diabetestalk.net

Why Do Dka Patients Get Dehydrated

Diabetic Ketoacidosis

Diabetic Ketoacidosis

List Clinicopathologic features that might be present with DKA? Elevation in liver enzymes (hepatic lipidosis, pancreatitis) Hyperlipidemia Hyperlipasemia Hyperamylasemia Metabolic Acidosis Serum Hyperosmolality Azotemia (usually pre-renal) Hemeturia, pyuria, bactiuria (always submit cysto for culture an dsensitivity) Ketonuria Continue reading >>

Why Does Diabetes Cause Excessive Thirst?

Why Does Diabetes Cause Excessive Thirst?

7 0 We’ve written before about the signs and symptoms of diabetes. While there are a lot of sources about what symptoms diabetes causes, and even some good information about why they’re bad for you, what you don’t often get are the “whys”. And while the “whys” aren’t necessarily critical for your long-term health, they can help you to understand what’s going on with your body and why it acts the way it does. That, in turn, can help with acceptance and understanding of how to better treat the symptoms, which in turn can help you stay on a good diabetes management regimen. In short, you don’t NEED to know why diabetes causes excessive thirst, but knowing the mechanism behind it can make your blood glucose control regimen make more sense and help you stick to it. So why DOES diabetes cause thirst? First, we’d like to start by saying that excessive thirst is not a good indicator of diabetes. For many people, the symptom creeps up so slowly that it’s almost impossible to determine if your thirst has noticeably increased (unless you keep a spreadsheet of how much water you drink, in which case you also probably get tested pretty regularly anyway). It’s also a common enough symptom that a sudden increase in thirst can mean almost anything. Some conditions that cause thirst increases include allergies, the flu, the common cold, almost anything that causes a fever, and dehydration caused by vomiting or diarrhea. So while excessive thirst is one of those diabetes symptoms that happens, and needs to be addressed, it’s not always a great sign that you should immediately go out and get an A1C test. Why does diabetes cause thirst? Excessive thirst, when linked to another condition as a symptom or comorbidity, is called polydipsia. It’s usually one of the Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Introduction Diabetic ketoacidosis (DKA) is a dangerous complication of diabetes caused by a lack of insulin in the body. Diabetic ketoacidosis occurs when the body is unable to use blood sugar (glucose) because there isn't enough insulin. Instead, it breaks down fat as an alternative source of fuel. This causes a build-up of a by-product called ketones. Most cases of diabetic ketoacidosis occur in people with type 1 diabetes, although it can also be a complication of type 2 diabetes. Symptoms of diabetic ketoacidosis include: passing large amounts of urine feeling very thirsty vomiting abdominal pain Seek immediate medical assistance if you have any of these symptoms and your blood sugar levels are high. Read more about the symptoms of diabetic ketoacidosis. Who is affected by diabetic ketoacidosis? Diabetic ketoacidosis is a relatively common complication in people with diabetes, particularly children and younger adults who have type 1 diabetes. Younger children under four years of age are thought to be most at risk. In about 1 in 4 cases, diabetic ketoacidosis develops in people who were previously unaware they had type 1 diabetes. Diabetic ketoacidosis accounts for around half of all diabetes-related hospital admissions in people with type 1 diabetes. Diabetic ketoacidosis triggers These include: infections and other illnesses not keeping up with recommended insulin injections Read more about potential causes of diabetic ketoacidosis. Diagnosing diabetic ketoacidosis This is a relatively straightforward process. Blood tests can be used to check your glucose levels and any chemical imbalances, such as low levels of potassium. Urine tests can be used to estimate the number of ketones in your body. Blood and urine tests can also be used to check for an underlying infec Continue reading >>

Childhood Ketoacidosis

Childhood Ketoacidosis

Patient professional reference Professional Reference articles are written by UK doctors and are based on research evidence, UK and European Guidelines. They are designed for health professionals to use. You may find one of our health articles more useful. Diabetic ketoacidosis (DKA) is the leading cause of mortality in childhood diabetes.[1]The primary cause of DKA is absolute or relative insulin deficiency: Absolute - eg, previously undiagnosed type 1 diabetes mellitus or a patient with known type 1 diabetes who does not take their insulin. Relative - stress causes a rise in counter-regulatory hormones with relative insulin deficiency. DKA can be fatal The usual causes of death are: Cerebral oedema - associated with 25% mortality (see 'Cerebral odedema', below). Hypokalaemia - which is preventable with good monitoring. Aspiration pneumonia - thus, use of a nasogastric tube in the semi-conscious or unconscious is advised. Deficiency of insulin. Rise in counter-regulatory hormones, including glucagon, cortisol, growth hormone, and catecholamines. Thus, inappropriate gluconeogenesis and liver glycogenolysis occur compounding the hyperglycaemia, which causes hyperosmolarity and ensuing polyuria, dehydration and loss of electrolytes. Accelerated catabolism from lipolysis of adipose tissue leads to increased free fatty acid circulation, which on hepatic oxidation produces the ketone bodies (acetoacetic acid and beta-hydroxybutyric acid) that cause the metabolic acidosis. A vicious circle is usually set up as vomiting usually occurs compounding the stress and dehydration; the cycle can only be broken by providing insulin and fluids; otherwise, severe acidosis occurs and can be fatal. Biochemical criteria The biochemical criteria required for a diagnosis of DKA to be made are Continue reading >>

Diabetic Emergencies, Diabetic Ketoacidosis In Adults, Part 3

Diabetic Emergencies, Diabetic Ketoacidosis In Adults, Part 3

Clinical Management Treatment consists of rehydration with intravenous fluids, the administration of insulin, and replacement of electrolytes. General medical care and close supervision by trained medical and nursing staff is of paramount importance in the management of patients with DKA. A treatment flowchart (Table 1.3) should be used and updated meticulously. A urine catheter is necessary if the patient is in coma or if no urine is passed in the first 4 hours…. Replacement of water deficit Patients with DKA have severe dehydration. The amount of fluid needing to be administered depends on the degree of dehydration (Table 1.4). Fluid replacement aims at correction of the volume deficit and not to restore serum osmolality to normal. Isotonic solution NaCl (0.9%) (normal saline; osmolality 308 mOsm/kg) should be administered even in patients with high serum osmolality since this solution is hypotonic compared to the extracellular fluid of the patient. 10 The initial rate of fluid administration depends on the degree of volume depletion and underlying cardiac and renal function. In a young adult with normal cardiac and/or renal function 1 L of normal saline is administered intravenously within the first half- to one hour. In the second hour administer another 1 L, and between the third and the fifth hours administer 0.5–1 L per hour. Thus, the total volume in the first 5 hours should be 3.5–5 L [1]. If the patient is in shock or blood pressure does not respond to normal saline infusion, colloid solutions together with normal saline may be used.1,6 Some authors suggest replacement of normal saline with hypotonic (0.45%) saline solution after stabilization of the hemodynamic status of the patient and when corrected serum sodium levels are normal.8 However, this appro Continue reading >>

Diabetic Ketoacidosis In Dogs

Diabetic Ketoacidosis In Dogs

My dog is diabetic. He has been doing pretty well overall, but recently he became really ill. He stopped eating well, started drinking lots of water, and got really weak. His veterinarian said that he had a condition called “ketoacidosis,” and he had to spend several days in the hospital. I’m not sure I understand this disorder. Diabetic ketoacidosis is a medical emergency that occurs when there is not enough insulin in the body to control blood sugar (glucose) levels. The body can’t use glucose properly without insulin, so blood glucose levels get very high, and the body creates ketone bodies as an emergency fuel source. When these are broken down, it creates byproducts that cause the body’s acid/base balance to shift, and the body becomes more acidic (acidosis), and it can’t maintain appropriate fluid balance. The electrolyte (mineral) balance becomes disrupted which can lead to abnormal heart rhythms and abnormal muscle function. If left untreated, diabetic ketoacidosis is fatal. How could this disorder have happened? If a diabetic dog undergoes a stress event of some kind, the body secretes stress hormones that interfere with appropriate insulin activity. Examples of stress events that can lead to diabetic ketoacidosis include infection, inflammation, and heart disease. What are the signs of diabetic ketoacidosis? The signs of diabetic ketoacidosis include: Excessive thirst/drinking Increased urination Lethargy Weakness Vomiting Increased respiratory rate Decreased appetite Weight loss (unplanned) with muscle wasting Dehydration Unkempt haircoat These same clinical signs can occur with other medical conditions, so it is important for your veterinarian to perform appropriate diagnostic tests to determine if diabetic ketoacidosis in truly the issue at hand Continue reading >>

Diabetic Ketoacidosis: Maintaining Glucose Control

Diabetic Ketoacidosis: Maintaining Glucose Control

The metabolic chain reaction that precedes diabetic ketoacidosis can occur rapidly, and this potentially life-threatening condition requires swift recognition and treatment. Two critical words in a diabetic’s vocabulary are “management” and “control.” When a patient with diabetes fails to manage food intake and loses control of blood sugar levels, hyperglycemia follows. In most cases, blood sugar levels elevate slightly, which prompts the individual with diabetes to take action to lower those levels. Under some conditions, blood sugar rises precipitously, which is usually caused by 1 or more of the following1-3 : • Developing or fulminant infection (especially Klebsiella pneumonia) or illness • Serious disruption of insulin treatment • New onset of diabetes • Physical or emotional stress • Adverse drug reaction (especially to corticosteroids, pentamidine, thiazides, sympathomimetics, or secondgeneration antipsychotics4 ) Acute, life-threatening diabetic ketoacidosis (DKA) can develop rapidly. Table 11,2 describes criteria usually used to define DKA. We typically associate this metabolic abnormality with type 1 diabetes, but it also occurs in some patients with type 2 diabetes, with infection or an adverse drug reaction as the primary causes. As blood sugar rises in DKA, the patient becomes dehydrated and metabolic changes produce acidosis.1,2,4,5 Pathophysiology DKA usually occurs when absolute or relative insulin deficiency leads to increased counter-regulatory hormones (ie, glucagon, cortisol, growth hormone, epinephrine). These hormones enhance hepatic glucose production (gluconeogenesis), glycogenolysis, and lipolysis, all of which increase free fatty acids (FFAs) in circulation. With insulin unavailable, the liver turns to FFAs as an alternative Continue reading >>

The Accuracy Of Clinical Assessment Of Dehydration During Diabetic Ketoacidosis In Childhood

The Accuracy Of Clinical Assessment Of Dehydration During Diabetic Ketoacidosis In Childhood

The objective of this study was to examine the accuracy of the assessment of clinical dehydration in children with type 1 diabetes and diabetic ketoacidosis (DKA). DKA remains the single most common cause of diabetes-related death in childhood (1). Accurate assessment and management of dehydration is the cornerstone of DKA treatment (1,2). The assessment of the degree of dehydration has traditionally been according to clinical criteria including peripheral tissue perfusion and indicators of hemodynamic status (3). The clinical assessment of dehydration in children in common nonacidotic states (e.g., gastroenteritis) has been previously shown (4) to overestimate the degree of dehydration by ∼3.2%. There have been no comparable studies in either DKA or any other form of metabolic acidosis. RESEARCH DESIGN AND METHODS We studied a random convenience sample of 37 children with type 1 diabetes, newly or previously diagnosed, who presented to the Royal Children’s Hospital, Melbourne, with DKA. The patients were all <18 years of age and presented to the emergency department at Royal Children’s Hospital between 1996 and 2000. The study entry criteria were pH <7.30 (capillary, venous, or arterial) and/or bicarbonate <15 mmol/l and ketones in the urine on dipstick testing. The following information was recorded by the primary assessing doctor: newly diagnosed or established diabetes, age, sex, date and time seen, heart rate, respiratory rate, blood pressure, pale and/or cool hands and feet, peripheral capillary refill time, reduced skin turgor, level of consciousness (on a rating scale of one to eight), sunken eyes, sunken fontanelle, dry tongue, Kussmaul breathing, blood glucose level, and estimated degree of dehydration (clinical assessment). A second emergency department Continue reading >>

Diabetic Ketoacidosis - Symptoms

Diabetic Ketoacidosis - Symptoms

A A A Diabetic Ketoacidosis Diabetic ketoacidosis (DKA) results from dehydration during a state of relative insulin deficiency, associated with high blood levels of sugar level and organic acids called ketones. Diabetic ketoacidosis is associated with significant disturbances of the body's chemistry, which resolve with proper therapy. Diabetic ketoacidosis usually occurs in people with type 1 (juvenile) diabetes mellitus (T1DM), but diabetic ketoacidosis can develop in any person with diabetes. Since type 1 diabetes typically starts before age 25 years, diabetic ketoacidosis is most common in this age group, but it may occur at any age. Males and females are equally affected. Diabetic ketoacidosis occurs when a person with diabetes becomes dehydrated. As the body produces a stress response, hormones (unopposed by insulin due to the insulin deficiency) begin to break down muscle, fat, and liver cells into glucose (sugar) and fatty acids for use as fuel. These hormones include glucagon, growth hormone, and adrenaline. These fatty acids are converted to ketones by a process called oxidation. The body consumes its own muscle, fat, and liver cells for fuel. In diabetic ketoacidosis, the body shifts from its normal fed metabolism (using carbohydrates for fuel) to a fasting state (using fat for fuel). The resulting increase in blood sugar occurs, because insulin is unavailable to transport sugar into cells for future use. As blood sugar levels rise, the kidneys cannot retain the extra sugar, which is dumped into the urine, thereby increasing urination and causing dehydration. Commonly, about 10% of total body fluids are lost as the patient slips into diabetic ketoacidosis. Significant loss of potassium and other salts in the excessive urination is also common. The most common Continue reading >>

Dehydration And Diabetes

Dehydration And Diabetes

Tweet People with diabetes have an increased risk of dehydration as high blood glucose levels lead to decreased hydration in the body. Diabetes insipidus, a form of diabetes that is not linked with high blood sugar levels, also carries a higher risk of dehydration. Symptoms of dehydration The symptoms of dehydration include: Thirst Headache Dry mouth and dry eyes Dizziness Tiredness Dark yellow coloured urine Symptoms of severe dehydration Low blood pressure Sunken eyes A weak pulse and/or rapid heartbeat Feeling confused Lethargy Causes and contributory factors of dehydration The following factors can contribute to dehydration. Having more of these factors present at one time can raise the risk of dehydration: Dehydration and blood glucose levels If our blood glucose levels are higher than they should be for prolonged periods of time, our kidneys will attempt to remove some of the excess glucose from the blood and excrete this as urine. Whilst the kidneys filter the blood in this way, water will also be removed from the blood and will need replenishing. This is why we tend to have increased thirst when our blood glucose levels run too high. If we drink water, we can help to rehydrate the blood. The other method the body uses is to draw on other available sources of water from within the body, such as saliva, tears and taking stored water from cells of the body. This is why we may experience a dry mouth and dry eyes when our blood glucose levels are high. If we do not have access to drink water, the body will find it difficult to pass glucose out of the blood via urine and can result in further dehydration as the body seeks to find water from our body's cells. Treating dehydration Dehydration can be treated by taking on board fluids. Water is ideal because it has no add Continue reading >>

Differential Effects Of Fasting And Dehydration In The Pathogenesis Of Diabetic Ketoacidosis.

Differential Effects Of Fasting And Dehydration In The Pathogenesis Of Diabetic Ketoacidosis.

Abstract Glycemia varies widely in patients with diabetic ketoacidosis (DKA), with plasma glucose concentrations between 10 to 50 mmol/L commonly encountered. The mechanism of this glycemic variability is uncertain. Our study examined the differential effects of fasting and dehydration on hyperglycemia induced by withdrawal of insulin in type 1 diabetes. To evaluate the respective roles of dehydration and fasting in the pathogenesis of DKA, 25 subjects with type 1 diabetes were studied during 5 hours of insulin withdrawal before (control) and after either 32 hours of fasting (n = 10) or dehydration of 4.1% +/- 2.0% of baseline body weight (n = 15). Samples were obtained every 30 minutes during insulin withdrawal for substrate and counterregulatory hormone levels and rates of glucose production and disposal. Fasting resulted in reduced plasma glucose concentrations compared with the control study, while dehydration resulted in increased plasma glucose concentrations compared with the control study (P < .001). Glucose production and disposal were decreased during the fasting study and increased during the dehydration study compared with the control study. Glucagon concentrations and rates of development of ketosis and metabolic acidosis were increased during both fasting and dehydration compared with control. These data suggest that fasting and dehydration have differential effects on glycemia during insulin deficiency, with dehydration favoring the development of hyperglycemia and fasting resulting in reduced glucose concentrations. This finding is probably attributable to the differing effect of these conditions on endogenous glucose production, as well as to differences in substrate availability and counterregulatory hormone concentrations. The severity of pre-existing Continue reading >>

Hypertension Despite Dehydration During Severe Pediatric Diabetic Ketoacidosis

Hypertension Despite Dehydration During Severe Pediatric Diabetic Ketoacidosis

Go to: Abstract Diabetic ketoacidosis (DKA) may result in both dehydration and cerebral edema but these processes may have opposing effects on blood pressure. We examined the relationship between dehydration and blood pressure in pediatric DKA. DKA (venous pH < 7.3, glucose > 300 mg/dL, HCO3 < 15 meq/l and urinary ketosis). Dehydration was calculated as percent body weight lost at admission compared to discharge. Hypertension (systolic and/or diastolic blood pressure percentile ≥ 95%ile) was defined based on 2004 National Heart, Lung, and Blood Institute nomograms and hypotension was defined as systolic blood pressure < 70 + 2 [age] Thirty-three patients (median 10.9 years; range 10 months - 17 years) were included. Fifty-eight percent of patients (19/33) had hypertension on admission prior to treatment and 82% had hypertension during the first 6 hours of admission. None had admission hypotension. Hypertension forty-eight hours after treatment and weeks after discharge was common (28% and 19%, respectively). Based on weight gained by discharge, 27% of patients had mild, 61% had moderate, and 12% presented with severe dehydration. Keywords: blood pressure, diabetes, pediatric, hypertension Go to: INTRODUCTION Dehydration from fluid loss secondary to glycosuria is a central feature of diabetic ketoacidosis (DKA) (1-3). Dehydration can theoretically lead to hypovolemia and systemic hypotension. However, there is a paucity of information on blood pressure in DKA. Many patients (15-67%) evaluated for new onset type 1 diabetes mellitus present with the constellation of dehydration, hyperglycemia and acidosis consistent with DKA (1-3). Dehydration, coupled with systemic hypotension may result in decreased cerebral perfusion and cerebral ischemia (4). Thus, in DKA, both dehyd Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Abbas E. Kitabchi, PhD., MD., FACP, FACE Professor of Medicine & Molecular Sciences and Maston K. Callison Professor in the Division of Endocrinology, Diabetes & Metabolism UT Health Science Center, 920 Madison Ave., 300A, Memphis, TN 38163 Aidar R. Gosmanov, M.D., Ph.D., D.M.Sc. Assistant Professor of Medicine, Division of Endocrinology, Diabetes & Metabolism, The University of Tennessee Health Science Center, 920 Madison Avenue, Suite 300A, Memphis, TN 38163 Clinical Recognition Omission of insulin and infection are the two most common precipitants of DKA. Non-compliance may account for up to 44% of DKA presentations; while infection is less frequently observed in DKA patients. Acute medical illnesses involving the cardiovascular system (myocardial infarction, stroke, acute thrombosis) and gastrointestinal tract (bleeding, pancreatitis), diseases of endocrine axis (acromegaly, Cushing`s syndrome, hyperthyroidism) and impaired thermo-regulation or recent surgical procedures can contribute to the development of DKA by causing dehydration, increase in insulin counter-regulatory hormones, and worsening of peripheral insulin resistance. Medications such as diuretics, beta-blockers, corticosteroids, second-generation anti-psychotics, and/or anti-convulsants may affect carbohydrate metabolism and volume status and, therefore, could precipitateDKA. Other factors: psychological problems, eating disorders, insulin pump malfunction, and drug abuse. It is now recognized that new onset T2DM can manifest with DKA. These patients are obese, mostly African Americans or Hispanics and have undiagnosed hyperglycemia, impaired insulin secretion, and insulin action. A recent report suggests that cocaine abuse is an independent risk factor associated with DKA recurrence. Pathophysiology In Continue reading >>

Diabetic Ketoacidosis Causes, Symptoms, Treatment, And Complications

Diabetic Ketoacidosis Causes, Symptoms, Treatment, And Complications

Diabetic ketoacidosis definition and facts Diabetic ketoacidosis is a life-threatening complication of type 1 diabetes (though rare, it can occur in people with type 2 diabetes) that occurs when the body produces high levels of ketones due to lack of insulin. Diabetic ketoacidosis occurs when the body cannot produce enough insulin. The signs and symptoms of diabetic ketoacidosis include Risk factors for diabetic ketoacidosis are type 1 diabetes, and missing insulin doses frequently, or being exposed to a stressor requiring higher insulin doses (infection, etc). Diabetic ketoacidosis is diagnosed by an elevated blood sugar (glucose) level, elevated blood ketones and acidity of the blood (acidosis). The treatment for diabetic ketoacidosis is insulin, fluids and electrolyte therapy. Diabetic ketoacidosis can be prevented by taking insulin as prescribed and monitoring glucose and ketone levels. The prognosis for a person with diabetic ketoacidosis depends on the severity of the disease and the other underlying medical conditions. Diabetic ketoacidosis (DKA) is a severe and life-threatening complication of diabetes. Diabetic ketoacidosis occurs when the cells in our body do not receive the sugar (glucose) they need for energy. This happens while there is plenty of glucose in the bloodstream, but not enough insulin to help convert glucose for use in the cells. The body recognizes this and starts breaking down muscle and fat for energy. This breakdown produces ketones (also called fatty acids), which cause an imbalance in our electrolyte system leading to the ketoacidosis (a metabolic acidosis). The sugar that cannot be used because of the lack of insulin stays in the bloodstream (rather than going into the cell and provide energy). The kidneys filter some of the glucose (suga Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Practice Essentials Diabetic ketoacidosis (DKA) is an acute, major, life-threatening complication of diabetes that mainly occurs in patients with type 1 diabetes, but it is not uncommon in some patients with type 2 diabetes. This condition is a complex disordered metabolic state characterized by hyperglycemia, ketoacidosis, and ketonuria. Signs and symptoms The most common early symptoms of DKA are the insidious increase in polydipsia and polyuria. The following are other signs and symptoms of DKA: Nausea and vomiting; may be associated with diffuse abdominal pain, decreased appetite, and anorexia History of failure to comply with insulin therapy or missed insulin injections due to vomiting or psychological reasons or history of mechanical failure of insulin infusion pump Altered consciousness (eg, mild disorientation, confusion); frank coma is uncommon but may occur when the condition is neglected or with severe dehydration/acidosis Signs and symptoms of DKA associated with possible intercurrent infection are as follows: See Clinical Presentation for more detail. Diagnosis On examination, general findings of DKA may include the following: Characteristic acetone (ketotic) breath odor In addition, evaluate patients for signs of possible intercurrent illnesses such as MI, UTI, pneumonia, and perinephric abscess. Search for signs of infection is mandatory in all cases. Testing Initial and repeat laboratory studies for patients with DKA include the following: Serum electrolyte levels (eg, potassium, sodium, chloride, magnesium, calcium, phosphorus) Note that high serum glucose levels may lead to dilutional hyponatremia; high triglyceride levels may lead to factitious low glucose levels; and high levels of ketone bodies may lead to factitious elevation of creatinine levels. Continue reading >>

More in ketosis