
What Part Of Plant Can Store Extra Food As Sugar Or Starch?
Healthy plants tend to create much more food than they can immediately use. The excess food is stored as sugars and starches in various parts of the plants. These stores provide a source of energy not only for the plants, but also for the animals and humans that eat them. Plant Foods Carbohydrates are the simplest types of foods manufactured and stored by plants. Sugar and starch are two types of carbohydrates. Plant food is made in the leaves, where the green compound chlorophyll absorbs energy from the sun in a process called photosynthesis. Glucose Glucose is a simple sugar that is stored in large quantities in the stems of some plants. One example is the thick stems of the corn plant. Fructose Fructose is another simple sugar. Its chemical composition is slightly different from that of glucose and usually is stored in fruit. For this reason, it commonly is called fruit sugar. Complex Sugars Some plants, such as sugar cane and sugar beets, are very efficient at creating and storing complex sugars. These plants take the simple sugars, glucose and fructose, and create a higher form of sugar that is stored in either the stems, such as in the cane, or the roots, as in the sugar beet. Starch Starch is a common reserve food in green plants. Unlike sugars, which are soluble in water, starches must be digested before being usable. Starch is stored in grains, such as in rice or wheat plants. Starches are an important staple in the human diet. Fun Fact The onion bulb that we eat is actually made up of leaves that are specially designed to store water and food sugars underground. Continue reading >>

Metabolic Engineering Of Sugars And Simple Sugar Derivatives In Plants
Metabolic engineering of sugars and simple sugar derivatives in plants The University of Queensland, Hines Plant Science Building, Brisbane, Qld, Australia Correspondence (Tel 61733653347; fax 61733651699; email The University of Queensland, Hines Plant Science Building, Brisbane, Qld, Australia Correspondence (Tel 61733653347; fax 61733651699; email Please review our Terms and Conditions of Use and check box below to share full-text version of article. I have read and accept the Wiley Online Library Terms and Conditions of Use. Use the link below to share a full-text version of this article with your friends and colleagues. Learn more. Carbon captured through photosynthesis is transported, and sometimes stored in plants, as sugar. All organic compounds in plants trace to carbon from sugars, so sugar metabolism is highly regulated and integrated with development. Sugars stored by plants are important to humans as foods and as renewable feedstocks for industrial conversion to biofuels and biomaterials. For some purposes, sugars have advantages over polymers including starches, cellulose or storage lipids. This review considers progress and prospects in plant metabolic engineering for increased yield of endogenous sugars and for direct production of highervalue sugars and simple sugar derivatives. Opportunities are examined for enhancing export of sugars from leaves. Focus then turns to manipulation of sugar metabolism in sugarstoring sink organs such as fruits, sugarcane culms and sugarbeet tubers. Results from manipulation of suspected limiting enzymes indicate a need for clearer understanding of flux control mechanisms, to achieve enhanced levels of endogenous sugars in crops that are highly selected for this trait. Outcomes from in planta conversion to novel sugars a Continue reading >>

Bbc Bitesize - Higher Biology - Science Of Food Production - Revision 4
The human population is increasing and this increases demand for food. Farmers can alter genes, control pests and ensure acceptable well-being to increase yields of plants and livestock. The glucose can be broken down in plant cells by the process of respiration. The chemical energy released by respiration can be used by the plant for cellular activities such as protein synthesis or cell division. Thousands of glucose molecules can be linked together to form the complex carbohydrate starch. Starch is stored inside plant cells as grains. Thousands of glucose molecules can be linked together to form the complex carbohydrate cellulose. Cellulose is a very tough molecule that is used to build the cell wall of plant cells. Glucose is an example of a carbohydrate - it contains the chemical elements carbon, hydrogen and oxygen. Plant cells can convert the sugar into another type of energy storage molecule - fat. Plant cells can also combine sugars with nitrates to make amino acids and use these to produce proteins. Continue reading >>

Carbohydrates
Sugars and starches are important carbohydrates that we take in often. Carbohydrates provide a great part of the energy in our diets. Foods rich in carbohydrates, including potatoes, bread, and maize, are usually the most abundant and cheapest when compared with foods high in protein and fat content. Carbohydrates are burned during body processes to produce energy, giving out carbon dioxide and water. Starches are found mainly in grains, legumes, and tubers, and sugars are found in plants and fruits. Sugars are the smallest units of carbohydrates, and when they join together, they form starch. Role of Carbohydrates The main role of carbohydrates in our diet is to produce energy. Each gram of carbohydrates provides us with about four calories. Carbohydrates also act as a food store. Our bodies also store carbohydrates in insoluble forms as glycogen or starch. This is because these two carbohydrates are compact. Carbohydrates are also combined with nitrogen to form non-essential amino acids. In plants, carbohydrates make up part of the cellulose, giving plants strength and structure. How are Carbohydrates Made? Plants can make their own food because they have chlorophyll in their green leaves. They make food in a process known as photosynthesis. The process of photosynthesis is essential for all living things in the world, and plants are the only food-producers, while the other animals either feed on plants or feed on other animals. For the process of photosynthesis, carbon dioxide and sunlight have to be present. Also, the plant must have water. Only then can the plant photosynthesize and produce glucose and oxygen from carbon dioxide, water and sunlight. The equation of photosynthesis is as follows: 6 CO2 + 6 H2O ---> C6H12O6 + 6 O2 Carbon dioxide + Water ---> Glucose + Continue reading >>

B2.2 Organisms In The Environment
2. Converting glucose into insoluble starch for storage. 3. Strengthening cell walls by producing fats, protein or cellulose. 4. Producing fats and oils to store energy. Starch is stored in the cells of the leaves and sometimes in bulbs. Starch is stored so that energy is not wasted when it's not needed. It provides an energy store for when light levels are too low for photosynthesis. Which minerals do plants need to build amino acids for protein? Plants need nitrate ions and mineral ions to build amino acids for protein creation. How could you show that a plant is storing starch? By testing the plant with iodine solution, you can test for starch. If the iodine turns dark blue, test is positive. What are the main benefits of a hydroponics growing system? Hydroponics systems increase growth rates and increase crop yields. They can be used where land is poor and it produces crops that don't need to be ploughed or cleaned. High crop yields mean that profits can be very high. What are the drawbacks of using a hydroponics growing system? Hydroponics is very expensive and requires masses of energy. Why do plants grow quicker in a greenhouse? Temperature is higher in a greenhouse so chemical reactions are quicker and enzymes work at optimum. Which physical factors affect distribution of organisms? Temperature, availability of nutrients, amount of light, availability of water, availability of carbon dioxide and oxygen. How can we measure the distribution of living things? We can measure distribution of living things by using quadrats randomly and along a transect. Continue reading >>

When Does A Plant Change Sugar To Starch?
Plant photosynthesis and energy creation are complex processes involving carbon dioxide, water and sunlight, facilitated by multiple enzymes to create the basic sugar called glucose. Much of the glucose plants produce is immediately metabolized into different forms of energy that plants use to grow and reproduce. The portions of glucose that are not immediately converted to energy are converted to complex sugar compounds, called starches. These are produced after the photosynthesis cycle. Plants then store starches for future energy needs or use them to build new tissues. Photosynthesis Plants are photoautotrophs. Unlike humans and animals, they create their own energy from sunlight and naturally occurring organic compounds. Photosynthesis is the process by which plants use light energy to create glucose by reacting this energy, in the form of electrons, with water and carbon dioxide in cell membranes. Glucose is then used during cellular metabolism in plant tissues to create energy. When sunlight is ample, plants often create more glucose than is needed for immediate metabolism and store it in starches. Starches Plants store starches in a variety of ways. Starch molecules are enormous when compared to other simple molecules, often containing thousands of bonded sugars. Photosynthesis is carried out in plant cells and requires two distinct processes known as light dependent and light independent reactions. Both most occur for glucose to be synthesized. Thus, plants build starches only after the metabolic processes of photosynthesis. Enzymes bond glucose molecules into more complex sugars that form starches. Storing Starches Plants create, use and store starches for many purposes, but the two major ones are cellulose synthesis and energy storage. Cellulose is the primary Continue reading >>

Storage Forms Of Glucose In Organisms
When carbohydrates from the foods you consume are digested, glucose is the smallest molecule into which a carbohydrate is broken down. Glucose molecules are absorbed from intestinal cells into the bloodstream. The bloodstream then carries the glucose molecules throughout the body. Glucose enters each cell of the body and is used by the cell’s mitochondrion as fuel. Carbohydrates are in nearly every food, not just bread and pasta, which are known for “carbo loading.” Fruits, vegetables, and meats also contain carbohydrates. Any food that contains sugar has carbohydrates. And, most foods are converted to sugars when they are digested. Once an organism has taken in food, the food is digested, and needed nutrients are sent through the bloodstream. When the organism has used all the nutrients it needs to maintain proper functioning, the remaining nutrients are excreted or stored. You store it: Glycogen Animals (including humans) store some glucose in the cells so that it is available for quick shots of energy. Excess glucose is stored in the liver as the large compound called glycogen. Glycogen is a polysaccharide of glucose, but its structure allows it to pack compactly, so more of it can be stored in cells for later use. If you consume so many extra carbohydrates that your body stores more and more glucose, all your glycogen may be compactly structured, but you no longer will be. Starch it, please: Storing glucose in plants The storage form of glucose in plants is starch. Starch is a polysaccharide. The leaves of a plant make sugar during the process of photosynthesis. Photosynthesis occurs in light (photo = light), such as when the sun is shining. The energy from the sunlight is used to make energy for the plant. So, when plants are making sugar (for fuel, energy) o Continue reading >>

Bbc - Gcse Bitesize: Photosynthesis
Green plants absorb light energy using chlorophyll in their leaves. They use it to react carbon dioxide with water to make a sugar called glucose. The glucose is used in respiration, or converted into starch and stored. Oxygen is produced as a by-product. This process is called photosynthesis. Temperature, carbon dioxide concentration and light intensity are factors that can limit the rate of photosynthesis. Plants also need mineral ions, including nitrate and magnesium, for healthy growth. They suffer from poor growth in conditions where mineral ions are deficient. Photosynthesis [photosynthesis: The chemical change that occurs in the leaves of green plants. It uses light energy to convert carbon dioxide and water into glucose. Oxygen is produced as a by-product of photosynthesis. ] is the chemical change which happens in the leaves of green plants. It is the first step towards making food - not just for plants but ultimately every animal on the planet. During this reaction, carbon dioxidecarbon dioxide: A gaseous compound of carbon and oxygen, which is a by-product of respiration, and which is needed by plants for photosynthesis. and water are converted into glucose and oxygenoxygen: Gaseous element making up about 20 per cent of the air, which is needed by living organisms for respiration. The reaction requires light energylight energy: Visible electromagnetic radiation., which is absorbed by a green substance called chlorophyll. Photosynthesis takes place in leaf cells. These contain chloroplasts, which are tiny objects containing chlorophyll. carbon dioxide + water (+ light energy) glucose + oxygen 'Light energy' is shown in brackets because it is not a substance. You will also see the equation written like this: Plants absorb water through their roots, and carbon Continue reading >>

Carbohydrates - Glycogen
Polysaccharides are carbohydrate polymers consisting of tens to hundreds to several thousand monosaccharide units. All of the common polysaccharides contain glucose as the monosaccharide unit. Polysaccharides are synthesized by plants, animals, and humans to be stored for food, structural support, or metabolized for energy. Glycogen is the storage form of glucose in animals and humans which is analogous to the starch in plants. Glycogen is synthesized and stored mainly in the liver and the muscles. Structurally, glycogen is very similar to amylopectin with alpha acetal linkages, however, it has even more branching and more glucose units are present than in amylopectin. Various samples of glycogen have been measured at 1,700-600,000 units of glucose. The structure of glycogen consists of long polymer chains of glucose units connected by an alpha acetal linkage. The graphic on the left shows a very small portion of a glycogen chain. All of the monomer units are alpha-D-glucose, and all the alpha acetal links connect C # 1 of one glucose to C # 4 of the next glucose. The branches are formed by linking C # 1 to a C # 6 through an acetal linkages. In glycogen, the branches occur at intervals of 8-10 glucose units, while in amylopectin the branches are separated by 12-20 glucose units. Continue reading >>

Photosynthesis Flashcards | Quizlet
What is the ultimate energy source for the process of photosynthesis? What is the basic food made by a plant during photosynthesis? In the cell chloroplasts found in the leaves of the plant Carbon dioxide enters the plant through the stomata. The energy from the sunlight chemically combines the carbon dioxide and water to form sugar and oxygen. The plant uses the sugar for its life processes. the oxygen is released through the stomata. Why do seeds grow temporarily without light? They are living off the stored food in the seed. Once the stored food is gone, the seed/plant will not continue to grow unless it can perform photosynthesis. Without light, can a plant produce carbohydrates, proteins, and fats? What are the reactants and products of photosynthesis? Plants use glucose along with minerals from the soil to form ___________, __________, and ____________. Water is absorbed through the roots with specialized root cells What specialized tissues transport the water throughout the plant? Do aquatic plants produce their own food through photosynthesis? What do plants do with the extra glucose that they produce? They use it to produce carbohydrates , proteins, and fats. These are used as sources of stored energy. What is the job of a potato in a potato plant? Stored food for energy use at a later time. *Some plants produce a high level of carbohydrates such as potatoes, corn, wheat, maple trees, and beet sugar. *Some plants produce a high level of fats such as avocado, olives, peanuts and palm nuts. *Some plants produce a high level of protein such as beans, quinoa and tree nuts. List each as an example of a high level source of carbohydrates, proteins, or fats? Sugars produced by photosynthesis are used to provide energy to make other Carbohydrates, proteins, and fats. Continue reading >>

Starch Is A Polymer Made By Plants To Store Energy.
Starch is a polymer made by plants to store energy. You see, plants need energy to grow and grow and grow. They use energy from sunlight to make a simple sugar , glucose. Plants make polymers - starch - out of extra glucose, so it's right there when they need it. Click the picture to see a 3-d interactive version of starch. Wouldn't it be great for a whole bunch of glucose molecules to be together in one package? Well, plants thought that was a cool idea. They hook glucose molecules all together in such a way that the long chain curls all around and forms a big globby polymer. That's starch! Whenever the plant needs energy, it can chomp a little glucose off of the starch. Chomp! mmmmm! Here is a short section of starch, with only 4 glucose molecules. Starch can also have a lot of branches. Each branch is a short chain made from glucoses, and each branch can make more branches. Crazy, huh? Another good thing about starch: Each little glucose likes to have water all around it. That can be really hard on the plant. In a starch polymer, the glucose units have other glucose units around them, and that works just as well as water. So, the plant doesn't need so much water, and everybody's happy! We need glucose for energy, too. You even need energy to think! When you eat starchy food, special proteins called enzymes (which are also polymers, by the way) break starch down into glucose, soyour body can burn it for energy. This starts happening right in your mouth! There's an enzyme in your spit (yep, your spit!) that starts to cut up the starch. Check out this link to see how you can taste this enzyme working. Foods that have a lot of starch include: grains (like rice and wheat), corn, and potatoes. Our bodies can't make starch - only plants make starch. We have two ways of sto Continue reading >>

Bbc - Gcse Bitesize: Photosynthesis
Photosynthesis captures energy for life on Earth. Many chemicals are made to allow life processes to occur in plants. These chemicals can move in and out of cells by the process of diffusion. Osmosis is a specific type of diffusion. Photosynthesis is a process used by plants in which energy from sunlight is used to convert carbon dioxide and water into molecules needed for growth. These molecules include sugars, enzymes and chlorophyll. Light energy is absorbed by the green chemical chlorophyll. This energy allows the production of glucose by the reaction between carbon dioxide and water. Oxygen is also produced as a waste product. This reaction can be summarised in the word equation: The chemical equation for photosynthesis is: Glucose is made up of carbon, hydrogen and oxygen atoms. Glucose made by the process of photosynthesis may be used in three ways: It can be converted into chemicals required for growth of plant cells such as cellulose It can be converted into starch, a storage molecule, that can be converted back to glucose when the plant requires it It can be broken down during the process of respiration, releasing energy stored in the glucose molecules Plants cells contain a number of structures that are involved in the process of photosynthesis: Diagram of a plant cell involved in production of glucose from photosynthesis Chloroplasts - containing chlorophyll and enzymes needed for reactions in photosynthesis. Nucleus - containing DNA carrying the genetic code for enzymes and other proteins used in photosynthesis Cell membrane - allowing gas and water to pass in and out of the cell while controlling the passage of other molecules Vacuole - containing cell sap to keep the cell turgid Cytoplasm - enzymes and other proteins used in photosynthesis made here Continue reading >>

How Plants Manage Food Reserves At Night: Quantitative Models And Open Questions
How plants manage food reserves at night: quantitative models and open questions 1Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK 2European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK 1Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK 2European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK 3Computational and Systems Biology, John Innes Centre, Norwich, UK Edited by: Michael J. Haydon, University of York, UK Reviewed by: Xia Wu, University of Washington, USA; Daniel Seaton, University of Edinburgh, UK *Correspondence: Martin Howard, Computational and Systems Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK [email protected] This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science Received 2015 Jan 21; Accepted 2015 Mar 14. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. This article has been cited by other articles in PMC. In order to cope with night-time darkness, plants during the day allocate part of their photosynthate for storage, often as starch. This stored reserve is then degraded at night to sustain metabolism and growth. However, night-time starch degradation mus Continue reading >>
- Mutual Involvement in Families With Type 2 Diabetes Through Web-Based Health Care Solutions: Quantitative Survey Study of Family Preferences, Challenges, and Potentials
- Diabetes Food Advice You Should — and Shouldn’t — Follow to Manage Your Blood Sugar
- Diabetic Food List: Six Food Groups in Diabetes Food Pyramid

Photosynthetic Cells
Cells get nutrients from their environment, but where do those nutrients come from? Virtually all organic material on Earth has been produced by cells that convert energy from the Sun into energy-containing macromolecules. This process, called photosynthesis, is essential to the global carbon cycle and organisms that conduct photosynthesis represent the lowest level in most food chains (Figure 1). Plants exist in a wide variety of shapes and sizes. (A) Coleochaete orbicularis (Charophyceae) gametophyte; magnification x 75 (photograph courtesy of L. E. Graham). (B) Chara (Charophyceae) gametophyte; magnification x 1.5 (photograph courtesy of M. Feist). (C) Riccia (liverwort) gametophyte showing sporangia (black) embedded in the thallus; magnification x 5 (photograph courtesy of A. N. Drinnan). (D) Anthoceros (hornwort) gametophyte showing unbranched sporophytes; magnification x 2.5 (photograph courtesy of A. N. Drinnan). (E) Mnium (moss) gametophyte showing unbranched sporophytes with terminal sporangia (capsule); magnification x 4.5 (photograph courtesy of W. Burger). (F) Huperzia (clubmoss) sporophyte with leaves showing sessile yellow sporangia; magnification x 0.8. (G) Dicranopteris (fern) sporophyte showing leaves with circinate vernation; magnification x 0.08. (H) Psilotum (whisk fern) sporophyte with reduced leaves and spherical synangia (three fused sporangia); magnification x 0.4. (I) Equisetum (horsetail) sporophyte with whorled branches, reduced leaves, and a terminal cone; magnification x 0.4. (J) Cycas (seed plant) sporophyte showing leaves and terminal cone with seeds; magnification x 0.05 (photograph courtesy of W. Burger). Figure Detail Most living things depend on photosynthetic cells to manufacture the complex organic molecules they require as a source Continue reading >>

A Closer Look At Glucose
Did you know that the polymers starch and cellulose are both made by plants? In fact, plants make both starch and cellulose by connecting glucose molecules together. Every time they add a glucose to make the chain longer, a water molecule pops out! Add a glucose, out pops H2O! Add a glucose, out pops H2O! And so on and so on until the chains are really long. A starch chain can have 500 to 2 million glucose units. Cellulose can have 2,000 - 14,000 glucoses. That's a lot of sweetness! Glucose is a funny little molecule. Glucose likes to be in a ring, but sometimes the ring opens up. (Why? Why not? You can stand up, you can sit down. So sometimes you stand up!) When the ring closes again, the -OH can be pointed down, or it can be pointed out. Either way, it's still glucose! The -OH is pointed down instead of out. (We didn't draw in the C and H atoms that just hang out. See? The -OH is pointed outward instead of down. Look at the blue H atoms. They've moved around, but they're still there. (By the way, here in science land we call these molecules isomers, because they're made up of the same atoms that are put together differently.) Compare this guy to the other open chain form on the left. It's almost the same, but one of the bonds turned around, making the red O point up instead of down. Yep, it's allowed to do that! It's like swinging your arm around. Energy or Strength? Starch to store energy Plants really know how to use glucose. To make starch, they use α-glucose, with the -OH pointed down. That -OH is right where the next glucose will go. Since that one -OH is pointing down, it gives the chain a built-in curve. That curve is what makes starch so good for storing glucose. The starch polymer curls around and makes a nice little package. Many starch polymers have a lot Continue reading >>