diabetestalk.net

When Is Dka Diagnosed

Diabetic Ketoacidosis

Diabetic Ketoacidosis

The Facts Diabetic ketoacidosis (DKA) is a condition that may occur in people who have diabetes, most often in those who have type 1 (insulin-dependent) diabetes. It involves the buildup of toxic substances called ketones that make the blood too acidic. High ketone levels can be readily managed, but if they aren't detected and treated in time, a person can eventually slip into a fatal coma. DKA can occur in people who are newly diagnosed with type 1 diabetes and have had ketones building up in their blood prior to the start of treatment. It can also occur in people already diagnosed with type 1 diabetes that have missed an insulin dose, have an infection, or have suffered a traumatic event or injury. Although much less common, DKA can occasionally occur in people with type 2 diabetes under extreme physiologic stress. Causes With type 1 diabetes, the pancreas is unable to make the hormone insulin, which the body's cells need in order to take in glucose from the blood. In the case of type 2 diabetes, the pancreas is unable to make sufficient amounts of insulin in order to take in glucose from the blood. Glucose, a simple sugar we get from the foods we eat, is necessary for making the energy our cells need to function. People with diabetes can't get glucose into their cells, so their bodies look for alternative energy sources. Meanwhile, glucose builds up in the bloodstream, and by the time DKA occurs, blood glucose levels are often greater than 22 mmol/L (400 mg/dL) while insulin levels are very low. Since glucose isn't available for cells to use, fat from fat cells is broken down for energy instead, releasing ketones. Ketones accumulate in the blood, causing it to become more acidic. As a result, many of the enzymes that control the body's metabolic processes aren't able Continue reading >>

Diabetic Ketoacidosis At Diagnosis In Austrian Children In 1989–2008: A Population-based Analysis

Diabetic Ketoacidosis At Diagnosis In Austrian Children In 1989–2008: A Population-based Analysis

Abstract The aim of the study was to analyse the prevalence of diabetic onset ketoacidosis (DKA) during a period of 20 years (1989–2008) on a population basis in the whole of Austria. A prospective population-based incidence study (1989–2008) was performed. The registered data set comprised blood glucose, pH, ketonuria and clinical symptoms of DKA at manifestation. DKA was defined as pH < 7.3 and severe DKA as pH < 7.1. Time trends were estimated using linear regression models. During the study period, 3331 children <15 years of age (1,797 boys and 1,534 girls) were registered with newly diagnosed type 1 diabetes. Of these, 1,238 (37.2%) presented with DKA, 855 (25.7%) had a mild and 383 (11.5%) a severe form, and one patient died at onset. DKA frequency was negatively associated with age at onset (p < 0.0001). In children <2 years the prevalence was 60%, with a higher risk for girls (70% vs 54% for boys, p < 0.05). Despite a significant increase in diabetes incidence in Austria during the observation period from 8.4 to 18.4/100,000 (p < 0.0001), no significant change in the prevalence of DKA at manifestation was observed. The overall frequency of DKA in children with newly diagnosed type 1 diabetes in Austria is high and has not changed during the last 20 years despite a clear increase in the manifestation rate. In particular, children less than 2 years of age have a high risk of DKA at onset. Notes The study was supported by Novo Nordisk Austria. The authors declare that there is no duality of interest associated with this manuscript. Continue reading >>

Factors Associated With Newly Diagnosed Children With Diabetic Ketoacidosis

Factors Associated With Newly Diagnosed Children With Diabetic Ketoacidosis

Background: Diabetes mellitus type 1 is one of the most prevalent endocrine diseases in pediatrics. Diabetic ketoacidosis is considered as one of the most threatening clinical pictures of DM1, especially if occurred as the first presentation of DM1 in children. Objectives: The current study aimed to identify factors which may play a role in DKA onset in children. Methods: This case-control study included all patients under 18 years old who referred to department of pediatrics endocrinology at Mashhad University Hospital (Imam Reza) from January 2013 to December 2015 as newly diagnosed patients with DM1. Patients who fulfilled DKA criteria at diagnosis were considered as DKA group and those who referred with other presentations were considered as control group (non-DKA group). Data were analyzed by SPSS software ver. 16. Results: During the study period, 97 (39.2% male) newly diagnosed patients were included as DKA group. Accordingly 97 gender- and age-matched patients were added as non-DKA group. The most prevalent symptoms in both groups were polyuria (91.88%) and polydipsia (88.66%). Fever and cold symptoms were significantly higher in the DKA group (P < 0.001 and P =0.005, respectively). Hemoglobin A1c level was significantly higher in the DKA group (P = 0.001), while body mass index was significantly lower in the DKA group (P = 0.045). Fever and father’s education level were the most important risk and protective factors in the DKA onset in newly diagnosed patients with DM1 (adjusted OR = 10.1, 95% CI = 2.9-35.3; P < 0.001 and adjusted OR = 0.5, 95% CI = 0.3 - 0.9 and P = 0.019, respectively). Conclusions: In conclusion, a recent febrile illness was found as the strongest risk factor and father’s education level as the main protective factor in the DKA to diagno Continue reading >>

What Makes A Person?

What Makes A Person?

I’ve been in mental health treatment since August. I’m currently on my third psychopharmacological drug and am attending therapy. Therapy has mostly helped by making me understand how much I already know, which I had previously grossly underestimated, and by increasing consistency of application of that knowledge. It’s been slow but useful. Drugs have been a lot more interesting. Descartes determined his existence by asserting that he thought. His self was proven because he was capable of performing the action of thought himself. Meanwhile, I have watched chemicals I buy in a bottle change my thoughts. What force does a self have to think, when chemistry can change those thoughts more easily and completely, for good and ill alike, than I can through my will and choice alone? What self remains if chemistry has more impact upon the thoughts within my own mind than my own agency? According to modern understanding, the brain is the house of the mind, which emerges from the soupcon of chemical and electrical impulses that surge through our nervous system. It’s those impulses that allow our thoughts, feelings, and reactions alike. Beyond that is nothing. Dead, unconscious flesh that aims to organize its cells. Unthinking, unfeeling, mindless and selfless. It must be thus, or each cell would seek to preserve its own existence at the expense of the others, and the more complex organism would fail. Because there is no self, no person that minds the smallest parts of our body, we experience a sense of self, a sense of personhood. It is the self-sacrifice of the mindless, ignored by the mind, that allows the illusion of coherent identity in man. Without that systemic, constant march of death, we would not have a complex enough structure to support a brain evolved enough to Continue reading >>

Diabetic Ketoacidosis - Symptoms

Diabetic Ketoacidosis - Symptoms

A A A Diabetic Ketoacidosis Diabetic ketoacidosis (DKA) results from dehydration during a state of relative insulin deficiency, associated with high blood levels of sugar level and organic acids called ketones. Diabetic ketoacidosis is associated with significant disturbances of the body's chemistry, which resolve with proper therapy. Diabetic ketoacidosis usually occurs in people with type 1 (juvenile) diabetes mellitus (T1DM), but diabetic ketoacidosis can develop in any person with diabetes. Since type 1 diabetes typically starts before age 25 years, diabetic ketoacidosis is most common in this age group, but it may occur at any age. Males and females are equally affected. Diabetic ketoacidosis occurs when a person with diabetes becomes dehydrated. As the body produces a stress response, hormones (unopposed by insulin due to the insulin deficiency) begin to break down muscle, fat, and liver cells into glucose (sugar) and fatty acids for use as fuel. These hormones include glucagon, growth hormone, and adrenaline. These fatty acids are converted to ketones by a process called oxidation. The body consumes its own muscle, fat, and liver cells for fuel. In diabetic ketoacidosis, the body shifts from its normal fed metabolism (using carbohydrates for fuel) to a fasting state (using fat for fuel). The resulting increase in blood sugar occurs, because insulin is unavailable to transport sugar into cells for future use. As blood sugar levels rise, the kidneys cannot retain the extra sugar, which is dumped into the urine, thereby increasing urination and causing dehydration. Commonly, about 10% of total body fluids are lost as the patient slips into diabetic ketoacidosis. Significant loss of potassium and other salts in the excessive urination is also common. The most common Continue reading >>

Understanding And Treating Diabetic Ketoacidosis

Understanding And Treating Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a serious metabolic disorder that can occur in animals with diabetes mellitus (DM).1,2 Veterinary technicians play an integral role in managing and treating patients with this life-threatening condition. In addition to recognizing the clinical signs of this disorder and evaluating the patient's response to therapy, technicians should understand how this disorder occurs. DM is caused by a relative or absolute lack of insulin production by the pancreatic b-cells or by inactivity or loss of insulin receptors, which are usually found on membranes of skeletal muscle, fat, and liver cells.1,3 In dogs and cats, DM is classified as either insulin-dependent (the body is unable to produce sufficient insulin) or non-insulin-dependent (the body produces insulin, but the tissues in the body are resistant to the insulin).4 Most dogs and cats that develop DKA have an insulin deficiency. Insulin has many functions, including the enhancement of glucose uptake by the cells for energy.1 Without insulin, the cells cannot access glucose, thereby causing them to undergo starvation.2 The unused glucose remains in the circulation, resulting in hyperglycemia. To provide cells with an alternative energy source, the body breaks down adipocytes, releasing free fatty acids (FFAs) into the bloodstream. The liver subsequently converts FFAs to triglycerides and ketone bodies. These ketone bodies (i.e., acetone, acetoacetic acid, b-hydroxybutyric acid) can be used as energy by the tissues when there is a lack of glucose or nutritional intake.1,2 The breakdown of fat, combined with the body's inability to use glucose, causes many pets with diabetes to present with weight loss, despite having a ravenous appetite. If diabetes is undiagnosed or uncontrolled, a series of metab Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Patient professional reference Professional Reference articles are written by UK doctors and are based on research evidence, UK and European Guidelines. They are designed for health professionals to use. You may find the Pre-diabetes (Impaired Glucose Tolerance) article more useful, or one of our other health articles. See also the separate Childhood Ketoacidosis article. Diabetic ketoacidosis (DKA) is a medical emergency with a significant morbidity and mortality. It should be diagnosed promptly and managed intensively. DKA is characterised by hyperglycaemia, acidosis and ketonaemia:[1] Ketonaemia (3 mmol/L and over), or significant ketonuria (more than 2+ on standard urine sticks). Blood glucose over 11 mmol/L or known diabetes mellitus (the degree of hyperglycaemia is not a reliable indicator of DKA and the blood glucose may rarely be normal or only slightly elevated in DKA). Bicarbonate below 15 mmol/L and/or venous pH less than 7.3. However, hyperglycaemia may not always be present and low blood ketone levels (<3 mmol/L) do not always exclude DKA.[2] Epidemiology DKA is normally seen in people with type 1 diabetes. Data from the UK National Diabetes Audit show a crude one-year incidence of 3.6% among people with type 1 diabetes. In the UK nearly 4% of people with type 1 diabetes experience DKA each year. About 6% of cases of DKA occur in adults newly presenting with type 1 diabetes. About 8% of episodes occur in hospital patients who did not primarily present with DKA.[2] However, DKA may also occur in people with type 2 diabetes, although people with type 2 diabetes are much more likely to have a hyperosmolar hyperglycaemic state. Ketosis-prone type 2 diabetes tends to be more common in older, overweight, non-white people with type 2 diabetes, and DKA may be their Continue reading >>

Diabetes Complications In Dogs And Cats: Diabetes Ketoacidosis (dka)

Diabetes Complications In Dogs And Cats: Diabetes Ketoacidosis (dka)

Unfortunately, we veterinarians are seeing an increased prevalence of diabetes mellitus in dogs and cats. This is likely due to the growing prevalence of obesity (secondary to inactive lifestyle, a high carbohydrate diet, lack of exercise, etc.). So, if you just had a dog or cat diagnosed with diabetes mellitus, what do you do? First, we encourage you to take a look at these articles for an explanation of the disease: Diabetes Mellitus (Sugar Diabetes) in Dogs Once you have a basic understanding of diabetes mellitus (or if you already had one), this article will teach you about life-threatening complications that can occur as a result of the disease; specifically, I discuss a life-threatening condition called diabetes ketoacidosis (DKA) so that you know how to help prevent it! What is DKA? When diabetes goes undiagnosed, or when it is difficult to control or regulate, the complication of DKA can occur. DKA develops because the body is so lacking in insulin that the sugar can’t get into the cells -- resulting in cell starvation. Cell starvation causes the body to start breaking down fat in an attempt to provide energy (or a fuel source) to the body. Unfortunately, these fat breakdown products, called “ketones,” are also poisonous to the body. Symptoms of DKA Clinical signs of DKA include the following: Weakness Not moving (in cats, hanging out by the water bowl) Not eating to complete anorexia Large urinary clumps in the litter box (my guideline? If it’s bigger than a tennis ball, it’s abnormal) Weight loss (most commonly over the back), despite an overweight body condition Excessively dry or oily skin coat Abnormal breath (typically a sweet “ketotic” odor) In severe cases DKA can also result in more significant signs: Abnormal breathing pattern Jaundice Ab Continue reading >>

Diagnosis And Treatment Of Diabetic Ketoacidosis And The Hyperglycemic Hyperosmolar State

Diagnosis And Treatment Of Diabetic Ketoacidosis And The Hyperglycemic Hyperosmolar State

Go to: Pathogenesis In both DKA and HHS, the underlying metabolic abnormality results from the combination of absolute or relative insulin deficiency and increased amounts of counterregulatory hormones. Glucose and lipid metabolism When insulin is deficient, the elevated levels of glucagon, catecholamines and cortisol will stimulate hepatic glucose production through increased glycogenolysis and enhanced gluconeogenesis4 (Fig. 1). Hypercortisolemia will result in increased proteolysis, thus providing amino acid precursors for gluconeogenesis. Low insulin and high catecholamine concentrations will reduce glucose uptake by peripheral tissues. The combination of elevated hepatic glucose production and decreased peripheral glucose use is the main pathogenic disturbance responsible for hyperglycemia in DKA and HHS. The hyperglycemia will lead to glycosuria, osmotic diuresis and dehydration. This will be associated with decreased kidney perfusion, particularly in HHS, that will result in decreased glucose clearance by the kidney and thus further exacerbation of the hyperglycemia. In DKA, the low insulin levels combined with increased levels of catecholamines, cortisol and growth hormone will activate hormone-sensitive lipase, which will cause the breakdown of triglycerides and release of free fatty acids. The free fatty acids are taken up by the liver and converted to ketone bodies that are released into the circulation. The process of ketogenesis is stimulated by the increase in glucagon levels.5 This hormone will activate carnitine palmitoyltransferase I, an enzyme that allows free fatty acids in the form of coenzyme A to cross mitochondrial membranes after their esterification into carnitine. On the other side, esterification is reversed by carnitine palmitoyltransferase I Continue reading >>

Diabetic Ketoacidosis Causes, Symptoms, Treatment, And Complications

Diabetic Ketoacidosis Causes, Symptoms, Treatment, And Complications

Diabetic ketoacidosis definition and facts Diabetic ketoacidosis is a life-threatening complication of type 1 diabetes (though rare, it can occur in people with type 2 diabetes) that occurs when the body produces high levels of ketones due to lack of insulin. Diabetic ketoacidosis occurs when the body cannot produce enough insulin. The signs and symptoms of diabetic ketoacidosis include Risk factors for diabetic ketoacidosis are type 1 diabetes, and missing insulin doses frequently, or being exposed to a stressor requiring higher insulin doses (infection, etc). Diabetic ketoacidosis is diagnosed by an elevated blood sugar (glucose) level, elevated blood ketones and acidity of the blood (acidosis). The treatment for diabetic ketoacidosis is insulin, fluids and electrolyte therapy. Diabetic ketoacidosis can be prevented by taking insulin as prescribed and monitoring glucose and ketone levels. The prognosis for a person with diabetic ketoacidosis depends on the severity of the disease and the other underlying medical conditions. Diabetic ketoacidosis (DKA) is a severe and life-threatening complication of diabetes. Diabetic ketoacidosis occurs when the cells in our body do not receive the sugar (glucose) they need for energy. This happens while there is plenty of glucose in the bloodstream, but not enough insulin to help convert glucose for use in the cells. The body recognizes this and starts breaking down muscle and fat for energy. This breakdown produces ketones (also called fatty acids), which cause an imbalance in our electrolyte system leading to the ketoacidosis (a metabolic acidosis). The sugar that cannot be used because of the lack of insulin stays in the bloodstream (rather than going into the cell and provide energy). The kidneys filter some of the glucose (suga Continue reading >>

What Was The Most Incorrect Self-diagnosis You've Encountered In Your Practice As A Doctor?

What Was The Most Incorrect Self-diagnosis You've Encountered In Your Practice As A Doctor?

Not myself, but a colleague of mine. This extremely embarrassed middle aged man informed him that he had done a Google search and discovered that he was suffering from venereal warts. This was going on for several years, he tried a multiple of ointments, creams, crystals and what not without any success. After a brief investigation my colleague found that it wasn’t warts at all, but rather skin tags. Now these are harmless benign growths resulting from skin-skin or skin-clothing friction. The patient had several of these in the groin area and on the inside of his upper thighs. It’s rather easy to work out why he came to the conclusion of venereal warts. In his mind he was already convinced they were warts and googled it, discovering that one basically gets three kinds (there are a few more) - common warts (the type that mostly children get on their hands and knees), plantar warts (on the soles of your feet) and genital or venereal warts. Since his weren’t on his hands, knees or feet, but rather close to the genital area, that was it! My colleague went on to explain to him that it was nothing what he thought it to be and that it could easily be treated. He needed several reassurances. Before he left, he said, “You know what, Doc, I was so embarrassed, I haven’t had sex with my wife for seven years!” (Somehow I think it’s poetic justice for trusting Google over your doctor!) Continue reading >>

> Hyperglycemia And Diabetic Ketoacidosis

> Hyperglycemia And Diabetic Ketoacidosis

When blood glucose levels (also called blood sugar levels) are too high, it's called hyperglycemia. Glucose is a sugar that comes from foods, and is formed and stored inside the body. It's the main source of energy for the body's cells and is carried to each through the bloodstream. But even though we need glucose for energy, too much glucose in the blood can be unhealthy. Hyperglycemia is the hallmark of diabetes — it happens when the body either can't make insulin (type 1 diabetes) or can't respond to insulin properly (type 2 diabetes). The body needs insulin so glucose in the blood can enter the cells to be used for energy. In people who have developed diabetes, glucose builds up in the blood, resulting in hyperglycemia. If it's not treated, hyperglycemia can cause serious health problems. Too much sugar in the bloodstream for long periods of time can damage the vessels that supply blood to vital organs. And, too much sugar in the bloodstream can cause other types of damage to body tissues, which can increase the risk of heart disease and stroke, kidney disease, vision problems, and nerve problems in people with diabetes. These problems don't usually show up in kids or teens with diabetes who have had the disease for only a few years. However, they can happen in adulthood in some people, particularly if they haven't managed or controlled their diabetes properly. Blood sugar levels are considered high when they're above someone's target range. The diabetes health care team will let you know what your child's target blood sugar levels are, which will vary based on factors like your child's age. A major goal in controlling diabetes is to keep blood sugar levels as close to the desired range as possible. It's a three-way balancing act of: diabetes medicines (such as in Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

As fat is broken down, acids called ketones build up in the blood and urine. In high levels, ketones are poisonous. This condition is known as ketoacidosis. Diabetic ketoacidosis (DKA) is sometimes the first sign of type 1 diabetes in people who have not yet been diagnosed. It can also occur in someone who has already been diagnosed with type 1 diabetes. Infection, injury, a serious illness, missing doses of insulin shots, or surgery can lead to DKA in people with type 1 diabetes. People with type 2 diabetes can also develop DKA, but it is less common. It is usually triggered by uncontrolled blood sugar, missing doses of medicines, or a severe illness. Continue reading >>

Is Anxiety Disorder Generally Followed By Depression?

Is Anxiety Disorder Generally Followed By Depression?

I am going on an assumption that you wonder if depression follows anxiety from your question. If so, they walk hand to hand, for me. You can make generalizations such is this. I understood my depression but I didn’t understand what anxiety was. You might consider reading up on these types of issues. I really like bumping into some writing by others sufferers on the subject. I use Mayo Clinic and, the one I go to first for information is Psych Central. Information really helps me understand my diseases. peace, Bob Continue reading >>

Original Article The Value Of Venous Blood Gas Analysis In The Diagnosis Of Diabetic Ketoacidosis

Original Article The Value Of Venous Blood Gas Analysis In The Diagnosis Of Diabetic Ketoacidosis

Abstract Newer blood gas analyzers have the ability to report electrolyte values and glucose in addition to pH, so this diagnostic process could be condensed in diagnosing diabetic ketoacidosis (DKA). We aimed to assess the accuracy of the venous blood gas (VBG) analysis with electrolytes for diagnosing DKA. This study prospectively identified a convenience sample of (60 patients) presented with DKA and tested their VBG and serum electrolytes. The diagnosis of DKA was made according to American Diabetes Association criteria. Serum chemistry electrolyte values were considered to be the criterion standard. Sensitivity and specificity of VBG electrolytes results were compared against this standard. In addition, correlation coefficients for individual electrolytes between VBG electrolytes and laboratory chemistry electrolytes were calculated. Paired VBG and serum chemistry panels were available for 60 patients, only 49 patients were included, In this study; 20% of cases were newly diagnosed diabetes mellitus. The total number of diabetic ketoacidosis was 14 patients (28.5%). The sensitivity and specificity of the VBG and electrolytes for diagnosing DKA was 92.9% (95% confidence interval [CI] = 89% to 99%) and 97.1% (95% CI = 92% to 100%), respectively. Correlation coefficients between VBG and serum chemistry were 0.91, 0.47, 0.61, 0.65, and 0.58 for blood sugar, sodium, potassium, chloride, and creatinine respectively. Findings of this study offer preliminary support for the possibility of using VBG sample rather than VBG sample and serum chemistry electrolytes together to rule out diabetic ketoacidosis. Continue reading >>

More in ketosis