diabetestalk.net

Why Can't Fat Be Converted To Glucose

Does Fat Convert To Glucose In The Body?

Does Fat Convert To Glucose In The Body?

Your body is an amazing machine that is able to extract energy from just about anything you eat. While glucose is your body's preferred energy source, you can't convert fat into glucose for energy; instead, fatty acids or ketones are used to supply your body with energy from fat. Video of the Day Fat is a concentrated source of energy, and it generally supplies about half the energy you burn daily. During digestion and metabolism, the fat in the food you eat is broken down into fatty acids and glycerol, which are emulsified and absorbed into your blood stream. While some tissues -- including your muscles -- can use fatty acids for energy, your brain can't convert fatty acids to fuel. If you eat more fat than your body needs, the extra is stored in fat cells for later use. Fat has more than twice as many calories per gram as carbs and protein, which makes it an efficient form of stored energy. It would take more than 20 pounds of glycogen -- a type of carbohydrate used for fuel -- to store the same amount of energy in just 10 pounds of fat. Your Body Makes Glucose From Carbs Almost all the glucose in your body originated from carbohydrates, which come from the fruit, vegetables, grains and milk in your diet. When you eat these carb-containing foods, your digestive system breaks them down into glucose, which is then used for energy by your cells. Any excess glucose is converted into glycogen, then stored in your muscles and liver for later use. Once you can't store any more glucose or glycogen, your body stores any leftover carbs as fat. Glucose is your brain's preferred source of energy. However, when glucose is in short supply, your brain can use ketones -- which are derived from fat -- for fuel. Since your brain accounts for approximately one-fifth of your daily calori Continue reading >>

The Catabolism Of Fats And Proteins For Energy

The Catabolism Of Fats And Proteins For Energy

The Catabolism of Fats and Proteins for Energy Before we get into anything, what does the word catabolism mean? When we went over catabolic and anabolic reactions , we said that catabolic reactions are the ones that break apart molecules. To remember what catabolic means, think of a CATastrophe where things are falling apart and breaking apart. You could also remember cats that tear apart your furniture. In order to make ATP for energy, the body breaks down mostly carbs, some fats and very small amounts of protein. Carbs are the go-to food, the favorite food that cells use to make ATP but now were going to see how our cells use fats and proteins for energy. What were going to find is that they are ALL going to be turned into sugars (acetyl) as this picture below shows. First lets do a quick review of things you already know because it is assumed you learned cell respiration already and how glucose levels are regulated in your blood ! Glucose can be stored as glycogen through a process known as glycogenesis. The hormone that promotes this process is insulin. Then when glycogen needs to be broken down, the hormone glucagon, promotes glycogenolysis (Glycogen-o-lysis) to break apart the glycogen and increase the blood sugar level. Glucose breaks down to form phosphoglycerate (PGAL) and then pyruvic acid. What do we call this process of splitting glucose into two pyruvic sugars? Thats glycolysis (glyco=glucose, and -lysis is to break down). When theres not enough oxygen, pyruvic acid is converted into lactic acid. When oxygen becomes available, lactic acid is converted back to pyruvic acid. Remember that this all occurs in the cytoplasm. The pyruvates are then, aerobically, broken apart in the mitochondria into Acetyl-CoA. The acetyl sugars are put into the Krebs citric aci Continue reading >>

The Science Behind Fat Metabolism

The Science Behind Fat Metabolism

Per the usual disclaimer, always consult with your doctor before experimenting with your diet (seriously, go see a doctor, get data from blood tests, etc.). Please feel free to comment below if you’re aware of anything that should be updated; I’d appreciate knowing and I’ll update the content quickly. My goal here is to help a scientifically curious audience know the basic story and where to dive in for further study. If I’m successful, the pros will say “duh”, and everyone else will be better informed about how this all works. [UPDATE: based on a ton a helpful feedback and questions on the content below, I’ve written up a separate article summarizing the science behind ketogenic (low-carb) diets. Check it out. Also, the below content has been updated and is still very much applicable to fat metabolism on various kinds of diets. Thanks, everyone!] tl;dr The concentration of glucose in your blood is the critical upstream switch that places your body into a “fat-storing” or “fat-burning” state. The metabolic efficiency of either state — and the time it takes to get into one from the other — depends on a large variety of factors such as food and drink volume and composition, vitamin and mineral balances, stress, hydration, liver and pancreas function, insulin sensitivity, exercise, mental health, and sleep. Carbohydrates you eat, with the exception of indigestible forms like most fibers, eventually become glucose in your blood. Assuming your metabolism is functioning normally, if the switch is on you will store fat. If the switch is off, you will burn fat. Therefore, all things being equal, “diets” are just ways of hacking your body into a sufficiently low-glycemic state to trigger the release of a variety of hormones that, in turn, result in Continue reading >>

Fat For Fuel: Why Dietary Fat, Not Glucose, Is The Preferred Body Fuel

Fat For Fuel: Why Dietary Fat, Not Glucose, Is The Preferred Body Fuel

Contrary to popular belief, glucose is NOT the preferred fuel of human metabolism; the fact is that burning dietary fat for fuel may actually be the key to optimal health Carbohydrate intake is the primary factor that determines your body's fat ratio, and processed grains and sugars (particularly fructose) are the primary culprits behind our skyrocketing obesity and diabetes rates According to experts, carbs should make up only 20 percent of your diet, while 50-70 percent of your diet should be healthy fats. Fat is far more satiating than carbs, so if you have cut down on carbs and feel ravenous, this is a sign that you need more healthy fat to burn for fuel By Dr. Mercola While we may consider ourselves to be at the pinnacle of human development, our modern food manufacturing processes have utterly failed at improving health and increasing longevity. During the Paleolithic period, many thousands of years ago, our ancestors ate primarily vegetables, fruit, nuts, roots and meat—and a wide variety of it. This diet was high in fats and protein, and low in grain- and sugar-derived carbohydrates. The average person's diet today, on the other hand, is the complete opposite, and the average person's health is a testament of what happens when you adhere to a faulty diet. Humans today suffer more chronic and debilitating diseases than ever before. And there can be little doubt that our food choices play a major role in this development. Quite simply, you were not designed to eat large amounts of refined sugar, high fructose corn syrup, cereal, bread, potatoes and pasteurized milk products. As Mark Sisson states in the featured article:1 "If you want to live a better life and eat the best foods nature provided for health and fitness, then it's time to ditch the old paradigms an Continue reading >>

How Does The Body Adapt To Starvation?

How Does The Body Adapt To Starvation?

- [Instructor] In this video, I want to explore the question of how does our body adapt to periods of prolonged starvation. So in order to answer this question, I actually think it's helpful to remind ourselves first of a golden rule of homeostasis inside of our body. So in order to survive, remember that our body must be able to maintain proper blood glucose levels. I'm gonna go ahead and write we must be able to maintain glucose levels in our blood, and this is important even in periods of prolonged starvation, because it turns out that we need to maintain glucose levels above a certain concentration in order to survive, even if that concentration is lower than normal. And this of course brings up the question, well, how does our body maintain blood glucose levels? So let's go ahead and answer this question by starting off small. Let's say we have a mini case of starvation, let's say three or four hours after a meal. Your blood glucose levels begin to drop, and so what does your body do to resolve that? Well, at this point, it has a quick and easy solution. It turns to its glycogen stores in the liver. Remember that our body stores up these strings of glucose inside of our body so that we can easily pump it back into the blood when we're not eating. But unfortunately humans only have enough glycogen stores to last us about a day, so after a day of starvation, our body's pretty much reliant exclusively on the metabolic pathways involved in gluconeogenesis, which if you remember is the pathway by which we produce new or neo glucose. And we produce this glucose from non-carbohydrate precursor molecules. So let's think about what else we have in our body. Remember that our other two major storage fuels are fats, and we usually think about fatty acids containing most of th Continue reading >>

Does Carbohydrate Become Body Fat?

Does Carbohydrate Become Body Fat?

Dear Reader, Ah, poor carbohydrates, maligned by diets such as Atkins’ and the ketogenic diet. However, carbohydrates are your body’s main source of energy — in fact your muscles and brain cells prefer carbs more than other sources of energy (triglycerides and fat, for example). To answer your question: research completed over the last several decades suggests that if you are eating a diet that is appropriate for your levels of daily activity, little to no carbohydrate is converted to fat in your body. For most people (unless you have a metabolic disorder) when you eat carbs they are digested, broken down to glucose, and then transported to all the cells in your body. They are then metabolized and used to support cellular processes. If you’re active and eating appropriately for your activity level, most of the carbs you consume are more or less burned immediately. There are two caveats here: first, if you’re eating a lot more calories per day than you are burning, then yes, your liver will convert excess calories from carbohydrate into fats; second, not all carbs are created equal. If you consume too many calories from simple sugars like sucrose and fructose (think sugary sodas sweetened by sugar and high fructose corn syrup) then your body will more readily take some of those sugars and turn them into triglycerides (fat) in your liver. What happens to excess calories that come from carbs? The answer depends on several things: what kind of carbs you consumed, your genetics, as well as how many extra calories we’re talking about. For those who eat a well-balanced diet and have no metabolic disorders, excess dietary carbohydrates are converted by the liver into complex chains of glucose called glycogen. Glycogen is stored in liver and muscle cells and is a sec Continue reading >>

How Sugar Makes You Fat

How Sugar Makes You Fat

Look at how many grams of sugar are in what you’re eating (on the nutritional label). Now divide that number by 4. That’s how many teaspoons of pure sugar you’re consuming. Kinda scary, huh? Sugar makes you fat and fatfree food isn’t really free of fat. I’ve said it before in multiple articles, but occasionally, I’ve had someone lean over my desk and say “How in the heck does sugar make you fat if there’s no fat in it?”. This article will answer that puzzler, and provide you with some helpful suggestions to achieve not only weight loss success, but improved body health. First, let’s make some qualifications. Sugar isn’t inherently evil. Your body uses sugar to survive, and burns sugar to provide you with the energy necessary for life. Many truly healthy foods are actually broken down to sugar in the body – through the conversion of long and complex sugars called polysaccharides into short and simple sugars called monosaccharides, such as glucose. In additions to the breakdown products of fat and protein, glucose is a great energy source for your body. However, there are two ways that sugar can sabotage your body and cause fat storage. Excess glucose is the first problem, and it involves a very simple concept. Anytime you have filled your body with more fuel than it actually needs (and this is very easy to do when eating foods with high sugar content), your liver’s sugar storage capacity is exceeded. When the liver is maximally full, the excess sugar is converted by the liver into fatty acids (that’s right – fat!) and returned to the bloodstream, where is taken throughout your body and stored (that’s right – as fat!) wherever you tend to store adipose fat cells, including, but not limited to, the popular regions of the stomach, hips, but Continue reading >>

How Fat Cells Work

How Fat Cells Work

In the last section, we learned how fat in the body is broken down and rebuilt into chylomicrons, which enter the bloodstream by way of the lymphatic system. Chylomicrons do not last long in the bloodstream -- only about eight minutes -- because enzymes called lipoprotein lipases break the fats into fatty acids. Lipoprotein lipases are found in the walls of blood vessels in fat tissue, muscle tissue and heart muscle. Insulin When you eat a candy bar or a meal, the presence of glucose, amino acids or fatty acids in the intestine stimulates the pancreas to secrete a hormone called insulin. Insulin acts on many cells in your body, especially those in the liver, muscle and fat tissue. Insulin tells the cells to do the following: The activity of lipoprotein lipases depends upon the levels of insulin in the body. If insulin is high, then the lipases are highly active; if insulin is low, the lipases are inactive. The fatty acids are then absorbed from the blood into fat cells, muscle cells and liver cells. In these cells, under stimulation by insulin, fatty acids are made into fat molecules and stored as fat droplets. It is also possible for fat cells to take up glucose and amino acids, which have been absorbed into the bloodstream after a meal, and convert those into fat molecules. The conversion of carbohydrates or protein into fat is 10 times less efficient than simply storing fat in a fat cell, but the body can do it. If you have 100 extra calories in fat (about 11 grams) floating in your bloodstream, fat cells can store it using only 2.5 calories of energy. On the other hand, if you have 100 extra calories in glucose (about 25 grams) floating in your bloodstream, it takes 23 calories of energy to convert the glucose into fat and then store it. Given a choice, a fat cell w Continue reading >>

Why Can't Fat Produce Glucose?

Why Can't Fat Produce Glucose?

Tousief Irshad Ahmed Sirwal Author has 77 answers and 106.2k answer views Acetyl CoA is NOT a substrate for gluconeogenesis in animals 1. Pyruvate dehydrogenase reaction is irreversible. So, acetyl CoA cannot be converted back to pyruvate. 2. 2C Acetyl CoA enters the TCA cycle by condensing with 4C oxaloacetate. 2 molecules of CO2 are released & the oxaloacetate is regenerated. There is no NET production of oxaloacetate. Animals cannot convert fat into glucose with minimal exceptions 1. Propionyl CoA derived from odd chain fatty acids are converted to Succinyl CoA Glucogenic 2. Glycerol derived from triglycerides are glucogenic. Answered Mar 26, 2017 Author has 942 answers and 259.1k answer views Yijia Xiong pointed out that the glycerol portion of triglycerides (fats) can indeed be converted to glucose. It is not so energy-inefficient that it is avoided by our bodies. If nutritionally, we are in a gluconeogenesis mode (building up glucose stores rather than consuming them), glycerol would be a perfectly acceptable precursor. However, I think the original question had more to do with the vast bulk of the triglycerides that are not glycerol, but are fatty acids. And it is true that we cant produce glucose from fatty acids. The reason is that the catabolic reactions of fatty acids break off two carbon atoms at a time as Acetyl-CoA. But our metabolic suite of pathways has no way to convert a two-carbon fragment to glucose. The end product of glycolysis is pyruvate, a three-carbon compound. Pyruvate can be back-synthesized into glucose. But the committing reaction for the Krebs cycle is the pyruvate dehydrogenase step, forming acetyl-CoA. That reaction is not reversible. Once pyruvate loses a carbon atom, it cant go back. The three main macronutrients are carbohydrates, pr Continue reading >>

How The Body Uses Carbohydrates, Proteins, And Fats

How The Body Uses Carbohydrates, Proteins, And Fats

How the Body Uses Carbohydrates, Proteins, and Fats The human body is remarkably adept at making do with whatever type of food is available. Our ability to survive on a variety of diets has been a vital adaptation for a species that evolved under conditions where food sources were scarce and unpredictable. Imagine if you had to depend on successfully hunting a woolly mammoth or stumbling upon a berry bush for sustenance! Today, calories are mostly cheap and plentifulperhaps too much so. Understanding what the basic macronutrients have to offer can help us make better choices when it comes to our own diets. From the moment a bite of food enters the mouth, each morsel of nutrition within starts to be broken down for use by the body. So begins the process of metabolism, the series of chemical reactions that transform food into components that can be used for the body's basic processes. Proteins, carbohydrates , and fats move along intersecting sets of metabolic pathways that are unique to each major nutrient. Fundamentallyif all three nutrients are abundant in the dietcarbohydrates and fats will be used primarily for energy while proteins provide the raw materials for making hormones, muscle, and other essential biological equipment. Proteins in food are broken down into pieces (called amino acids) that are then used to build new proteins with specific functions, such as catalyzing chemical reactions, facilitating communication between different cells, or transporting biological molecules from here to there. When there is a shortage of fats or carbohydrates, proteins can also yield energy. Fats typically provide more than half of the body's energy needs. Fat from food is broken down into fatty acids, which can travel in the blood and be captured by hungry cells. Fatty aci Continue reading >>

Protein Will Not Make You Fat

Protein Will Not Make You Fat

Here's what you need to know... While it's biochemically possible for protein to turn into fat by ingesting extremely high numbers of calories or extremely large amounts of protein, it's unlikely you'll ever be in that situation. You can pretty much eat as much protein as you want and it won't turn to fat. That old chestnut about only being able to absorb 30 grams of protein in one sitting is bunk. Aside from building muscle, protein provides essential amino acids that serve as the building blocks for other proteins, enzymes, and hormones within the body that are vital for normal functioning. Without this steady supply of amino acids, the body resorts to breaking down its own proteins – typically from muscle – in order to meet this demand. Protein has its share of misconceptions. It's not uncommon to hear claims that dietary protein eaten in excess of some arbitrary number will be stored as body fat. Even those who are supposed to be reputable sources for nutrition information propagate this untenable dogma. While paging through a nutrition textbook I came across a section in the protein chapter regarding amino acids and energy metabolism (1). To quote the book directly: "Eating extra protein during times of glucose and energy sufficiency generally contributes to more fat storage, not muscle growth. This is because, during times of glucose and energy excess, your body redirects the flow of amino acids away from gluconeogenesis and ATP-producing pathways and instead converts them to lipids. The resulting lipids can subsequently be stored as body fat for later use." This is, more or less, supported by another textbook I own (2): "In times of excess energy and protein intakes coupled with adequate carbohydrate intake, the carbon skeleton of amino acids may be used to s Continue reading >>

Diet

Diet

There is an old saying that "You are what you eat". Thisappears to be a self-evident truth. However, our body is more complicated than this. Our body is like a chemical lab that has thousands of reactions going on simultaneously at any given second. It is not surprising that what we eat might turn into something we haven't thought about after some of these reactions. Our goal is to loss fat. Therefore while there are hundreds of reactions happening in our body, we should onlybe concerned about nutrients that have the potential to be turned into fat. It turns out that after my intensive research in the fieldof metabolicbiochemistry, in addition to fat, protein and carbohydrate are the twomajor nutrients that has the potential to become fat. In this section, I will first tell you how proteins,carbohydrates and fat are turned into fat and then get stored.Then I will devise a diet that while lowering your chance ofgetting fat accumulated, it won't make you starve and allowyou to function at full capacity. Carbohydrates are broken down into glucose in intestine.Glucose provides immediate energy for our brain and red blood cells.Execessive glucose are transported to liver and converted into glycogenand storedin liver and muscle. On average, each person can store 2,000 calories of glycogen in their body. Thatis about 500g of carbohydrate. When we don't have any more capacity to store glycogen,excessive glucose will be turned into fat for storage. During thisconversion, 23% of energy stored in glucose is lost. Unfortunately, suchconversion is accounts for only 5% of the carb we consume. The rest of the carb is either stored as glycogen or oxidized to spare fat burn. Proteins were broken down into amino acids (protein is by definition a chain of amino acids) and absorbed in the Continue reading >>

How Does Fat Get Converted To Calories?

How Does Fat Get Converted To Calories?

Opinions expressed by Forbes Contributors are their own. Answer by Bart Loews , passionate exercise enthusiast, on Quora : How is fat being converted into calories at cellular level? First lets get some term clarification: A calorie is a measure of energy, specifically heat. Its a measurement of an indirect use of your biological fuels. Your body doesnt really convert things to calories, it converts them to ATP which is used as energy. Calories are, sadly, the best way we have to measure this process.Ill assume that the point of this question is: How does fat turn into energy? Fat is a term used interchangeably with lipids and with adipose tissue. Lipids are molecules that consist of a hydrophobic tail with a hydrophilic head. Because of this polarized set up, they are able to cluster together to form barriers between water and non water, like bubbles. Your cell membranes are composed of lipids. Adipose tissue is what makes you fat. Adipose tissue stores lipids in the form of triglycerides or 3 fatty acid chains with a glycerol backbone. These triglycerides are what is broken down to be used for energy. Adipose tissue is made up of collections of adipocytes or fat cells. Adipose tissue is used for insulation, cushioning, and energy storage. You get a particular number of fat cells (between 30 and 300 billion) during adolescence and childhood. You don't lose them naturally, but you can gain more if they grow more than 4 fold from their original size. They grow and shrink as they take on more energy. Fat cells have a few other roles in the endocrine system, they release the hormone, Leptin when they receive energy from insulin. Leptin signals to your body that you're full. The more fat cells you have, the more leptin is released. It's been found that obese people are lep Continue reading >>

Can Fats Be Turned Into Glycogen For Muscle?

Can Fats Be Turned Into Glycogen For Muscle?

The amount of fat in the average diet and the amount of stored fat in the average body make the notion of converting that fat into usable energy appealing. Glycogen, a form of energy stored in muscles for quick use, is what the body draws on first to perform movements, and higher glycogen levels result in higher usable energy. It is not possible for fats to be converted directly into glycogen because they are not made up glucose, but it is possible for fats to be indirectly broken down into glucose, which can be used to create glycogen. Relationship Between Fats and Glycogen Fats are a nutrient found in food and a compound used for long-term energy storage in the body, while glycogen is a chain of glucose molecules created by the body from glucose for short-term energy storage and utilization. Dietary fats are used for a number of functions in the body, including maintaining cell membranes, but they are not used primarily as a source of fast energy. Instead, for energy the body relies mostly on carbohydrates, which are converted into glucose that is then used to form glycogen. Turning Fats Into Glucose Excess glucose in the body is converted into stored fat under certain conditions, so it seems logical that glucose could be derived from fats. This process is called gluconeogenesis, and there are multiple pathways the body can use to achieve this conversion. Gluconeogenesis generally occurs only when the body cannot produce sufficient glucose from carbohydrates, such as during starvation or on a low-carbohydrate diet. This is less efficient than producing glucose through the metabolizing of carbohydrates, but it is possible under the right conditions. Turning Glucose Into Glycogen Once glucose has been obtained from fats, your body easily converts it into glycogen. In gl Continue reading >>

How Does Fat Get Converted Into Energy - _

How Does Fat Get Converted Into Energy - _

This is perhaps a little on the 'nerdy' side of questions, but is something I don't quite understand. It's not really necessary to fully understand it, to follow a 'whole foods' diet, or an 'ssos' lifestyle, but still, I would like to get my head around it. So in that regard... I understand that carbohydrates are converted into glucose, which is then used as energy in the body, and whatever energy the body does not use, it then moves into the adipose tissue, with the help of our friendly hormone called insulin. I understand that protein gets converted into amino acids, that the body then uses to restore, rebuild, and construct muscle tissue, along with other healthy tissues throughout the body. Whatever protein is not used for amino acids, is then moved into the liver, where it is converted into glucose, and at that point, the body can then use this glucose for energy. Just like our buddy, carbohydrate up above, whatever glucose (that originated from protein) that is not used for energy, can then be shuffled on over to the adipose (fat) tissue, with the help of insulin, where it is stored as body fat. Now, with Fat, this is where things get a little confusing, because my understanding, is that fat molecules can not be converted into glucose. In fact, step 1 on this journey, is that fat is utilized by the body, for fatty acids, which are required and needed for proper metabolism and biology. Whatever fat is not used for fatty acids, is then converted to triglycerides (do I got that right?), and moves on over to our adipose tissue, where it is stored as body fat. So, with that in mind, how does the body convert fat into energy, if it does not convert fat into glucose? Let me give you an example; Let's say we have a person who chooses to eat a 100% all fat diet, no protei Continue reading >>

More in ketosis