diabetestalk.net

Why Are Dka Patients Acidotic

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Professor of Pediatric Endocrinology University of Khartoum, Sudan Introduction DKA is a serious acute complications of Diabetes Mellitus. It carries significant risk of death and/or morbidity especially with delayed treatment. The prognosis of DKA is worse in the extremes of age, with a mortality rates of 5-10%. With the new advances of therapy, DKA mortality decreases to > 2%. Before discovery and use of Insulin (1922) the mortality was 100%. Epidemiology DKA is reported in 2-5% of known type 1 diabetic patients in industrialized countries, while it occurs in 35-40% of such patients in Africa. DKA at the time of first diagnosis of diabetes mellitus is reported in only 2-3% in western Europe, but is seen in 95% of diabetic children in Sudan. Similar results were reported from other African countries . Consequences The latter observation is annoying because it implies the following: The late diagnosis of type 1 diabetes in many developing countries particularly in Africa. The late presentation of DKA, which is associated with risk of morbidity & mortality Death of young children with DKA undiagnosed or wrongly diagnosed as malaria or meningitis. Pathophysiology Secondary to insulin deficiency, and the action of counter-regulatory hormones, blood glucose increases leading to hyperglycemia and glucosuria. Glucosuria causes an osmotic diuresis, leading to water & Na loss. In the absence of insulin activity the body fails to utilize glucose as fuel and uses fats instead. This leads to ketosis. Pathophysiology/2 The excess of ketone bodies will cause metabolic acidosis, the later is also aggravated by Lactic acidosis caused by dehydration & poor tissue perfusion. Vomiting due to an ileus, plus increased insensible water losses due to tachypnea will worsen the state of dehydr Continue reading >>

Causes Of Lactic Acidosis

Causes Of Lactic Acidosis

INTRODUCTION AND DEFINITION Lactate levels greater than 2 mmol/L represent hyperlactatemia, whereas lactic acidosis is generally defined as a serum lactate concentration above 4 mmol/L. Lactic acidosis is the most common cause of metabolic acidosis in hospitalized patients. Although the acidosis is usually associated with an elevated anion gap, moderately increased lactate levels can be observed with a normal anion gap (especially if hypoalbuminemia exists and the anion gap is not appropriately corrected). When lactic acidosis exists as an isolated acid-base disturbance, the arterial pH is reduced. However, other coexisting disorders can raise the pH into the normal range or even generate an elevated pH. (See "Approach to the adult with metabolic acidosis", section on 'Assessment of the serum anion gap' and "Simple and mixed acid-base disorders".) Lactic acidosis occurs when lactic acid production exceeds lactic acid clearance. The increase in lactate production is usually caused by impaired tissue oxygenation, either from decreased oxygen delivery or a defect in mitochondrial oxygen utilization. (See "Approach to the adult with metabolic acidosis".) The pathophysiology and causes of lactic acidosis will be reviewed here. The possible role of bicarbonate therapy in such patients is discussed separately. (See "Bicarbonate therapy in lactic acidosis".) PATHOPHYSIOLOGY A review of the biochemistry of lactate generation and metabolism is important in understanding the pathogenesis of lactic acidosis [1]. Both overproduction and reduced metabolism of lactate appear to be operative in most patients. Cellular lactate generation is influenced by the "redox state" of the cell. The redox state in the cellular cytoplasm is reflected by the ratio of oxidized and reduced nicotine ad Continue reading >>

Understanding And Treating Diabetic Ketoacidosis

Understanding And Treating Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a serious metabolic disorder that can occur in animals with diabetes mellitus (DM).1,2 Veterinary technicians play an integral role in managing and treating patients with this life-threatening condition. In addition to recognizing the clinical signs of this disorder and evaluating the patient's response to therapy, technicians should understand how this disorder occurs. DM is caused by a relative or absolute lack of insulin production by the pancreatic b-cells or by inactivity or loss of insulin receptors, which are usually found on membranes of skeletal muscle, fat, and liver cells.1,3 In dogs and cats, DM is classified as either insulin-dependent (the body is unable to produce sufficient insulin) or non-insulin-dependent (the body produces insulin, but the tissues in the body are resistant to the insulin).4 Most dogs and cats that develop DKA have an insulin deficiency. Insulin has many functions, including the enhancement of glucose uptake by the cells for energy.1 Without insulin, the cells cannot access glucose, thereby causing them to undergo starvation.2 The unused glucose remains in the circulation, resulting in hyperglycemia. To provide cells with an alternative energy source, the body breaks down adipocytes, releasing free fatty acids (FFAs) into the bloodstream. The liver subsequently converts FFAs to triglycerides and ketone bodies. These ketone bodies (i.e., acetone, acetoacetic acid, b-hydroxybutyric acid) can be used as energy by the tissues when there is a lack of glucose or nutritional intake.1,2 The breakdown of fat, combined with the body's inability to use glucose, causes many pets with diabetes to present with weight loss, despite having a ravenous appetite. If diabetes is undiagnosed or uncontrolled, a series of metab Continue reading >>

Pulmcrit- Dominating The Acidosis In Dka

Pulmcrit- Dominating The Acidosis In Dka

Management of acidosis in DKA is an ongoing source of confusion. There isn’t much high-quality evidence, nor will there ever be (1). However, a clear understanding of the physiology of DKA may help us treat this rationally and effectively. Physiology of ketoacidosis in DKA Ketoacidosis occurs due to an imbalance between insulin dose and insulin requirement: Many factors affect the insulin requirement: Individuals differ in their baseline insulin resistance and insulin requirements. Physiologic stress (e.g. hypovolemia, inflammation) increases the level of catecholamines and cortisol, which increases insulin resistance. Hyperglycemia and metabolic acidosis themselves increase insulin resistance (Souto 2011, Gosmanov 2014). DKA treatment generally consists of two phases: first, we must manage the ketoacidosis. Later, we must prepare the patient to transition back to their home insulin regimen. During both phases, success depends on balancing insulin dose and insulin requirement. Phase I (Take-off): Initial management of the DKA patient with worrisome acidosis Let’s start by considering a patient who presents in severe DKA with worrisome acidosis. This is uncommon. Features that might provoke worry include the following: bicarbonate < 7 mEq/L pH < 7 (if measured; there is generally little benefit from measuring pH) clinically ill-appearing (e.g., dyspnea, marked Kussmaul respirations) These patients generally have severe metabolic acidosis with respiratory compensation. This creates two concerns: If the metabolic acidosis worsens, they may decompensate. The patient is depending on respiratory compensation to maintain their pH. If they should fatigue and lose the ability to hyperventilate, their pH would drop. It is important to reverse the acidosis before the patient m Continue reading >>

Severe Hypercalcaemia Secondary To Severe, Prolonged Metabolic Acidosis In A Patient With Dka

Severe Hypercalcaemia Secondary To Severe, Prolonged Metabolic Acidosis In A Patient With Dka

Background: Children presenting with diabetic keto-acidosis (DKA) as an initial presentation of diabetes mellitus are often unwell, with associated increases in mortality and morbidity. While electrolyte imbalances such as hypokalaemia and hypophosphataemia are well recognised, the incidence of hypercalcaemia is less well documented. Case: A previously healthy 12-year-old boy presented to hospital with a history suggestive of new onset diabetes. Initial bloods indicated DKA: pH 6.84, BE −28.9 and plasma glucose 30.4 mmol/l. Clinically he was severely dehydrated (estimated 8%). Despite standard management according to national guidelines he developed a reduced GCS, presumed secondary to cerebral oedema, requiring intubation and ventilation. He remained severely acidotic, which was initially secondary to keto- and lactic-acidosis but was then propagated by hyperchloraemia. Over the next few hours he gradually developed acute severe hypercalcaemia, with maximum corrected calcium of 3.75 mmol/l. Possible causes for hypercalcaemia including hyperparathyroidism, malignancy, and thyrotoxicosis were ruled out. He developed mild-moderate renal failure (maximum creatinine 269 mmol/l). He was treated cautiously with rehydration as part of a neuro-protective strategy and latterly treated with frusemide infusion and hydrocortisone. Calcium levels and renal function normalised within a week. Discussion: Potassium and phosphate disturbances are common in DKA, however significant abnormalities in calcium haemostasis are less common. Severe hypercalcaemia in DKA is likely due to diminished bone formation mediated in part by metabolic acidosis, paired with increased bone resorption due to severe insulin deficiency and metabolic acidosis. We suggest that calcium concentrations are check Continue reading >>

Management Of Diabetic Ketoacidosis

Management Of Diabetic Ketoacidosis

Diabetic ketoacidosis is an emergency medical condition that can be life-threatening if not treated properly. The incidence of this condition may be increasing, and a 1 to 2 percent mortality rate has stubbornly persisted since the 1970s. Diabetic ketoacidosis occurs most often in patients with type 1 diabetes (formerly called insulin-dependent diabetes mellitus); however, its occurrence in patients with type 2 diabetes (formerly called non–insulin-dependent diabetes mellitus), particularly obese black patients, is not as rare as was once thought. The management of patients with diabetic ketoacidosis includes obtaining a thorough but rapid history and performing a physical examination in an attempt to identify possible precipitating factors. The major treatment of this condition is initial rehydration (using isotonic saline) with subsequent potassium replacement and low-dose insulin therapy. The use of bicarbonate is not recommended in most patients. Cerebral edema, one of the most dire complications of diabetic ketoacidosis, occurs more commonly in children and adolescents than in adults. Continuous follow-up of patients using treatment algorithms and flow sheets can help to minimize adverse outcomes. Preventive measures include patient education and instructions for the patient to contact the physician early during an illness. Diabetic ketoacidosis is a triad of hyperglycemia, ketonemia and acidemia, each of which may be caused by other conditions (Figure 1).1 Although diabetic ketoacidosis most often occurs in patients with type 1 diabetes (formerly called insulin-dependent diabetes mellitus), more recent studies suggest that it can sometimes be the presenting condition in obese black patients with newly diagnosed type 2 diabetes (formerly called non–insulin-depe Continue reading >>

Sodium Bicarbonate Therapy In Patients With Metabolic Acidosis

Sodium Bicarbonate Therapy In Patients With Metabolic Acidosis

The Scientific World Journal Volume 2014 (2014), Article ID 627673, 13 pages Nephrology Division, Hospital General Juan Cardona, Avenida Pardo Bazán, s/n, Ferrol, 15406 A Coruña, Spain Academic Editor: Biagio R. Di Iorio Copyright © 2014 María M. Adeva-Andany et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Metabolic acidosis occurs when a relative accumulation of plasma anions in excess of cations reduces plasma pH. Replacement of sodium bicarbonate to patients with sodium bicarbonate loss due to diarrhea or renal proximal tubular acidosis is useful, but there is no definite evidence that sodium bicarbonate administration to patients with acute metabolic acidosis, including diabetic ketoacidosis, lactic acidosis, septic shock, intraoperative metabolic acidosis, or cardiac arrest, is beneficial regarding clinical outcomes or mortality rate. Patients with advanced chronic kidney disease usually show metabolic acidosis due to increased unmeasured anions and hyperchloremia. It has been suggested that metabolic acidosis might have a negative impact on progression of kidney dysfunction and that sodium bicarbonate administration might attenuate this effect, but further evaluation is required to validate such a renoprotective strategy. Sodium bicarbonate is the predominant buffer used in dialysis fluids and patients on maintenance dialysis are subjected to a load of sodium bicarbonate during the sessions, suffering a transient metabolic alkalosis of variable severity. Side effects associated with sodium bicarbonate therapy include hypercapnia, hypokalemia, ionized hypocalcemia, and QTc inter Continue reading >>

Pardon Our Interruption...

Pardon Our Interruption...

As you were browsing something about your browser made us think you were a bot. There are a few reasons this might happen: You're a power user moving through this website with super-human speed. You've disabled JavaScript in your web browser. A third-party browser plugin, such as Ghostery or NoScript, is preventing JavaScript from running. Additional information is available in this support article. After completing the CAPTCHA below, you will immediately regain access to Continue reading >>

Diabetic Ketoacidosis And Patho

Diabetic Ketoacidosis And Patho

pathophysiology ketogenesis due to insulin deficiency leads to increased serum levels of ketones anad ketonuria acetoacetate, beta-hydroxybutyrate; ketone bodies produced by the liver, organic acids that cause metabolic acidosis respiration partially compensates; reduces pCO2, when pH < 7.2, deep rapid respirations (Kussmaul breathing) acetone; minor product of ketogenesis, can smell fruity on breath of ketoacidosis patients elevated anion gap Methanol intoxication Uremic acidosis Diabetic ketoacidosis Paraldehyde ingestions Intoxicants (salicyclate, ethylene glycol, nipride, epinephrine, norepinephrine) Lactic acidosis (drug induced; didanosine, iron, isoniazid, metformin, zidovudine) Ethanol ketoacidosis Severe renal failure starvation Blood glucose regulation (6) 1. When blood glucose levels rise above a set point, 2. the pancreas secretes insulin into the blood. 3. Insulin stimulates liver and muscle cells to make glycogen, dropping blood glucose levels. 4. When glucose levels drop below a set point, 5. the pancreas secretes glucagon into the blood. 6. Glucagon promotes the breakdown of glycogen and the release of glucose into the blood. (The pancreas signals distant cells to regulate levels in the blood = endocrine function.) Insulin and Glucagon (Regulation) (10) 1. High blood glucose 2. Beta cells 3. Insulin 4. Glucose enters cell 5. Blood glucose lowered 6. Low blood glucose 7. Alpha cells 8. Glucagon 9. Liver releases glucose from glycogen 10. Blood glucose raised What is the manifestations (symptoms) of Type 1? (10) 1. Extreme thirst 2. Frequent urination 3. Drowsiness, lethargy 4. Sugar in urine 5. Sudden vision change 6. Increased appetite 7. Sudden weight loss 8. Fruity, sweet, or wine like odor on breath 9. Heavy, laboured breathing 10. Stupor, unconscious Continue reading >>

Diabetic Ketoacidosis (dka) - Topic Overview

Diabetic Ketoacidosis (dka) - Topic Overview

Diabetic ketoacidosis (DKA) is a life-threatening condition that develops when cells in the body are unable to get the sugar (glucose) they need for energy because there is not enough insulin. When the sugar cannot get into the cells, it stays in the blood. The kidneys filter some of the sugar from the blood and remove it from the body through urine. Because the cells cannot receive sugar for energy, the body begins to break down fat and muscle for energy. When this happens, ketones, or fatty acids, are produced and enter the bloodstream, causing the chemical imbalance (metabolic acidosis) called diabetic ketoacidosis. Ketoacidosis can be caused by not getting enough insulin, having a severe infection or other illness, becoming severely dehydrated, or some combination of these things. It can occur in people who have little or no insulin in their bodies (mostly people with type 1 diabetes but it can happen with type 2 diabetes, especially children) when their blood sugar levels are high. Your blood sugar may be quite high before you notice symptoms, which include: Flushed, hot, dry skin. Feeling thirsty and urinating a lot. Drowsiness or difficulty waking up. Young children may lack interest in their normal activities. Rapid, deep breathing. A strong, fruity breath odor. Loss of appetite, belly pain, and vomiting. Confusion. Laboratory tests, including blood and urine tests, are used to confirm a diagnosis of diabetic ketoacidosis. Tests for ketones are available for home use. Keep some test strips nearby in case your blood sugar level becomes high. When ketoacidosis is severe, it must be treated in the hospital, often in an intensive care unit. Treatment involves giving insulin and fluids through your vein and closely watching certain chemicals in your blood (electrolyt Continue reading >>

Understanding The Presentation Of Diabetic Ketoacidosis

Understanding The Presentation Of Diabetic Ketoacidosis

Hypoglycemia, diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar nonketotic syndrome (HHNS) must be considered while forming a differential diagnosis when assessing and managing a patient with an altered mental status. This is especially true if the patient has a history of diabetes mellitus (DM). However, be aware that the onset of DKA or HHNS may be the first sign of DM in a patient with no known history. Thus, it is imperative to obtain a blood glucose reading on any patient with an altered mental status, especially if the patient appears to be dehydrated, regardless of a positive or negative history of DM. In addition to the blood glucose reading, the history — particularly onset — and physical assessment findings will contribute to the formulation of a differential diagnosis and the appropriate emergency management of the patient. Pathophysiology of DKA The patient experiencing DKA presents significantly different from one who is hypoglycemic. This is due to the variation in the pathology of the condition. Like hypoglycemia, by understanding the basic pathophysiology of DKA, there is no need to memorize signs and symptoms in order to recognize and differentiate between hypoglycemia and DKA. Unlike hypoglycemia, where the insulin level is in excess and the blood glucose level is extremely low, DKA is associated with a relative or absolute insulin deficiency and a severely elevated blood glucose level, typically greater than 300 mg/dL. Due to the lack of insulin, tissue such as muscle, fat and the liver are unable to take up glucose. Even though the blood has an extremely elevated amount of circulating glucose, the cells are basically starving. Because the blood brain barrier does not require insulin for glucose to diffuse across, the brain cells are rece Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Diabetic acidosis is a life-threatening condition that can occur in people with type 1 diabetes. Less commonly, it can also occur with type 2 diabetes. Term watch Ketones: breakdown products from the use of fat stores for energy. Ketoacidosis: another name for diabetic acidosis. It happens when a lack of insulin leads to: Diabetic acidosis requires immediate hospitalisation for urgent treatment with fluids and intravenous insulin. It can usually be avoided through proper treatment of Type 1 diabetes. However, ketoacidosis can also occur with well-controlled diabetes if you get a severe infection or other serious illness, such as a heart attack or stroke, which can cause vomiting and resistance to the normal dose of injected insulin. What causes diabetic acidosis? The condition is caused by a lack of insulin, most commonly when doses are missed. While insulin's main function is to lower the blood sugar level, it also reduces the burning of body fat. If the insulin level drops significantly, the body will start burning fat uncontrollably while blood sugar levels rise. Glucose will then begin to show up in your urine, along with ketone bodies from fat breakdown that turn the body acidic. The body attempts to reduce the level of acid by increasing the rate and depth of breathing. This blows off carbon dioxide in the breath, which tends to correct the acidosis temporarily (known as acidotic breathing). At the same time, the high secretion of glucose into the urine causes large quantities of water and salts to be lost, putting the body at serious risk of dehydration. Eventually, over-breathing becomes inadequate to control the acidosis. What are the symptoms? Since diabetic acidosis is most often linked with high blood sugar levels, symptoms are the same as those for diabetes Continue reading >>

Euglycemic Diabetic Ketoacidosis, A Misleading Presentation Of Diabetic Ketoacidosis

Euglycemic Diabetic Ketoacidosis, A Misleading Presentation Of Diabetic Ketoacidosis

Go to: Introduction Hyperglycemia and ketosis in diabetic ketoacidosis (DKA) are the result of insulin deficiency and an increase in the counterregulatory hormones glucagon, catecholamines, cortisol, and growth hormone. Three processes are mainly responsible for hyperglycemia: increased gluconeogenesis, accelerated glycogenolysis, and impaired glucose utilization by peripheral tissues. This might also be augmented by transient insulin resistance due to hormone imbalance, as well as elevated free fatty acids.[1] DKA is most commonly precipitated by infections. Other factors include discontinuation of or inadequate insulin therapy, pancreatitis, myocardial infarction, cerebrovascular accident, and illicit drug use. The diagnostic criteria of DKA, established by the American Diabetic Association, consists of a plasma glucose of >250 mg/dL, positive urinary or serum ketones, arterial pH of <7.3, serum bicarbonate <18 mEq/L, and a high anion gap. The key diagnostic feature of DKA is elevated circulating total blood ketone concentration. Hyperglycemia is also a key diagnostic criterion of DKA; however, a wide range of plasma glucose levels can be present on admission. Continue reading >>

The Etiology Of Abdominal Pain In Diabetic Acidosis*

The Etiology Of Abdominal Pain In Diabetic Acidosis*

The usual signs, symptoms, and laboratory findings in prediabetic coma are well known. The clinical picture of dehydration associated with malnutrition, polyuria, and odor of acetone on the breath, decreased intraocular tension, and Kussmaul breathing, when found in conjunction with sugar and acetone bodies in the urine make a clinical picture that could hardly be confused with any other condition. Other laboratory findings are a high blood sugar, a low CO2 combining power of the blood plasma, and leukocytosis. The white cell count sometimes rises above 65,0001 per cubic millimeter of blood. This picture is usually clear cut and offers Continue reading >>

Bicarbonate In Diabetic Ketoacidosis - A Systematic Review

Bicarbonate In Diabetic Ketoacidosis - A Systematic Review

Go to: Abstract Objective This study was designed to examine the efficacy and risk of bicarbonate administration in the emergent treatment of severe acidemia in diabetic ketoacidosis (DKA). PUBMED database was used to identify potentially relevant articles in the pediatric and adult DKA populations. DKA intervention studies on bicarbonate administration versus no bicarbonate in the emergent therapy, acid-base studies, studies on risk association with cerebral edema, and related case reports, were selected for review. Two reviewers independently conducted data extraction and assessed the citation relevance for inclusion. Results From 508 potentially relevant articles, 44 were included in the systematic review, including three adult randomized controlled trials (RCT) on bicarbonate administration versus no bicarbonate in DKA. We observed a marked heterogeneity in pH threshold, concentration, amount, and timing for bicarbonate administration in various studies. Two RCTs demonstrated transient improvement in metabolic acidosis with bicarbonate treatment within the initial 2 hours. There was no evidence of improved glycemic control or clinical efficacy. There was retrospective evidence of increased risk for cerebral edema and prolonged hospitalization in children who received bicarbonate, and weak evidence of transient paradoxical worsening of ketosis, and increased need for potassium supplementation. No studies involved patients with an initial pH < 6.85. Conclusions The evidence to date does not justify the administration of bicarbonate for the emergent treatment of DKA, especially in the pediatric population, in view of possible clinical harm and lack of sustained benefits. Continue reading >>

More in ketosis