diabetestalk.net

What Medications Can Cause Metabolic Acidosis?

Drug And Chemical-induced Metabolic Acidosis.

Drug And Chemical-induced Metabolic Acidosis.

Abstract Metabolic acidosis produced by drugs and/or chemicals can be conveniently divided into those with an increase in the anion gap (anion gap = Na- (Cl + HCO3)) and those with a normal anion gap. The increase in the anion gap is due to the accumulation of unmeasured organic anions, such as lactate or acetoacetate and beta-hydroxybutyrate, as occurs in ketoacidosis and lactic acidosis, or the accumulation of toxic anions such as formate or glycolate, as occurs with the ingestion of methanol or ethylene glycol. Increased concentrations of lactic acid may also be present in the toxic forms of metabolic acidosis. The most common drugs and chemicals that induce the anion gap type of acidosis are biguanides, alcohols, polyhydric sugars, salicylates, cyanide and carbon monoxide. In normal anion gap acidosis the reduction in bicarbonate is balanced by a reciprocal increase in the chloride concentration so that the sum of the two remains unchanged. Normal anion gap acidosis is caused by carbonic anhydrase inhibitors, hydrochloride salts of amino acids, toluene, amphotericin, spironolactone and non-steroidal anti-inflammatory drugs. The mechanism by which these substances produce metabolic acidosis and the therapy are discussed. Continue reading >>

Metabolic Acidosis

Metabolic Acidosis

Metabolic acidosis is primary reduction in bicarbonate (HCO3−), typically with compensatory reduction in carbon dioxide partial pressure (Pco2); pH may be markedly low or slightly subnormal. Metabolic acidoses are categorized as high or normal anion gap based on the presence or absence of unmeasured anions in serum. Causes include accumulation of ketones and lactic acid, renal failure, and drug or toxin ingestion (high anion gap) and GI or renal HCO3− loss (normal anion gap). Symptoms and signs in severe cases include nausea and vomiting, lethargy, and hyperpnea. Diagnosis is clinical and with ABG and serum electrolyte measurement. The cause is treated; IV sodium bicarbonate may be indicated when pH is very low. Acidemia (arterial pH < 7.35) results when acid load overwhelms respiratory compensation. Causes are classified by their effect on the anion gap (see The Anion Gap and see Table: Causes of Metabolic Acidosis). High anion gap acidosis Ketoacidosis is a common complication of type 1 diabetes mellitus (see diabetic ketoacidosis), but it also occurs with chronic alcoholism (see alcoholic ketoacidosis), undernutrition, and, to a lesser degree, fasting. In these conditions, the body converts from glucose to free fatty acid (FFA) metabolism; FFAs are converted by the liver into ketoacids, acetoacetic acid, and beta-hydroxybutyrate (all unmeasured anions). Ketoacidosis is also a rare manifestation of congenital isovaleric and methylmalonic acidemia. Lactic acidosis is the most common cause of metabolic acidosis in hospitalized patients. Lactate accumulation results from a combination of excess formation and decreased utilization of lactate. Excess lactate production occurs during states of anaerobic metabolism. The most serious form occurs during the various types o Continue reading >>

Drug-induced Acid-base Disorders

Drug-induced Acid-base Disorders

Abstract The incidence of acid-base disorders (ABDs) is high, especially in hospitalized patients. ABDs are often indicators for severe systemic disorders. In everyday clinical practice, analysis of ABDs must be performed in a standardized manner. Highly sensitive diagnostic tools to distinguish the various ABDs include the anion gap and the serum osmolar gap. Drug-induced ABDs can be classified into five different categories in terms of their pathophysiology: (1) metabolic acidosis caused by acid overload, which may occur through accumulation of acids by endogenous (e.g., lactic acidosis by biguanides, propofol-related syndrome) or exogenous (e.g., glycol-dependant drugs, such as diazepam or salicylates) mechanisms or by decreased renal acid excretion (e.g., distal renal tubular acidosis by amphotericin B, nonsteroidal anti-inflammatory drugs, vitamin D); (2) base loss: proximal renal tubular acidosis by drugs (e.g., ifosfamide, aminoglycosides, carbonic anhydrase inhibitors, antiretrovirals, oxaliplatin or cisplatin) in the context of Fanconi syndrome; (3) alkalosis resulting from acid and/or chloride loss by renal (e.g., diuretics, penicillins, aminoglycosides) or extrarenal (e.g., laxative drugs) mechanisms; (4) exogenous bicarbonate loads: milk–alkali syndrome, overshoot alkalosis after bicarbonate therapy or citrate administration; and (5) respiratory acidosis or alkalosis resulting from drug-induced depression of the respiratory center or neuromuscular impairment (e.g., anesthetics, sedatives) or hyperventilation (e.g., salicylates, epinephrine, nicotine). Notes Continue reading >>

Drug-induced Metabolic Acidosis

Drug-induced Metabolic Acidosis

Go to: Introduction Metabolic acidosis is defined as an excessive accumulation of non-volatile acid manifested as a primary reduction in serum bicarbonate concentration in the body associated with low plasma pH. Certain conditions may exist with other acid-base disorders such as metabolic alkalosis and respiratory acidosis/alkalosis 1. Humans possess homeostatic mechanisms that maintain acid-base balance ( Figure 1). One utilizes both bicarbonate and non-bicarbonate buffers in both the intracellular and the extracellular milieu in the immediate defense against volatile (mainly CO 2) and non-volatile (organic and inorganic) acids before excretion by the lungs and kidneys, respectively. Renal excretion of non-volatile acid is the definitive solution after temporary buffering. This is an intricate and highly efficient homeostatic system. Derangements in over-production, under-excretion, or both can potentially lead to accumulation of excess acid resulting in metabolic acidosis ( Figure 1). Drug-induced metabolic acidosis is often mild, but in rare cases it can be severe or even fatal. Not only should physicians be keenly aware of this potential iatrogenic complication but they should also be fully engaged in understanding the pathophysiological mechanisms. Metabolic acidosis resulting from drugs and/or ingestion of toxic chemicals can be grouped into four general categories ( Figure 2): Some medications cannot be placed into one single category, as they possess multiple mechanisms that can cause metabolic acidosis. In suspected drug-induced metabolic acidosis, clinicians should establish the biochemical diagnosis of metabolic acidosis along with the evaluation of respiratory compensation and whether there is presence of mixed acid-based disorders 2, then convert the bioche Continue reading >>

More in ketosis