diabetestalk.net

Why Can't Fatty Acids Be Converted To Glucose

Biochemistry - Why Isn't Acetyl-coa An Entry Point For Gluconeogenesis? - Biology Stack Exchange

Biochemistry - Why Isn't Acetyl-coa An Entry Point For Gluconeogenesis? - Biology Stack Exchange

Why isn't acetyl-coA an entry point for gluconeogenesis? The process of gluconeogenesis starts from various possible precursors - plausible entry points like, Pyruvate, OAA, Fumarate, Propionate (as succinate) and alpha-KG. It is important to note that, acetyl-coA is not an entry point for Gluconeogenesis. The most common reason cited for this is the irreversibility of the enzyme, pyruvate dehydrogenase. Since it is irreversible, Acetyl coA can't get back to pyruvate to go on forming glucose. But, Acetyl CoA naturally enters the Kreb's cycle, so why can't it go ahead and form glucose via gluconeogenesis using one of the Kreb's intermediates? I have had this doubt for very long and tried to come up with an explanation to satisfy myself but I still don't know if it is valid. So here it goes. All the entry points to gluconeogenesis (mentioned before) are an addition to the Kreb's cycle. They get on the boat, sail along, get off at oxaloacetate and leave. They don't bother the boat in any other way. Even Pyruvate, forms oxaloacetate via pyruvate carboxylase and then gets on the boat for gluconeogenesis. On the other hand, Acetyl coA would be a part of the Kreb's cycle itself. It is not adding anything to it (2 carbons that are added are lost as CO2). So an Acetyl CoA added, can't leave as OAA. It would be analogous not sailing on the boat but eating it down itself. Slowly, it would lead to a decay and loss of the intermediates Kreb's cycle and it would come to a standstill (?) Is this explanation right? Are there any other ways to explain why irreversibility of PDH results in this? Although acetyl-coA can enter gluconeogenesis via pathways like glyoxylate cycle (not in humans) and pathways to make pyruvate from acetone (not economical) to form glucose, the question is why Continue reading >>

Principles Of Biochemistry/gluconeogenesis And Glycogenesis

Principles Of Biochemistry/gluconeogenesis And Glycogenesis

Gluconeogenesis (abbreviated GNG) is a metabolic pathway that results in the generation of glucose from non-carbohydrate carbon substrates such as lactate, glycerol, and glucogenic amino acids. It is one of the two main mechanisms humans and many other animals use to keep blood glucose levels from dropping too low (hypoglycemia). The other means of maintaining blood glucose levels is through the degradation of glycogen (glycogenolysis). Gluconeogenesis is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In animals, gluconeogenesis takes place mainly in the liver and, to a lesser extent, in the cortex of kidneys. This process occurs during periods of fasting, starvation, low-carbohydrate diets, or intense exercise and is highly endergonic. For example, the pathway leading from phosphoenolpyruvate to glucose-6-phosphate requires 6 molecules of ATP. Gluconeogenesis is often associated with ketosis. Gluconeogenesis is also a target of therapy for type II diabetes, such as metformin, which inhibits glucose formation and stimulates glucose uptake by cells. Lactate is transported back to the liver where it is converted into pyruvate by the Cori cycle using the enzyme lactate dehydrogenase. Pyruvate, the first designated substrate of the gluconeogenic pathway, can then be used to generate glucose. All citric acid cycle intermediates, through conversion to oxaloacetate, amino acids other than lysine or leucine, and glycerol can also function as substrates for gluconeogenesis.Transamination or deamination of amino acids facilitates entering of their carbon skeleton into the cycle directly (as pyruvate or oxaloacetate), or indirectly via the citric acid cycle. Whether fatty acids can be converted into glucose in animals has been a longst Continue reading >>

Lecture16

Lecture16

All of your cellsneed glucose and oxygen to perform aerobic respiration. Your bodytakes in oxygen continuously but your cells, especially your nervecells, need glucose continuously as well. The different cells andorgans of your body coordinate to provide glucose and oxygen to allwhile taking into account the constraints of gathering and eating thefood that provides the glucose. As noted earlier, thenerve cells of your brain must have glucose to make the ATP theyneed. Brain cells need a steady supply of glucose for this purpose.Confusion, dizziness, and fainting occur if your blood glucose dropstoo low, a condition often called "hypoglycemia". This presents achallenge because you cannot eat continuously to maintain your bloodglucose in the desired range. All animals must be able to functionbetween meals, sometimes for long periods. Several cells andorgans of the digestive system cooperate to maintain blood glucoselevels between meals. a. Liver cellsconvert stored glycogen back into glucose and release it into theblood to maintain glucose levels between meals. b. Fat cellsin adipose tissue convert fats back into fatty acids and release theminto the blood. This does not help nerve cells, since they can't takeup fatty acids from the blood for aerobic respiration. The othercells of your body can use fatty acids, however, leaving more glucosefor the nerve cells. c. Musclecells can contribute to blood glucose but indirectly. Theglycogen in muscle cells can be converted back into glucose and usedby those cells to make ATP. This reduces the need to draw glucosefrom the blood but muscle cells cannot release glucose into the bloodfor other cells to use. Muscle cells can release pyruvate and lactate(from glycolysis) into the blood. This pyruvate and lactate is takenup and converte Continue reading >>

Why Can't Animals Turn Fatty Acids Into Glucose?

Why Can't Animals Turn Fatty Acids Into Glucose?

Animals can’t turn fatty acids into glucose because fatty acids are metabolized 2 carbons at a time into the acetyl units of acetyl-CoA, and we have no enzymes to convert acetyl-CoA into pyruvate or any other metabolite in the gluconeogenesis pathway. Essentially, as I tell my students, the pyruvate dehydrogenase reaction is crossing the Rubicon: once it’s done, you can’t go back. The oxidative decarboxylation of pyruvate is irreversible, and there is no reverse bypass in animal cells. Acetyl-CoA of course enters the Krebs cycle, which ends with oxaloacetate, which is on the gluconeogenic pathway, but the Krebs cycle starts by reacting acetyl-CoA with OAA, and thus OAA production is balanced by OAA consumption: there is no net conversion of acetyl-CoA into OAA. Plants, fungi, and some microbes do have a way to do this: a bypass in the Krebs cycle called the glyoxylate cycle. Isocitrate, instead of being oxidized to alpha-ketoglutarate, is split into succinate and glyoxylate (HC(O)-COO), by an enzyme called isocitrate lyase. The glyoxylate reacts with another acetyl-CoA to form malate, in a reaction catalyzed by malate synthase. The succinate and malate both undergo their usual reactions in the Krebs cycle, resulting in the formation of two oxaloacetates. Thus the cell achieves a net conversion of two acetyl-CoA into OAA, and the OAA can be used for gluconeogenesis. This allows, among other things, plant seeds to store energy and carbon in the form of fats, but use them to create glucose and thus cellulose for cell walls when the seed germinates into a sprout. If we had isocitrate lyase and malate synthase, we could do this trick to, and diabetics wouldn’t have to worry about ketoacidosis. But, we don’t. Edit: for the sake of accuracy, I should mention that fat Continue reading >>

Chapter 19 : Carbohydrate Biosynthesis

Chapter 19 : Carbohydrate Biosynthesis

Thus the synthesis of glucose from pyruvate is a relativelycostly process. Much of this high energy cost is necessary toensure that gluconeogenesis is irreversible. Under intracellularconditions, the overall free-energy change of glycolysis is atleast -63 kJ/mol. Under the same conditions the overallfree-energy change of gluconeogenesis from pyruvate is alsohighly negative. Thus glycolysis and gluconeogenesis are bothessentially irreversible processes under intracellularconditions. Citric Acid Cycle Intermediates and Many Amino Acids AreGlucogenic The biosynthetic pathway to glucose described above allows thenet synthesis of glucose not only from pyruvate but also from thecitric acid cycle intermediates citrate, isocitrate,-ketoglutarate, succinate, fumarate, and malate. All may undergooxidation in the citric acid cycle to yield oxaloacetate.However, only three carbon atoms of oxaloacetate are convertedinto glucose; the fourth is released as CO in the conversion ofoxaloacetate to phosphoenolpyruvate by PEP carboxykinase (Fig.19-3). In Chapter 17 we showed that some or all of thecarbon atoms of many of the amino acids derived from proteins areultimately converted by mammals into either pyruvate or certainintermediates of the citric acid cycle. Such amino acids cantherefore undergo net conversion into glucose and are calledglucogenic amino acids (Table 19-3). Alanine and glutamine makeespecially important contributions in that they are the principalmolecules used to transport amino groups from extrahepatictissues to the liver. After removal of their amino groups inliver mitochondria, the carbon skeletons remaining (pyruvate anda-ketoglutarate, respectively) are readily funneled intogluconeogenesis. In contrast, there is no net conversion of even-carbon fattyacids into gl Continue reading >>

Why Can't Fat Produce Glucose?

Why Can't Fat Produce Glucose?

Tousief Irshad Ahmed Sirwal Author has 77 answers and 106.2k answer views Acetyl CoA is NOT a substrate for gluconeogenesis in animals 1. Pyruvate dehydrogenase reaction is irreversible. So, acetyl CoA cannot be converted back to pyruvate. 2. 2C Acetyl CoA enters the TCA cycle by condensing with 4C oxaloacetate. 2 molecules of CO2 are released & the oxaloacetate is regenerated. There is no NET production of oxaloacetate. Animals cannot convert fat into glucose with minimal exceptions 1. Propionyl CoA derived from odd chain fatty acids are converted to Succinyl CoA Glucogenic 2. Glycerol derived from triglycerides are glucogenic. Answered Mar 26, 2017 Author has 942 answers and 259.1k answer views Yijia Xiong pointed out that the glycerol portion of triglycerides (fats) can indeed be converted to glucose. It is not so energy-inefficient that it is avoided by our bodies. If nutritionally, we are in a gluconeogenesis mode (building up glucose stores rather than consuming them), glycerol would be a perfectly acceptable precursor. However, I think the original question had more to do with the vast bulk of the triglycerides that are not glycerol, but are fatty acids. And it is true that we cant produce glucose from fatty acids. The reason is that the catabolic reactions of fatty acids break off two carbon atoms at a time as Acetyl-CoA. But our metabolic suite of pathways has no way to convert a two-carbon fragment to glucose. The end product of glycolysis is pyruvate, a three-carbon compound. Pyruvate can be back-synthesized into glucose. But the committing reaction for the Krebs cycle is the pyruvate dehydrogenase step, forming acetyl-CoA. That reaction is not reversible. Once pyruvate loses a carbon atom, it cant go back. The three main macronutrients are carbohydrates, pr Continue reading >>

Does Fat Convert To Glucose In The Body?

Does Fat Convert To Glucose In The Body?

Your body is an amazing machine that is able to extract energy from just about anything you eat. While glucose is your body's preferred energy source, you can't convert fat into glucose for energy; instead, fatty acids or ketones are used to supply your body with energy from fat. Video of the Day Fat is a concentrated source of energy, and it generally supplies about half the energy you burn daily. During digestion and metabolism, the fat in the food you eat is broken down into fatty acids and glycerol, which are emulsified and absorbed into your blood stream. While some tissues -- including your muscles -- can use fatty acids for energy, your brain can't convert fatty acids to fuel. If you eat more fat than your body needs, the extra is stored in fat cells for later use. Fat has more than twice as many calories per gram as carbs and protein, which makes it an efficient form of stored energy. It would take more than 20 pounds of glycogen -- a type of carbohydrate used for fuel -- to store the same amount of energy in just 10 pounds of fat. Your Body Makes Glucose From Carbs Almost all the glucose in your body originated from carbohydrates, which come from the fruit, vegetables, grains and milk in your diet. When you eat these carb-containing foods, your digestive system breaks them down into glucose, which is then used for energy by your cells. Any excess glucose is converted into glycogen, then stored in your muscles and liver for later use. Once you can't store any more glucose or glycogen, your body stores any leftover carbs as fat. Glucose is your brain's preferred source of energy. However, when glucose is in short supply, your brain can use ketones -- which are derived from fat -- for fuel. Since your brain accounts for approximately one-fifth of your daily calori Continue reading >>

We Really Can Make Glucose From Fatty Acids After All! O Textbook, How Thy Biochemistry Hast Deceived Me!

We Really Can Make Glucose From Fatty Acids After All! O Textbook, How Thy Biochemistry Hast Deceived Me!

Biochemistry textbooks generally tell us that we can’t turn fatty acids into glucose. For example, on page 634 of the 2006 and 2008 editions of Biochemistry by Berg, Tymoczko, and Stryer, we find the following: Animals Cannot Convert Fatty Acids to Glucose It is important to note that animals are unable to effect the net synthesis of glucose from fatty acids. Specficially, acetyl CoA cannot be converted into pyruvate or oxaloacetate in animals. In fact this is so important that it should be written in italics and have its own bold heading! But it’s not quite right. Making glucose from fatty acids is low-paying work. It’s not the type of alchemy that would allow us to build imperial palaces out of sugar cubes or offer hourly sweet sacrifices upon the altar of the glorious god of glucose (God forbid!). But it can be done, and it’ll help pay the bills when times are tight. All Aboard the Acetyl CoA! When we’re running primarily on fatty acids, our livers break the bulk of these fatty acids down into two-carbon units called acetate. When acetate hangs out all by its lonesome like it does in a bottle of vinegar, it’s called acetic acid and it gives vinegar its characteristic smell. Our livers aren’t bottles of vinegar, however, and they do things a bit differently. They have a little shuttle called coenzyme A, or “CoA” for short, that carries acetate wherever it needs to go. When the acetate passenger is loaded onto the CoA shuttle, we refer to the whole shebang as acetyl CoA. As acetyl CoA moves its caboose along the biochemical railway, it eventually reaches a crossroads where it has to decide whether to enter the Land of Ketogenesis or traverse the TCA cycle. The Land of Ketogenesis is a quite magical place to which we’ll return in a few moments, but n Continue reading >>

Can Sugars Be Produced From Fatty Acids? A Test Case For Pathway Analysis Tools

Can Sugars Be Produced From Fatty Acids? A Test Case For Pathway Analysis Tools

Can sugars be produced from fatty acids? A test case for pathway analysis tools Department of Bioinformatics, 2Bio Systems Analysis Group, Friedrich-Schiller-Universitt Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany and 3School of Life Sciences, Oxford Brookes University, Headington, Oxford, OX3 0BP, UK *To whom correspondence should be addressed. Search for other works by this author on: Department of Bioinformatics, 2Bio Systems Analysis Group, Friedrich-Schiller-Universitt Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany and 3School of Life Sciences, Oxford Brookes University, Headington, Oxford, OX3 0BP, UK *To whom correspondence should be addressed. Search for other works by this author on: Department of Bioinformatics, 2Bio Systems Analysis Group, Friedrich-Schiller-Universitt Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany and 3School of Life Sciences, Oxford Brookes University, Headington, Oxford, OX3 0BP, UK Search for other works by this author on: Department of Bioinformatics, 2Bio Systems Analysis Group, Friedrich-Schiller-Universitt Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany and 3School of Life Sciences, Oxford Brookes University, Headington, Oxford, OX3 0BP, UK Search for other works by this author on: Bioinformatics, Volume 25, Issue 1, 1 January 2009, Pages 152158, Luis F. de Figueiredo, Stefan Schuster, Christoph Kaleta, David A. Fell; Can sugars be produced from fatty acids? A test case for pathway analysis tools, Bioinformatics, Volume 25, Issue 1, 1 January 2009, Pages 152158, Motivation: In recent years, several methods have been proposed for determining metabolic pathways in an automated way based on network topology. The aim of this work is to analyse these methods by tackling a concrete example relevant in biochemistry. It concerns the question wh Continue reading >>

Glucose Can Be Synthesized From Noncarbohydrate Precursors - Biochemistry - Ncbi Bookshelf

Glucose Can Be Synthesized From Noncarbohydrate Precursors - Biochemistry - Ncbi Bookshelf

Glucose is formed by hydrolysis of glucose 6-phosphate in a reaction catalyzed by glucose 6-phosphatase. We will examine each of these steps in turn. 16.3.2. The Conversion of Pyruvate into Phosphoenolpyruvate Begins with the Formation of Oxaloacetate The first step in gluconeogenesis is the carboxylation of pyruvate to form oxaloacetate at the expense of a molecule of ATP . Then, oxaloacetate is decarboxylated and phosphorylated to yield phosphoenolpyruvate, at the expense of the high phosphoryl-transfer potential of GTP . Both of these reactions take place inside the mitochondria. The first reaction is catalyzed by pyruvate carboxylase and the second by phosphoenolpyruvate carboxykinase. The sum of these reactions is: Pyruvate carboxylase is of special interest because of its structural, catalytic, and allosteric properties. The N-terminal 300 to 350 amino acids form an ATP -grasp domain ( Figure 16.25 ), which is a widely used ATP-activating domain to be discussed in more detail when we investigate nucleotide biosynthesis ( Section 25.1.1 ). The C -terminal 80 amino acids constitute a biotin-binding domain ( Figure 16.26 ) that we will see again in fatty acid synthesis ( Section 22.4.1 ). Biotin is a covalently attached prosthetic group, which serves as a carrier of activated CO2. The carboxylate group of biotin is linked to the -amino group of a specific lysine residue by an amide bond ( Figure 16.27 ). Note that biotin is attached to pyruvate carboxylase by a long, flexible chain. The carboxylation of pyruvate takes place in three stages: Recall that, in aqueous solutions, CO2 exists as HCO3- with the aid of carbonic anhydrase (Section 9.2). The HCO3- is activated to carboxyphosphate. This activated CO2 is subsequently bonded to the N-1 atom of the biotin ring to Continue reading >>

In Silico Evidence For Gluconeogenesis From Fatty Acids In Humans

In Silico Evidence For Gluconeogenesis From Fatty Acids In Humans

Abstract The question whether fatty acids can be converted into glucose in humans has a long standing tradition in biochemistry, and the expected answer is “No”. Using recent advances in Systems Biology in the form of large-scale metabolic reconstructions, we reassessed this question by performing a global investigation of a genome-scale human metabolic network, which had been reconstructed on the basis of experimental results. By elementary flux pattern analysis, we found numerous pathways on which gluconeogenesis from fatty acids is feasible in humans. On these pathways, four moles of acetyl-CoA are converted into one mole of glucose and two moles of CO2. Analyzing the detected pathways in detail we found that their energetic requirements potentially limit their capacity. This study has many other biochemical implications: effect of starvation, sports physiology, practically carbohydrate-free diets of inuit, as well as survival of hibernating animals and embryos of egg-laying animals. Moreover, the energetic loss associated to the usage of gluconeogenesis from fatty acids can help explain the efficiency of carbohydrate reduced and ketogenic diets such as the Atkins diet. Author Summary That sugar can be converted into fatty acids in humans is a well-known fact. The question whether the reverse direction, i.e., gluconeogenesis from fatty acids, is also feasible has been a topic of intense debate since the end of the 19th century. With the discovery of the glyoxylate shunt that allows this conversion in some bacteria, plants, fungi and nematodes it has been considered infeasible in humans since the corresponding enzymes could not be detected. However, by this finding only a single route for gluconeogenesis from fatty acids has been ruled out. To address the question Continue reading >>

Can Sugars Be Produced From Fatty Acids? A Test Case For Pathway Analysis Tools

Can Sugars Be Produced From Fatty Acids? A Test Case For Pathway Analysis Tools

Can sugars be produced from fatty acids? A test case for pathway analysis tools Department of Bioinformatics, 2Bio Systems Analysis Group, Friedrich-Schiller-Universitt Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany and 3School of Life Sciences, Oxford Brookes University, Headington, Oxford, OX3 0BP, UK *To whom correspondence should be addressed. Search for other works by this author on: Department of Bioinformatics, 2Bio Systems Analysis Group, Friedrich-Schiller-Universitt Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany and 3School of Life Sciences, Oxford Brookes University, Headington, Oxford, OX3 0BP, UK *To whom correspondence should be addressed. Search for other works by this author on: Department of Bioinformatics, 2Bio Systems Analysis Group, Friedrich-Schiller-Universitt Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany and 3School of Life Sciences, Oxford Brookes University, Headington, Oxford, OX3 0BP, UK Search for other works by this author on: Department of Bioinformatics, 2Bio Systems Analysis Group, Friedrich-Schiller-Universitt Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany and 3School of Life Sciences, Oxford Brookes University, Headington, Oxford, OX3 0BP, UK Search for other works by this author on: Bioinformatics, Volume 25, Issue 1, 1 January 2009, Pages 152158, Luis F. de Figueiredo, Stefan Schuster, Christoph Kaleta, David A. Fell; Can sugars be produced from fatty acids? A test case for pathway analysis tools, Bioinformatics, Volume 25, Issue 1, 1 January 2009, Pages 152158, Motivation: In recent years, several methods have been proposed for determining metabolic pathways in an automated way based on network topology. The aim of this work is to analyse these methods by tackling a concrete example relevant in biochemistry. It concerns the question wh Continue reading >>

Biochemistry 12: Diabetes

Biochemistry 12: Diabetes

These are notes from lecture 12 of Harvard Extensions biochemistry class . The first priority is to provide enough glucose to tissues that are solely dependent on glucose the brain and red blood cells. It was long thought that fatty acids cannot be converted to glucose, though there is now some evidence that this conversion may occur under some circumstances. Amino acids are a poor fuel source because theyre not stored (no equivalent of glycogen or triacylglycerol), so youd just be catabolizing proteins you need to live. Starvation occurs in stages. Exogenous glucose can be used for the first 4 hours after a meal. Then glycogen reserves kick in from hour 4 to hour ~28. As the glycogen mobilization peaks around hour 8, gluconeogenesis begins, and can continue full steam for about 2 days, after which it dampens slightly but can continue for up to 40 days at a lower level. During days 2-24, the kidney begins gluconeogenesis and the brain begins using ketone bodies. In Stage V (days 24-40), the liver and kidney continue to do gluconeogenesis and the brain relies solely on ketone bodies. Muscle protein degradation is about 75 g/day at day 3 of starvation, 20 g/day at day 40 of starvation. The initial sources of proteins are rapid turnover proteins from the intestinal epithelium and secreted pancreatic proteins. After three days, the liver forms ketone bodies (from fatty acid catabolism) which become the predominant energy source, preventing additional protein degradation. After an average of 40 days (more if you have more adipose tissue), TAG stores are depleted, and protein degradation increases again, impacting heart, liver and kidney function and leading ultimately to death. See [ Berg 2002 ] for an overview of all this, esp. muscle protein degradation. Heres a quick rev Continue reading >>

Gluconeogenesis - Kansas State Hn 400 Human Nutrition

Gluconeogenesis - Kansas State Hn 400 Human Nutrition

Gluconeogenesis: The opposite of glycolysis, using other products like amino acids to make glucose. Amino acid uptake go from the amino acids through the amino acid transporters into the hepatocyte. The anabolic pathway of amino acids leads to protein synthesis. The catabolic pathway of amino acids can lead to gluconeogenesis that assist the formation of glucose. As shown below gluconeogenesis is like glycolysis in reverse with an oxaloacetate workaround. Oxaloacetate is a TCA cycle intermediate that is formed instead of directly converting pyruvate to phosphoenolpyruvate, which would be glycolysis exactly in reverse. Oxaloacetate then is just what is formed as an intermediate between the two steps. This gluconeogenesis animation does a good job of illustrating and explaining gluconeogenesis. We can use amino acids in gluconeogenesis to make glucose, but we cannot use ALL amino acids. Fatty acids cannot be used to form glucose because it makes Acetyl-CoA. The transition reaction that forms acetyl CoA from pyruvate is a one way reaction. This means that Acetyl-CoA can't be used to form pyruvate. In othe words, we can not go back from Acetyl-CoA to pyruvate. This occurs in the liver & kidney to some extent. Glucose is exported to tissues. Pyruvate is decarboxylated - the carboxyl group (-COOH) is split forming carbon dioxide. It is dehydrogenated - elimination of hydrogren It is added to CoA to form Acetyl CoA - remember CoA is Coenzyme A, responsible for oxidizing pyruvate in the Citric Acid/Kreb's cycle Why can't Acetyl CoA be used to from glucose through the Kreb's cycle? Because the Acetyl CoA carbons are given off as CO2, there is no carbon skeleton left to be used for gluconeogenesis. Glycerol can be used, but it makes very little glucose. Shows where all the amino Continue reading >>

164 24.3 Lipid Metabolism

164 24.3 Lipid Metabolism

Learning Objectives By the end of this section, you will be able to: Explain how energy can be derived from fat Explain the purpose and process of ketogenesis Describe the process of ketone body oxidation Explain the purpose and the process of lipogenesis Fats (or triglycerides) within the body are ingested as food or synthesized by adipocytes or hepatocytes from carbohydrate precursors (Figure 1). Lipid metabolism entails the oxidation of fatty acids to either generate energy or synthesize new lipids from smaller constituent molecules. Lipid metabolism is associated with carbohydrate metabolism, as products of glucose (such as acetyl CoA) can be converted into lipids. Lipid metabolism begins in the intestine where ingested triglycerides are broken down into smaller chain fatty acids and subsequently into monoglyceride molecules (see Figure 1b) by pancreatic lipases, enzymes that break down fats after they are emulsified by bile salts. When food reaches the small intestine in the form of chyme, a digestive hormone called cholecystokinin (CCK) is released by intestinal cells in the intestinal mucosa. CCK stimulates the release of pancreatic lipase from the pancreas and stimulates the contraction of the gallbladder to release stored bile salts into the intestine. CCK also travels to the brain, where it can act as a hunger suppressant. Together, the pancreatic lipases and bile salts break down triglycerides into free fatty acids. These fatty acids can be transported across the intestinal membrane. However, once they cross the membrane, they are recombined to again form triglyceride molecules. Within the intestinal cells, these triglycerides are packaged along with cholesterol molecules in phospholipid vesicles called chylomicrons (Figure 2). The chylomicrons enable fats an Continue reading >>

More in ketosis