid exhalation causes low level of carbon dioxide in the blood leading to hyperventilation. Following conditions can cause kussmaul respiration. Diabetic ketoacidosis: This condition occurs in people suffering from type 1 and type 2 diabetes. It occurs when there is absolute insulin deficiency as in type 1 diabetes or among people with uncontrolled diabetes as in type 2 diabetes. Deficiency of insulin hormone hampers utilization of glucose as an energy source for cellular activity of the muscles and tissues. Body has to rely on fat and protein for energy source instead of glucose, although there is increased circulating glucose in the blood. Breakdown of fat and protein causes release of waste products in the Continue reading >>

Diabetic Ketoacidosis And Hyperglycaemic Hyperosmolar State

Diabetic Ketoacidosis And Hyperglycaemic Hyperosmolar State

The hallmark of diabetes is a raised plasma glucose resulting from an absolute or relative lack of insulin action. Untreated, this can lead to two distinct yet overlapping life-threatening emergencies. Near-complete lack of insulin will result in diabetic ketoacidosis, which is therefore more characteristic of type 1 diabetes, whereas partial insulin deficiency will suppress hepatic ketogenesis but not hepatic glucose output, resulting in hyperglycaemia and dehydration, and culminating in the hyperglycaemic hyperosmolar state. Hyperglycaemia is characteristic of diabetic ketoacidosis, particularly in the previously undiagnosed, but it is the acidosis and the associated electrolyte disorders that make this a life-threatening condition. Hyperglycaemia is the dominant feature of the hyperglycaemic hyperosmolar state, causing severe polyuria and fluid loss and leading to cellular dehydration. Progression from uncontrolled diabetes to a metabolic emergency may result from unrecognised diabetes, sometimes aggravated by glucose containing drinks, or metabolic stress due to infection or intercurrent illness and associated with increased levels of counter-regulatory hormones. Since diabetic ketoacidosis and the hyperglycaemic hyperosmolar state have a similar underlying pathophysiology the principles of treatment are similar (but not identical), and the conditions may be considered two extremes of a spectrum of disease, with individual patients often showing aspects of both. Pathogenesis of DKA and HHS Insulin is a powerful anabolic hormone which helps nutrients to enter the cells, where these nutrients can be used either as fuel or as building blocks for cell growth and expansion. The complementary action of insulin is to antagonise the breakdown of fuel stores. Thus, the relea Continue reading >>

Kussmaul Breathing

Kussmaul Breathing

Also found in: Dictionary, Thesaurus, Legal, Encyclopedia, Wikipedia. Related to Kussmaul breathing: Biot's breathing Kussmaul breathing abnormally deep, very rapid sighing respirations characteristic of diabetic ketoacidosis. Kussmaul breathing Air hunger Clinical medicine Rapid, deep respiration 2º to stimulation of the respiratory center of the brain triggered by ↓ pH, normal during exercise, and common in Pts with severe metabolic acidosis–eg, DKA. See Metabolic acidosis, Diabetes. breathing (breth'ing) abdominodiaphragmatic breathing A controlled method of breathing in which the diaphragm is used for inspiration and the abdominal muscles for expiration. This technique improves exertional dyspnea, esp. in patients with chronic pulmonary disease. Synonym: diaphragmatic breathing apneustic breathing An abnormal breathing pattern marked by prolonged inspiration followed by an inspiratory pause. This is usually associated with brainstem injuries. assisted breathing Any technique that improves respiration. Such breathing includes the provision of supplemental oxygen, bag-valve-mask ventilation, noninvasive ventilation, mechanical ventilation, and mouth-to-mouth ventilation. asthmatic breathing Harsh breathing with prolonged wheezing heard throughout expiration. ataxic breathing An irregular, uncoordinated breathing pattern common in infants. belly breathing Abdominal respiration. Biot breathing See: Biot breathing bronchial breathing Bronchial sounds. Cheyne-Stokes breathing See: Cheyne-Stokes respiration continuous positive-pressure breathing A method of mechanically assisted pulmonary inflation. A device administers air or oxygen to the lungs under a continuous pressure that is always greater than zero. Synonym: continuous positive-pressure ventilation diaphragmat Continue reading >>

Feline Endocrine Emergencies (proceedings)

Feline Endocrine Emergencies (proceedings)

1234Next Diabetic Ketoacidosis Diabetic ketoacidosis (DKA) is one of the most commonly encountered endocrine emergencies in small animal practice. DKA is typically seen in previously undiagnosed diabetics and less commonly occurs in patients that are on inadequate amounts of insulin. In patients currently receiving insulin, DKA is typically seen in those with a concurrent illness leading to insulin resistance. The pathogenesis of DKA is multifactorial; the four underlying causes include insulin deficiency, diabetogenic hormone excess (catecholamines, cortisol, glucagons, growth hormone), fasting, and dehydration. The interplay between these factors further antagonizes the situation. Clinical Findings Patients with DKA are divided into those that are "healthy" and those that are sick. Healthy DKAs only display clinical signs typical of diabetes (pu-pd, polyphagia, weight loss) and present without a history of vomiting, anorexia, or lethargy. Typically these patients have only trace-to-small amounts of ketonuria noted. Healthy DKA's can be treated like uncomplicated diabetics. Sick DKA patients have other systemic signs such as vomiting and lethargy. Physical exam findings may include depression, dehydration, weakness, tachypnea – this may progress to Kussmaul respiration (slow, deep breathing) due to acidosis and an acetone odor to the breath. It is not uncommon for patients in DKA to be presented semicomatose. These patients are true EMERGENCIES!!! Signs may reflect concurrent illnesses as well. Diagnosis DKA can be rapidly and easily diagnosed. The criteria for establishing this diagnosis include hyperglycemia, glucosuria, ketonuria, and metabolic acidosis. The presence of hyperglycemia which can be documented using a portable glucometer or point-of-care analyzer in Continue reading >>

Dka Vs Hhs (hhns) Nclex Review

Dka Vs Hhs (hhns) Nclex Review

Diabetic ketoacidosis vs hyperglycemic hyperosmolar nonketotic syndrome (HHNS or HHS): What are the differences between these two complications of diabetes mellitus? This NCLEX review will simplify the differences between DKA and HHNS and give you a video lecture that easily explains their differences. Many students get these two complications confused due to their similarities, but there are major differences between these two complications. After reviewing this NCLEX review, don’t forget to take the quiz on DKA vs HHNS. Lecture on DKA and HHS DKA vs HHNS Diabetic Ketoacidosis Affects mainly Type 1 diabetics Ketones and Acidosis present Hyperglycemia presents >300 mg/dL Variable osmolality Happens Suddenly Causes: no insulin present in the body or illness/infection Seen in young or undiagnosed diabetics Main problems are hyperglycemia, ketones, and acidosis (blood pH <7.35) Clinical signs/symptoms: Kussmaul breathing, fruity breath, abdominal pain Treatment is the same as in HHNS (fluids, electrolyte replacement, and insulin) Watch potassium levels closely when giving insulin and make sure the level is at least 3.3 before administrating. Hyperglycemic Hyperosmolar Nonketotic Syndrome Affects mainly Type 2 diabetics No ketones or acidosis present EXTREME Hyperglycemia (remember heavy-duty hyperglycemia) >600 mg/dL sometimes four digits High Osmolality (more of an issue in HHNS than DKA) Happens Gradually Causes: mainly illness or infection and there is some insulin present which prevents the breakdown of ketones Seen in older adults due to illness or infection Main problems are dehydration & heavy-duty hyperglycemia and hyperosmolarity (because the glucose is so high it makes the blood very concentrated) More likely to have mental status changes due to severe dehydrat Continue reading >>

Diabetic Ketoacidosis: What It Is And How To Avoid It

Diabetic Ketoacidosis: What It Is And How To Avoid It

Diabetic ketoacidosis is a life threatening complication. It is common in people with Type 1 Diabetes because their pancreas does not produce insulin. But, it can also happen in individuals with Type 2 Diabetes when their blood sugar reaches critical level. During episodes of DKA, the body runs low on insulin so it burns fats as an alternative energy source. This process produces high level of ketone acids causing the following symptoms: Nausea Vomiting coffee-ground color Excessive thirst and urination Severe abdominal pain which may be cause by pancreatitis, GI tract perforation Kussmaul respiration (a deep and laborious breathing) Confusion Lethargy Dehydration Elevated heart rate (tachycardia) Comatose (severe cases) Blurring of the vision Fruity breath odor Diabetic ketoacidosis has four characteristics that result in the development of the symptoms: hyperglycemia, acidosis, dehydration, and electrolyte imbalance. During hyperglycemia, which causes the blurry vision, the glucose accumulates in the blood. The lack of insulin prevents glucose from entering the cells (hepatic glucose overproduction). The production of counter regulatory hormones such as catecholamines, cortisol, and glucagon, also increases. Gluconeogenesis and glycogenolysis take place. Insulin resistance increases during this stage. This makes it more difficult for the tissues to absorb glucose. The increase in counter-regulatory hormone levels and insulin resistance cause the release of glycerol and fatty acids. The liver starts oxidizing free fatty acids producing high levels of ketone acids. This process leads to ketoanemia. The ketone acids break down into hydrogen ions and ketone anions. The body then tries to bind the hydrogen ions by using up its alkali reserves causing acidosis. To address a Continue reading >>

Diabetic Ketoacidosis – Its Causes And Its Treatments

Diabetic Ketoacidosis – Its Causes And Its Treatments

Certified diabetes educator Becky Wells recently retired from working with a diabetes self-management education program at Hendrick Medical Center in Abilene, Texas. She provides advice on diabetes for Insulin Nation. Question: What is diabetic ketoacidosis and how can I prevent it? Answer: Diabetic ketoacidosis (DKA) is a possible complication of diabetes that can cause kidney damage and may prove fatal if left untreated. It is more common with Type 1 diabetes than with Type 2 diabetes, and many with Type 1 are experiencing DKA when first diagnosed with Type 1. The condition results from an insulin deficiency that may have come about from undiagnosed diabetes, a forgotten insulin injection, a malfunctioning insulin pump, an illness, psychological stress, an eating disorder, or insulin that was incorrectly stored. In ketoacidosis, a lack of insulin causes the body to go into starvation mode. This is because insulin is necessary for glucose to enter most of the body’s cells. The body instead tries to get energy for its processes by breaking down fatty acids. With this breakdown, ketones are formed in the bloodstream, and this causes a decrease in the blood’s pH levels. Without enough insulin, the glucose absorbed from the stomach and intestines causes hyperglycemia. The kidneys must work hard to rid the body of glucose by producing more urine. This process will dehydrate the body unless enough fluids are being taken in to replace what’s lost. One other symptom of DKA is what is called Kussmaul breathing – when breathing gets rapid and deeper, and smells fruity. This symptom comes from the lungs blowing off the acid from the bloodstream, an attempt to correct the acidosis. sponsor Early treatment can often prevent a hospital admission, but blood glucose needs to b Continue reading >>

Diabetic Ketoacidosis (dka)

Diabetic Ketoacidosis (dka)

Snap Shot A 12 year old boy, previously healthy, is admitted to the hospital after 2 days of polyuria, polyphagia, nausea, vomiting and abdominal pain. Vital signs are: Temp 37C, BP 103/63 mmHg, HR 112, RR 30. Physical exam shows a lethargic boy. Labs are notable for WBC 16,000, Glucose 534, K 5.9, pH 7.13, PCO2 is 20 mmHg, PO2 is 90 mmHg. Introduction Complication of type I diabetes result of ↓ insulin, ↑ glucagon, growth hormone, catecholamine Precipitated by infections drugs (steroids, thiazide diuretics) noncompliance pancreatitis undiagnosed DM Presentation Symptoms abdominal pain vomiting Physical exam Kussmaul respiration increased tidal volume and rate as a result of metabolic acidosis fruity, acetone odor severe hypovolemia coma Evaluation Serology blood glucose levels > 250 mg/dL due to ↑ gluconeogenesis and glycogenolysis arterial pH < 7.3 ↑ anion gap due to ketoacidosis, lactic acidosis ↓ HCO3- consumed in an attempt to buffer the increased acid hyponatremia dilutional hyponatremia glucose acts as an osmotic agent and draws water from ICF to ECF hyperkalemia acidosis results in ICF/ECF exchange of H+ for K+ moderate ketonuria and ketonemia due to ↑ lipolysis β-hydroxybutyrate > acetoacetate β-hydroxybutyrate not detected with normal ketone body tests hypertriglyceridemia due to ↓ in capillary lipoprotein lipase activity activated by insulin leukocytosis due to stress-induced cortisol release H2PO4- is increased in urine, as it is titratable acid used to buffer the excess H+ that is being excreted Treatment Fluids Insulin with glucose must prevent resultant hypokalemia and hypophosphatemia labs may show pseudo-hyperkalemia prior to administartion of fluid and insulin due to transcellular shift of potassium out of the cells to balance the H+ be Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Patient professional reference Professional Reference articles are written by UK doctors and are based on research evidence, UK and European Guidelines. They are designed for health professionals to use. You may find the Pre-diabetes (Impaired Glucose Tolerance) article more useful, or one of our other health articles. See also the separate Childhood Ketoacidosis article. Diabetic ketoacidosis (DKA) is a medical emergency with a significant morbidity and mortality. It should be diagnosed promptly and managed intensively. DKA is characterised by hyperglycaemia, acidosis and ketonaemia:[1] Ketonaemia (3 mmol/L and over), or significant ketonuria (more than 2+ on standard urine sticks). Blood glucose over 11 mmol/L or known diabetes mellitus (the degree of hyperglycaemia is not a reliable indicator of DKA and the blood glucose may rarely be normal or only slightly elevated in DKA). Bicarbonate below 15 mmol/L and/or venous pH less than 7.3. However, hyperglycaemia may not always be present and low blood ketone levels (<3 mmol/L) do not always exclude DKA.[2] Epidemiology DKA is normally seen in people with type 1 diabetes. Data from the UK National Diabetes Audit show a crude one-year incidence of 3.6% among people with type 1 diabetes. In the UK nearly 4% of people with type 1 diabetes experience DKA each year. About 6% of cases of DKA occur in adults newly presenting with type 1 diabetes. About 8% of episodes occur in hospital patients who did not primarily present with DKA.[2] However, DKA may also occur in people with type 2 diabetes, although people with type 2 diabetes are much more likely to have a hyperosmolar hyperglycaemic state. Ketosis-prone type 2 diabetes tends to be more common in older, overweight, non-white people with type 2 diabetes, and DKA may be their Continue reading >>

Kussmaul Breathing

Kussmaul Breathing

What is Kussmaul Breathing? Kussmaul Breathing is the term given to a condition in which the patient builds up an extremely deep and difficult breathing pattern. This is seen mostly in individuals who are diabetic and have severe forms of metabolic acidosis, particularly diabetic ketoacidosis with kidney dysfunction. Kussmaul Breathing can likewise be clarified as a type of hyperventilation which is a condition in which an individual breathes in such a deep pattern, to the point that the level of carbon dioxide reduces in the blood, which is seen for the most part in metabolic acidosis where the breathing turns out to be more quick and shallow and as the condition exacerbates the breathing gets to be distinctly shallow and profound and it looks as though the individual is virtually gasping for breath. This kind of breathing in which the individual is essentially gasping for air is what is named as Kussmaul Breathing. Kussmaul’s Respiration There are diverse medical conditions that can influence the basic/acidic balance in your body, which means your body can turn out to be more basic or acidic. At the point when a man is acidotic, that is to say they are experiencing a pathological process (known as acidosis) that prompts to acidemia, an abnormal low pH of the blood, they may experience Kussmaul’s respiration. Kussmaul’s respiration, as German doctor Adolph Kussmaul himself portrayed, is in fact profound, slow, and labored breathing, which we now know is because of serious acidemia coming from metabolic acidosis. Nonetheless, these days, it is now and again used to portray shallow and rapid breathing examples in instances of less severe acidemia too. Reasons for this breathing pattern happening All things considered, what do you take in? Oxygen, isn’t that so? W Continue reading >>

Diabetic Ketoacidosis And Patho

Diabetic Ketoacidosis And Patho

pathophysiology ketogenesis due to insulin deficiency leads to increased serum levels of ketones anad ketonuria acetoacetate, beta-hydroxybutyrate; ketone bodies produced by the liver, organic acids that cause metabolic acidosis respiration partially compensates; reduces pCO2, when pH < 7.2, deep rapid respirations (Kussmaul breathing) acetone; minor product of ketogenesis, can smell fruity on breath of ketoacidosis patients elevated anion gap Methanol intoxication Uremic acidosis Diabetic ketoacidosis Paraldehyde ingestions Intoxicants (salicyclate, ethylene glycol, nipride, epinephrine, norepinephrine) Lactic acidosis (drug induced; didanosine, iron, isoniazid, metformin, zidovudine) Ethanol ketoacidosis Severe renal failure starvation Blood glucose regulation (6) 1. When blood glucose levels rise above a set point, 2. the pancreas secretes insulin into the blood. 3. Insulin stimulates liver and muscle cells to make glycogen, dropping blood glucose levels. 4. When glucose levels drop below a set point, 5. the pancreas secretes glucagon into the blood. 6. Glucagon promotes the breakdown of glycogen and the release of glucose into the blood. (The pancreas signals distant cells to regulate levels in the blood = endocrine function.) Insulin and Glucagon (Regulation) (10) 1. High blood glucose 2. Beta cells 3. Insulin 4. Glucose enters cell 5. Blood glucose lowered 6. Low blood glucose 7. Alpha cells 8. Glucagon 9. Liver releases glucose from glycogen 10. Blood glucose raised What is the manifestations (symptoms) of Type 1? (10) 1. Extreme thirst 2. Frequent urination 3. Drowsiness, lethargy 4. Sugar in urine 5. Sudden vision change 6. Increased appetite 7. Sudden weight loss 8. Fruity, sweet, or wine like odor on breath 9. Heavy, laboured breathing 10. Stupor, unconscious Continue reading >>

More in ketosis