diabetestalk.net

Why Can T We Make Glucose From Fatty Acids?

Share on facebook

What is METABOLISM? What does METABOLISM mean? METABOLISM meaning - METABOLISM definition - METABOLISM explanation - How to pronounce METABOLISM? Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/... license.

Nutrition. Chap 7: Energy Metabolism.

Sort Proteins: makes nonessential AA that are in short supply. Removes excess AA & converts them to other AA, or deaminates them & converts them to glucose or fatty acids. Removes ammonia from blood & converts it to urea for excretion. Makes DNA/RNA. & many proteins. >> Other: Detoxifies alcohol, drugs, poison, & excretes them. Helps dismantle old RBC's & captures the iron for recycling. Stores most vitamins, & many minerals. Activates Vitamin D. AA: Before entering metabolic pathways, AA are deaminated (lose their nitrogen amino group). deamination produces ammonia (which provides nitrogen to make nonessential AA. Remaining ammonia is excreted by urea in liver/kid. AA pathway: can enter pathways as pyruvate/Acetyl CoA/others enter krebs as compounds other than Acetyl CoA. AA that make glucose either by pyruvate or krebs cycle are glucogenic. AA that are degraded to Acetyl CoA are Ketogenic. Thus, proteins unlike fats, are a good source of glucose when carbs aren't available. In the liver: because of capillary network the liver is first to get alcohol saturated blood. liver cells are the only other cells in the body that can make sufficient quantities of dehydrogenase, to oxidize a Continue reading >>

Share on facebook

Popular Questions

  1. Christian

    I read conflicting views about whether or not the human body can create glucose out of fat. Can it?

  2. David

    Only about 5–6% of triglyceride (fat) can be converted to glucose in humans.
    This is because triglyceride is made up of one 3-carbon glycerol molecule and three 16- or 18-carbon fatty acids. The glycerol (3/51-to-57 = 5.2–5.9%) can be converted to glucose in the liver by gluconeogenesis (after conversion to dihydroxyacetone phosphate).
    The fatty acid chains, however, are oxidized to acetyl-CoA, which cannot be converted to glucose in humans. Acetyl-CoA is a source of ATP when oxidized in the tricarboxylic acid cycle, but the carbon goes to carbon dioxide. (The molecule of oxaloacetate produced in the cycle only balances the one acetyl-CoA condenses with to enter the cycle, and so cannot be tapped off to gluconeogenesis.)
    So triglyceride is a poor source of glucose in starvation, and that is not its primary function. Some Acetyl-CoA is converted to ketone bodies (acetoacetate and β-hydroxybutyrate) in starvation, which can replace part — but not all — of the brain’s requirement for glucose.
    Plants and some bacteria can convert fatty acids to glucose because they possess the glyoxylate shunt enzymes that allow two molecules of Acetyl-CoA to be converted into malate and then oxaloacetate. This is generally lacking in mammals, although it has been reported in hibernating animals (thanks to @Roland for the last piece of info).

  3. blu potatos

    To be more detailed it is the irreversibly of the reaction carried by Pyruvate dehydrogenase that makes the conversion of the fatty acid chains to glucose impossible. The fatty acids chains are converted to acetyl-CoA.
    Acetyl-CoA to be converted into pyruvate need an enzyme that can do the Pyruvate Dehydrogenase's inverse reaction (in humans there is no such enzyme). Than the pyruvete inside the mitochondria is converted into glucose(gluconeogenesis).

  4. -> Continue reading
read more
Share on facebook

What is CLINICAL PATHWAY? What does CLINICAL PATHWAY mean? CLINICAL PATHWAY meaning - CLINICAL PATHWAY definition - CLINICAL PATHWAY explanation. Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/... license. SUBSCRIBE to our Google Earth flights channel - https://www.youtube.com/channel/UC6Uu... A clinical pathway, also known as care pathway, integrated care pathway, critical pathway, or care map, is one of the main tools used to manage the quality in healthcare concerning the standardisation of care processes. It has been shown that their implementation reduces the variability in clinical practice and improves outcomes. Clinical pathways aim to promote organised and efficient patient care based on evidence-based medicine, and aim to optimise outcomes in settings such as acute care and home care. A single clinical pathway may refer to multiple clinical guidelines on several topics in a well specified context. A clinical pathway is a multidisciplinary management tool based on evidence-based practice for a specific group of patients with a predictable clinical course, in which the different tasks (interventions) by the professionals involved in the patient care are defined, optimized and sequenced either by hour (ED), day (acute care) or visit (homecare). Outcomes are tied to specific interventions. The concept of clinical pathways may have different meanings to different stakeholders. Managed care organizations often view clinical pathways in a similar way as they view care plans, in which the care provided to a patient is definitive and deliberate. Clinical pathways can range in scope from simple medication utilization to a comprehensive treatment plan. Clinical pathways aim for greater standardization of treatment regimens and sequencing as well as improved outcomes, from both a quality of life and a clinical outcomes perspective. Clinical pathways (integrated care pathways) can be seen as an application of process management thinking to the improvement of patient healthcare. An aim is to re-center the focus on the patient's overall journey, rather than the contribution of each specialty or caring function independently. Instead, all are emphasised to be working together, in the same way as a cross-functional team. More than just a guideline or a protocol, a care pathway is typically recorded in a single all-encompassing bedside document that will stand as an indicator of the care a patient is likely to be provided in the course of the pathway going forward; and ultimately as a single unified legal record of the care the patient has received, and the progress of their condition, as the pathway has been undertaken. The pathway design tries to capture the foreseeable actions which will most commonly represent best practice for most patients most of the time, and include prompts for them at the appropriate time in the pathway document to ascertain whether they have been carried out, and whether results have been as expected. In this way results are recorded, and important questions and actions are not overlooked. However, pathways are typically not prescriptive; the patient's journey is an individual one, and an important part of the purpose of the pathway documents is to capture information on "variances", where due to circumstances or clinical judgment different actions have been taken, or different results unfolded. The combined variances for a sufficiently large population of patients are then analysed to identify important or systematic features, which can be used to improve the next iteration of the pathway.

Can Sugars Be Produced From Fatty Acids? A Test Case For Pathway Analysis Tools

Can sugars be produced from fatty acids? A test case for pathway analysis tools Department of Bioinformatics, 2Bio Systems Analysis Group, Friedrich-Schiller-Universitt Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany and 3School of Life Sciences, Oxford Brookes University, Headington, Oxford, OX3 0BP, UK *To whom correspondence should be addressed. Search for other works by this author on: Department of Bioinformatics, 2Bio Systems Analysis Group, Friedrich-Schiller-Universitt Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany and 3School of Life Sciences, Oxford Brookes University, Headington, Oxford, OX3 0BP, UK *To whom correspondence should be addressed. Search for other works by this author on: Department of Bioinformatics, 2Bio Systems Analysis Group, Friedrich-Schiller-Universitt Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany and 3School of Life Sciences, Oxford Brookes University, Headington, Oxford, OX3 0BP, UK Search for other works by this author on: Department of Bioinformatics, 2Bio Systems Analysis Group, Friedrich-Schiller-Universitt Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany and 3School of Life Sciences, Oxford Brookes University, Headington, Oxford, OX3 0BP, UK Search Continue reading >>

Share on facebook

Popular Questions

  1. manohman

    Why can't fat be converted into Glucose?

    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?

  2. Czarcasm

    manohman said: ↑
    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?
    Click to expand... Both glucose and fatty acids can be stored in the body as either glycogen for glucose (stored mainly in the liver or skeletal cells) or for FA's, as triacylglycerides (stored in adipose cells). We cannot store excess protein. It's either used to make other proteins, or flushed out of the body if in excess; that's generally the case but we try to make use of some of that energy instead of throwing it all away.
    When a person is deprived of nutrition for a period of time and glycogen stores are depleted, the body will immediately seek out alternative energy sources. Fats (stored for use) are the first priority over protein (which requires the breakdown of tissues such as muscle). We can mobilize these FA's to the liver and convert them to Acetyl-CoA to be used in the TCA cycle and generate much needed energy. On the contrary, when a person eats in excess (a fatty meal high in protein), it's more efficient to store fatty acids as TAG's over glycogen simply because glycogen is extremely hydrophilic and attracts excess water weight; fatty acids are largely stored anhydrously and so you essentially get more bang for your buck. This is evolutionary significant and why birds are able to stay light weight but fly for periods at a time, or why bears are able to hibernate for months at a time. Proteins on the other hand may be used anabolically to build up active tissues (such as when your working out those muscles), unless you live a sedentary lifestyle (less anabolism and therefore, less use of the proteins). As part of the excretion process, protein must be broken down to urea to avoid toxic ammonia and in doing so, the Liver can extract some of that usable energy for storage as glycogen.
    Also, it is worth noting that it is indeed possible to convert FA's to glucose but the pathway can be a little complex and so in terms of energy storage, is not very efficient. The process involves converting Acetyl-CoA to Acetone (transported out of mitochondria to cytosol) where it's converted to Pyruvate which can then be used in the Gluconeogenesis pathway to make Glucose and eventually stored as Glycogen. Have a look for yourself if your interested: http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002116.g003/originalimage (and this excludes the whole glycogenesis pathway, which hasn't even begun yet).
    TLDR: it's because proteins have no ability to be stored in the body, but we can convert them to glycogen for storage during the breakdown process for excretion. Also, in terms of energy, it's a more efficient process than converting FA's to glycogen for storage.

  3. soccerman93

    This is where biochem comes in handy. Czarcasm gives a really good in depth answer, but a simpler approach is to count carbons. The first step of gluconeogenesis(formation of glucose) requires pyruvate, a 3 carbon molecule. Acetyl Co-A is a 2 carbon molecule, and most animals lack the enzymes (malate synthase and isocitrate lyase) required to convert acetyl co-A into a 3 carbon molecule suitable for the gluconeogenesis pathway. The ketogenic pathway is not efficient, as czarcasm pointed out. While acetyl co-A can indeed be used to form citric acid intermediates, these intermediates will be used in forming ATP, not glucose. Fatty acid oxidation does not yield suitable amounts of pyruvate, which is required for gluconeogenesis. This is part of why losing weight is fairly difficult for those that are overweight, we can't efficiently directly convert fat to glucose, which we need a fairly constant supply of. Sorry, that got a little long-winded

  4. -> Continue reading
read more
Share on facebook

Learn about the anatomy of the human Heart with this fun educational music video for children and parents. Brought to you by Kids Learning Tube. Don't forget to sing along. https://kidslearningtubeshop.com/prod... Watch Kids Learning Tube ad-free for $12 a YEAR! See the latest videos before anyone else in the world. Sign up today for ad-free video streaming for all Kids Learning Tube videos! https://www.patreon.com/kidslearningtube Support Kids Learning Tube by becoming a Patreon today at the link below! You can vote for the video of the week, get your name in the credits and support something you believe in! KLT Website: https://kidslearningtubeshop.com/ T-Shirts: https://kidslearningtubeshop.com/coll... Music Downloads: https://kidslearningtubeshop.com/coll... Facebook: https://www.facebook.com/kidslearning... Subscribe: http://www.youtube.com/c/kidslearning... Tweet Us: https://twitter.com/learningtube Instagram: https://instagram.com/kidslearningtube Add us on Google+: https://plus.google.com/+KidsLearning... iTunes: http://itunes.apple.com/album/id11928... Music: Copyright 2015, 2016, 2017, 2018 Kids Learning Tube Video: Copyright 2015, 2016, 2017, 2018 Kids Learning Tube Lyrics: Im your heart I live inside your chest. Im about the size of your fist And I never take a rest Im your heart You couldnt live without me I pump the blood that fuels your body So take care of me, please The human heart is made up of four major chambers in me The Right Atrium and Right Ventricle are the first two you see They receive blood thats low in oxygen from your whole body and sends it to your lungs through the Pulmonary Artery The lungs fill blood with oxygen that your Left atrium receives Then flows through the Left Ventricle to the Aortic arterys Im your heart I live inside your chest Im about the size of your fist And I never take a rest Im your heart You couldnt live without me I pump the blood that fuels your body So take care of me, please I can beat more than 100,000 times in one day pumping about 2000 gallons of blood through your body There are about 60,000 miles of vessels in your circulatory system, I always keep them full I have four vales that open and close that control the blood through me The Tricuspid, Pulmonic, Mitral and Aortic valves you see Im your heart I live inside your chest Im about the size of your fist And I never take a rest Im your heart You couldnt live without me I pump the blood that fuels your body So take care of me, please

Fanatic Cook: The Human Body Cannot Make Glucose

Only plants can make glucose from scratch.* Humans must eat the plants, or eat animals that ate the plants, to obtain glucose. And humans absolutely need glucose to survive. This simple sugar is the sole source of energy for our red blood cells and the preferred source for other cells. We are utterly dependant on plants for our existence. (Not to mention that they release oxygen in the process of manufacturing glucose - oxygen that we also need to survive.) * And some algae like seaweed, and some bacteria. Glucose is a molecule with 6 carbon atoms bound together. Humans cannot harness the immense amount of energy needed to get 6 carbon atoms to bind together. Plants, however, can. It's quite a feat actually. They harness the energy from the sun to do this. Plants take in carbon dioxide, string together 6 carbons to make glucose for their fuel (starch is just a chain of glucoses), and give off the excess oxygen. Humans take in the oxygen given off from plants and use it to extract the energy from those bonds within the glucose molecule. (One pathway to extract that energy is called glycolysis. I'll return to glycolysis later.) The waste product, if you will, from our energy-extract Continue reading >>

Share on facebook

Popular Questions

  1. Christian

    I read conflicting views about whether or not the human body can create glucose out of fat. Can it?

  2. David

    Only about 5–6% of triglyceride (fat) can be converted to glucose in humans.
    This is because triglyceride is made up of one 3-carbon glycerol molecule and three 16- or 18-carbon fatty acids. The glycerol (3/51-to-57 = 5.2–5.9%) can be converted to glucose in the liver by gluconeogenesis (after conversion to dihydroxyacetone phosphate).
    The fatty acid chains, however, are oxidized to acetyl-CoA, which cannot be converted to glucose in humans. Acetyl-CoA is a source of ATP when oxidized in the tricarboxylic acid cycle, but the carbon goes to carbon dioxide. (The molecule of oxaloacetate produced in the cycle only balances the one acetyl-CoA condenses with to enter the cycle, and so cannot be tapped off to gluconeogenesis.)
    So triglyceride is a poor source of glucose in starvation, and that is not its primary function. Some Acetyl-CoA is converted to ketone bodies (acetoacetate and β-hydroxybutyrate) in starvation, which can replace part — but not all — of the brain’s requirement for glucose.
    Plants and some bacteria can convert fatty acids to glucose because they possess the glyoxylate shunt enzymes that allow two molecules of Acetyl-CoA to be converted into malate and then oxaloacetate. This is generally lacking in mammals, although it has been reported in hibernating animals (thanks to @Roland for the last piece of info).

  3. blu potatos

    To be more detailed it is the irreversibly of the reaction carried by Pyruvate dehydrogenase that makes the conversion of the fatty acid chains to glucose impossible. The fatty acids chains are converted to acetyl-CoA.
    Acetyl-CoA to be converted into pyruvate need an enzyme that can do the Pyruvate Dehydrogenase's inverse reaction (in humans there is no such enzyme). Than the pyruvete inside the mitochondria is converted into glucose(gluconeogenesis).

  4. -> Continue reading
read more

No more pages to load

Related Articles

  • Fatty Acids And Amino Acids Produce Far Less Atp Than One Glucose Molecule.

    Update 2017: This post has been deprecated (not in line with my current thoughts. Read more on the ‘about’ page) Ever since I started my ketogenic lifestyle I’ve been experiencing higher energy levels. Basically I have the same increased energy from the minute I wake up at ~7 A.M. up until I go to sleep at 2 A.M. at night. No post-prandial (after-meal) fatigue and no sleepiness during the day. It’s been quite amazing because during my ent ...

    ketosis Mar 29, 2018
  • Amino Acids Can Be Used By The Body To Make Glucose And Fatty Acids.

    Our current examination of proteins and amino acids will cover the metabolism of the protein we eat, dietary protein, and catabolic situations in the body. Amino acids are the "building-blocks" of proteins. Proteins, from the Greek word meaning "of prime importance," constitute an array of structures. Examples of these structures include hormones, enzymes, and muscle tissue. The primary function of protein is growth and repair of body tissue (an ...

    ketosis Apr 1, 2018
  • Amino Acids Can Be Used By The Body To Make Glucose And Fatty Acids Quizlet

    Transamination: attaching amino group to a carboxyl group; process by which cells make nonessential amino acids Does denaturation of protein affect the nutritional content of the protein? Name some examples of protein denaturation in foods. Denaturation: proteins uncoiling; results from change in pH (acids), addition of heat, high salt concentration, mechanical breakdown It does NOT change the nutritional content of protein. High fevers (105.8) ...

    ketosis Apr 2, 2018
  • Can Glucose Can Be Used To Make Fatty Acids?

    Amino acids are nitrogen-containing molecules that are the building blocks of all proteins in food and in the body. They can be used as energy, yielding about 4 calories per gram, but their primary purpose is the synthesis and maintenance of body proteins including, but not limited to, muscle mass. Video of the Day During normal protein metabolism, a certain number of amino acids are pushed aside each day. When these amino acids are disproportion ...

    ketosis Apr 26, 2018
  • Amino Acids Can Be Used By The Body To Make Glucose And Fatty Acids True Or False

    Self-Study Examination Instructions: After studying the text answer the following true/false or multiple choice questions. Remember, there's only one answer to each question. 1. Immunity exists in the parasite. a) True b) False 2. The immune system is composed of lymph. a) True b) False 3. The immune system is activated by recognizing any part of the body as non-self. a) True b) False 4. The immune response can be divided into two broad types: hu ...

    ketosis Apr 1, 2018
  • Why Can T We Make Glucose From Fatty Acids?

    In Silico Evidence for Gluconeogenesis from Fatty Acids in Humans 2Systems Biology/Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology Hans Knll Institute, Jena, Germany 3Department of Human Nutrition, Institute of Nutrition, University of Jena, Jena, Germany 4Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrcke, Nuthetal, Germany 1Department of Bioinformatics, School of B ...

    ketosis Mar 29, 2018

More in ketosis