diabetestalk.net

What Is The Significance Of Kussmaul Respirations In Ketoacidosis?

Kussmaul Breathing

Kussmaul Breathing

What is Kussmaul Breathing? Kussmaul Breathing is the term given to a condition in which the patient builds up an extremely deep and difficult breathing pattern. This is seen mostly in individuals who are diabetic and have severe forms of metabolic acidosis, particularly diabetic ketoacidosis with kidney dysfunction. Kussmaul Breathing can likewise be clarified as a type of hyperventilation which is a condition in which an individual breathes in such a deep pattern, to the point that the level of carbon dioxide reduces in the blood, which is seen for the most part in metabolic acidosis where the breathing turns out to be more quick and shallow and as the condition exacerbates the breathing gets to be distinctly shallow and profound and it looks as though the individual is virtually gasping for breath. This kind of breathing in which the individual is essentially gasping for air is what is named as Kussmaul Breathing. Kussmaul’s Respiration There are diverse medical conditions that can influence the basic/acidic balance in your body, which means your body can turn out to be more basic or acidic. At the point when a man is acidotic, that is to say they are experiencing a pathological process (known as acidosis) that prompts to acidemia, an abnormal low pH of the blood, they may experience Kussmaul’s respiration. Kussmaul’s respiration, as German doctor Adolph Kussmaul himself portrayed, is in fact profound, slow, and labored breathing, which we now know is because of serious acidemia coming from metabolic acidosis. Nonetheless, these days, it is now and again used to portray shallow and rapid breathing examples in instances of less severe acidemia too. Reasons for this breathing pattern happening All things considered, what do you take in? Oxygen, isn’t that so? W Continue reading >>

Kussmaul Breathing, Cheyne-stokes Respiration & Biot's Respiration Terms

Kussmaul Breathing, Cheyne-stokes Respiration & Biot's Respiration Terms

Technical Terms for Respiration There are several weird-sounding terms related to respiration that seem harder to understand than they really are. Actually, their definitions may vary just a bit depending on setting: academic or practical. These are Kussmaul's respiration, Cheyne-Stokes respiration, and Biot's (or Bee-oh's) respiration. It all sounds kind of technical and a bit out there, but, by the end of this lesson, you'll be a pro at explaining what these are. Kussmaul's Respiration There are different medical conditions that can affect the acid/base balance in your body, meaning your body can become more acidic or basic. When a person is acidotic, that is to say they are undergoing a pathological process (known as acidosis) that leads to acidemia, an abnormally low pH of the blood, they may experience Kussmaul's respiration. Kussmaul's respiration, as German physician Adolph Kussmaul himself described, is technically deep, slow, and labored breathing, which we now know is in response to severe acidemia stemming from metabolic acidosis. However, nowadays, it is sometimes used to describe rapid and shallow breathing patterns in cases of less severe acidemia as well. Why does this type of breathing pattern occur? Well, what do you breathe in? Oxygen, right? What do you breathe out? Carbon dioxide. Carbon dioxide is acidic. It lowers the pH of the blood. By breathing rapidly and/or deeply, the body tries to blow off excess CO2 to increase pH back to normal, like an old train engine tries to blow off steam to cool itself off. Such respiration can be seen in patients with diabetic ketoacidosis or renal (that is to say, kidney) failure among other problems. Cheyne-Stokes Respiration The next form of respiration I want to get to is a bit more difficult to understand, but Continue reading >>

[ketoacidotic Diabetic Metabolic Dysregulation: Pathophysiology, Clinical Aspects, Diagnosis And Therapy].

[ketoacidotic Diabetic Metabolic Dysregulation: Pathophysiology, Clinical Aspects, Diagnosis And Therapy].

Abstract When glucose utilisation is impaired due to decreased insulin effect, ketones are produced by the liver from free fatty acids to supply an alternate source of energy. This adaptation may be associated with severe metabolic acidosis and tends to occur in patients with type I (insulin-dependent) diabetes mellitus. In addition, hypovolemia is an almost invariable finding with marked hypoglycemia and is primarily induced by the associated glucosuria. Ketoacidosis stimulates both the central and peripheral chemoreceptors controlling respiration, resulting in alveolar hyperventilation (Kussmaul's respiration). With the ensuing fall in pCO2 the patient tries to raise the extracellular pH. A fruity odor of acetone on the patient's breath sometimes suggests that ketoacidosis is present. The classical triad of symptoms associated with hyperglycemia are polyuria, polydipsia, and weight loss. Circulatory insufficiency with hypotension is not uncommon due to the marked fluid loss and acidemia. In more severely affected patients, neurologic abnormalities may be seen, including lethargy, seizures or coma. Some patients also have marked vomiting and abdominal pain. The history and physical examination may provide important clues to the presence of uncontrolled diabetes mellitus. Once suspected, the diagnosis can be easily confirmed by measuring the plasma glucose concentration. Glucosuria and ketonuria can be semiquantitatively detected with reagent sticks. Blood gas analysis and anion gap give objective information as to the severity of the metabolic acidosis. Therapy must be directed toward each of the metabolic disturbances: hyperosmolality, ketoacidosis, hypovolemia and potassium, and phosphate depletion. The mainstays of therapy are the administration of low-dose insulin Continue reading >>

Hyperosmolar Hyperglycemic State

Hyperosmolar Hyperglycemic State

Acute hyperglycemia, or high blood glucose, may be either the initial presentation of diabetes mellitus or a complication during the course of a known disease. Inadequate insulin replacement (e.g., noncompliance with treatment) or increased insulin demand (e.g., during times of acute illness, surgery, or stress) may lead to acute hyperglycemia. There are two distinct forms: diabetic ketoacidosis (DKA), typically seen in type 1 diabetes, and hyperosmolar hyperglycemic state (HHS), occurring primarily in type 2 diabetes. In type 1 diabetes, no insulin is available to suppress fat breakdown, and the ketones resulting from subsequent ketogenesis manifest as DKA. This is in contrast to type 2 diabetes, in which patients can still secrete small amounts of insulin to suppress DKA, instead resulting in a hyperglycemic state predominated simply by glucose. The clinical presentation of both DKA and HHS is one of polyuria, polydipsia, nausea and vomiting, volume depletion (e.g., dry oral mucosa, decreased skin turgor), and eventually mental status changes and coma. In patients with altered mental status, fingerstick glucose should always be checked in order to exclude serum glucose abnormalities. Several clinical findings pertaining only to DKA include a fruity odor to the breath, hyperventilation, and abdominal pain. HHS patients, in contrast to those with DKA, will present with more extreme volume depletion. The treatment of both DKA and HHS is primarily IV electrolyte and fluid replacement. Insulin for hyperglycemia may be given with caution and under vigilant monitoring of serum glucose. Other treatment options depend on the severity of symptoms and include bicarbonate and potassium replacement. Osmotic diuresis and hypovolemia Hypovolemia resulting from DKA can lead to acute Continue reading >>

Kussmaul Respirations

Kussmaul Respirations

Definition and Characteristics In a case report from 1874 in the Dtsch Arch Klin Med., Adolph Kussmaul described the hyperventilation associated with diabetic ketoacidosis (DKA) now known as Kussmaul respirations: “There is nothing here, as in ordinary dyspneas, to indicate that the air has to overcome the slightest obstacle on its way into or out of the lungs; on the contrary, it comes in and out with the greatest ease; the thorax widens itself splendidly in all directions, without any evidence of pulling in of the lower end of the sternum or the intercostals spaces, and a complete inspiration followed each complete respiration; down to the deepest part of the lungs, one hears a pure, loud and sharp vesicular breathing (so-called puerile breathing); and that all points to the highest degree of air hunger (Lufthunger), as does the oppressive pain of which the patient complains, as well as the tremendous activity of the respiratory muscles, which are so... Continue reading >>

Kussmaul Respiration

Kussmaul Respiration

Use check boxes to select individual results below 61. Diabetic ketoacidosis with pneumomediastinum: a case report Full Text available with Trip Pro Diabetic ketoacidosis with pneumomediastinum: a case report An 18-year-old male with type 1 diabetes mellitus presented to the emergency department after one day of lethargy and vomiting. Physical examination revealed a dehydrated male with tachycardia and Kussmaul's respiration. There was subcutaneous emphysema in both supraclavicular regions. Chest auscultation revealed a positive Hamman's sign. Laboratory investigation was significant for metabolic acidosis with venous blood pH 7.08. Plasma breathing patterns breathing patterns - General Practice Notebook This site is intended for healthcare professionals General Practice Notebook | Medical search breathing patterns Abnormal patterns of respiration include: Cheyne-Stokes respiration Kussmaul's breathing hyperventilation due to anxiety Biot breathing apneustic breathing paradoxical respiration sleep apnoea Links: General Practice Notebook General Practice Notebook The information provided herein should not be used for diagnosis 63. Glycaemic emergencies in children (Abstract) of the classical symptoms. Severe acidosis and Kussmauls breathing (deep sighing respiration) are common. True shock (circulatory failure) as opposed to dehydration, is relatively uncommon in children with DKA. The severity of the raised glucose is not a good indicator of the onset of DKA and certainly most children with a blood glucose level of <11 are unlikely to have DKA. Nevertheless children with quite severe DKA (perhaps with blood glucose levels in the 20s) may still appear quite well. It is important 64. Paediatric - glycaemic emergencies in children (Abstract) without a long history of the Continue reading >>

Respiratory System And Diabetes

Respiratory System And Diabetes

Tweet The respiratory system is the system of organs that allow the body to take in oxygen and expel carbon dioxide, this process is known as gaseous exchange. We generally breathe between 12 and 20 times a minute. There are a number of complications of diabetes that can negatively affect our breathing. Parts of the respiratory system The following parts of the body make up the respiratory system: Mouth and nose Trachea (windpipe) Lungs Diaphragm How the respiratory system works Breathing is usually initiated by contraction of the diaphragm, a muscle which separates the chest cavity from the abdomen. Tweet Type 2 diabetes mellitus is a metabolic disorder that results in hyperglycemia (high blood glucose levels) due to the body: Being ineffective at using the insulin it has produced; also known as insulin resistance and/or Being unable to produce enough insulin Type 2 diabetes is characterised by the body being unable to metabolise glucose (a simple sugar). This leads to high levels of blood glucose which over time may damage the organs of the body. From this, it can be understood that for someone with diabetes something that is food for ordinary people can become a sort of metabolic poison. This is why people with diabetes are advised to avoid sources of dietary sugar. The good news is for very many people with type 2 diabetes this is all they have to do to stay well. If you can keep your blood sugar lower by avoiding dietary sugar, likely you will never need long-term medication. Type 2 diabetes was formerly known as non-insulin-dependent or adult-onset diabetes due to its occurrence mainly in people over 40. However, type 2 diabetes is now becoming more common in young adults, teens and children and accounts for roughly 90% of all diabetes cases worldwide. How serious Continue reading >>

Cheyne Stokes Breathing And Other Abnormal Respiration

Cheyne Stokes Breathing And Other Abnormal Respiration

Cheyne Stokes breathing is a type of abnormal breathing. It’s characterized by a gradual increase in breathing, and then a decrease. This pattern is followed by a period of apnea where breathing temporarily stops. The cycle then repeats itself. Normal breathing, the process of moving air in and out of the lungs 12 to 20 times per minute, is something most people seldom think about. However, abnormal breathing like Cheyne Stokes is serious and may be frightening. When does it most likely occur? According to research, Cheyne Strokes breathing can happen while you’re awake, but is more common during sleep. It may happen more during non-rapid eye movement (NREM) sleep than rapid eye movement (REM) sleep. When Cheyne Stokes occurs during sleep, it’s considered a form of central sleep apnea with an extended period of fast breathing (hyperventilation). Central sleep apnea causes you to stop breathing briefly and increases the levels of carbon dioxide in your body. Cheyne Stokes is usually related to heart failure or stroke. It may also be caused by: brain tumors traumatic brain injuries high altitude sickness encephalitis increased intercranial pressure chronic pulmonary edema People who are dying often experience Cheyne Stokes breathing. This is a natural effect of the body’s attempt to compensate for changing carbon dioxide levels. While it may be distressing to those who witness it, there’s no evidence Cheyne Stokes is stressful for the person experiencing it. Both Kussmaul breathing and Cheyne Stokes breathing are characterized by fast breathing and too much carbon dioxide in the body, but that’s where their similarities end. Kussmaul breathing doesn’t alternate between fast and slow breathing or cause breathing to stop like Cheyne Stokes does. Instead, it’ Continue reading >>

What Type Of Breathing Problem Is Kussmaul Breathing?

What Type Of Breathing Problem Is Kussmaul Breathing?

What type of breathing problem is kussmaul breathing? This pattern of fast, deep breaths sometimes happens in people who have a problem related to diabetes known as diabetic ketoacidosis. When you have diabetes, your body doesnt use sugar for energy the way it should. Instead, it burns stored fat for energy. That raises the level of acid in your blood. Your body tries to get things back into balance by getting rid of more carbon dioxide, so you breathe in faster and breathe out more deeply. It can also lead to fruity-smelling breath. The Cleveland Clinic: Vital signs, Dysnpea. Johns Hopkins Medicine: Vital signs, Hyperventilation, Transient Tachypnea of Newborn. Annals of Allergy, Asthma, & Immunology: Exercise-induced hyperventilation -- a pseudoasthma syndrome. Journal of Behavioral Medicine: Rebreathing to cope with hyperventilation: experimental tests of the paper bag method. International Journal of Psychophysiology: Hyperventilation in Panic Disorder and Asthma: Empirical Evidence and Clinical Strategies. McGee, Steven. fourth edition. Evidence-Based Physical Diagnosis, Walker, HK. third edition. Clinical Methods: The History, Physical, and Laboratory Examinations, Journal of Clinical Medicine: PlatypneaOrthodeoxia Syndrome. Journal of Clinical Investigation: Bradycardia during sleep apnea, characteristics and mechanism. Kansas Health System: Poison facts carbon monoxide. Respirology: Effect of increasing respiratory rate on airway resistance and reactance in COPD patients. EMDocs: Approach to Tachypnea in the ED Setting. Canadian Respiratory Journal : Altered respiratory physiology in obesity. Basic Research in Cardiology : Exertional hyperpnea in patients with chronic heart failure is a reversible cause of exercise intolerance. American Journal of Respiratory a Continue reading >>

What Can Cause Kussmaul Breathing & How Is It Treated?

What Can Cause Kussmaul Breathing & How Is It Treated?

Kussmaul Breathing is the name given to a condition in which the patient develops an extremely deep and labored breathing pattern. This is seen mostly in people who are diabetic and have severe forms of metabolic acidosis, especially diabetic ketoacidosis with kidney dysfunction. Kussmaul Breathing can also be explained as a form of hyperventilation which is a condition in which an individual breathes in such a deep pattern that the level of carbon dioxide decreases in the blood, which is seen mostly in metabolic acidosis where the breathing becomes extremely fast and shallow and as the condition worsens the breathing becomes shallow and deep and it looks as if the individual is virtually gasping for breath. This type of breathing in which the individual is virtually gasping for air is what is termed as Kussmaul Breathing. Kussmaul Breathing is a condition which results due to low levels of carbon dioxide in the blood. It is normally seen in people who have uncontrolled diabetes to level where they develop diabetic ketoacidosis resulting in the patient to have a very shallow and deep breathing. The carbon dioxide level decreases due to the desire of the individual to take a deep breath and exhale more amount of carbon dioxide than the norm resulting in a marked decrease in the level of carbon dioxide in the blood causing hyperventilation or Kussmaul Breathing. The conditions which can cause Kussmaul Breathing are: Diabetic Ketoacidosis: Diabetic ketoacidosis is a condition in which the glucose present in the blood is not able to be used by the body to produce energy because of severe need for insulin which is not there. This results in the inability of the body to get rid of the glucose to produce energy for the body. Metabolic Acidosis: This is a medical condition in w Continue reading >>

Diabetic Ketoacidosis And Hyperglycaemic Hyperosmolar State

Diabetic Ketoacidosis And Hyperglycaemic Hyperosmolar State

The hallmark of diabetes is a raised plasma glucose resulting from an absolute or relative lack of insulin action. Untreated, this can lead to two distinct yet overlapping life-threatening emergencies. Near-complete lack of insulin will result in diabetic ketoacidosis, which is therefore more characteristic of type 1 diabetes, whereas partial insulin deficiency will suppress hepatic ketogenesis but not hepatic glucose output, resulting in hyperglycaemia and dehydration, and culminating in the hyperglycaemic hyperosmolar state. Hyperglycaemia is characteristic of diabetic ketoacidosis, particularly in the previously undiagnosed, but it is the acidosis and the associated electrolyte disorders that make this a life-threatening condition. Hyperglycaemia is the dominant feature of the hyperglycaemic hyperosmolar state, causing severe polyuria and fluid loss and leading to cellular dehydration. Progression from uncontrolled diabetes to a metabolic emergency may result from unrecognised diabetes, sometimes aggravated by glucose containing drinks, or metabolic stress due to infection or intercurrent illness and associated with increased levels of counter-regulatory hormones. Since diabetic ketoacidosis and the hyperglycaemic hyperosmolar state have a similar underlying pathophysiology the principles of treatment are similar (but not identical), and the conditions may be considered two extremes of a spectrum of disease, with individual patients often showing aspects of both. Pathogenesis of DKA and HHS Insulin is a powerful anabolic hormone which helps nutrients to enter the cells, where these nutrients can be used either as fuel or as building blocks for cell growth and expansion. The complementary action of insulin is to antagonise the breakdown of fuel stores. Thus, the relea Continue reading >>

Kussmaul Breathing - An Overview | Sciencedirect Topics

Kussmaul Breathing - An Overview | Sciencedirect Topics

Nicholas J. White, in Manson's Tropical Infectious Diseases (Twenty-third Edition) , 2014 Hyperventilation or Kussmaul's breathing (sometimes termed respiratory distress) is a poor prognostic sign in malaria. In the tachypnoea associated with high fever, breathing is shallow compared with the ominous laboured hyperventilation associated with metabolic acidosis, pulmonary oedema or bronchopneumonia. Acute pulmonary oedema (acute respiratory distress syndrome) may develop at any time in severe falciparum malaria. It is particularly common in pregnant women, but rare in children. In some cases malaria ARDS may be difficult to distinguish clinically from pneumonia. The heart sounds are normal. The central venous pressure and pulmonary artery occlusion pressures are usually normal, the cardiac index is high and systemic vascular resistance is low. This points to an increase in capillary permeability (unless the patient has been overhydrated). The chest radiograph shows increased interstitial shadowing and a normal heart size. Julian L. Seifter, in Goldman's Cecil Medicine (Twenty Fourth Edition) , 2012 Symptoms include nausea, vomiting, anorexia, polydipsia, and polyuria. Patients often exhibit Kussmaul respirations and volume depletion. Neurologic symptoms include fatigue and lethargy with depression of the sensorium. CSF exhibits a change in acid-base status with treatment of diabetic ketoacidosis. Even without bicarbonate administration, CSF pH falls as a result of the ventilatory response to the correction of acidosis and the sudden rise in Pco2. However, no correlation between decreased CSF pH and depression of sensorium has been established. Ketoacidosis is also seen in cases of starvation, in which it is generally mild and not associated with hyperglycemia. Ketoacids Continue reading >>

Clinical Profile Of Diabetic Ketoacidosis: A Prospective Study In A Tertiary Care Hospital

Clinical Profile Of Diabetic Ketoacidosis: A Prospective Study In A Tertiary Care Hospital

Clinical Profile of Diabetic Ketoacidosis: A Prospective Study in a Tertiary Care Hospital 1Assistant Professor, Department of Emergency Medicine, Dayanand Medical College and Hospital, Ludhiana, India. 2Assistant Professor, Department of Emergency Medicine, Dayanand Medical College and Hospital, Ludhiana, India. 3Assistant Professor, Department of Emergency Medicine, Dayanand Medical College and Hospital, Ludhiana, India. NAME, ADDRESS, E-MAIL ID OF THE CORRESPONDING AUTHOR: Dr. Harpreet Kaur, Assistant Professor, Department of Emergency Medicine, Dayanand Medical College and Hospital, Ludhiana-141001, India. E-mail: moc.liamg@7021teerprahrd Received 2014 Jan 21; Revisions requested 2014 May 16; Accepted 2015 Apr 9. Copyright 2015 Journal of Clinical and Diagnostic Research This article has been cited by other articles in PMC. Diabetic ketoacidosis, a well-known and major acute metabolic complication classically occurs in young patients with type 1 diabetes. However, it may occur in patients with type 2 Diabetes Mellitus too. Aim of this study was to look into the clinical profile, precipitating factors and clinical outcome in the patients presenting with Diabetic ketoacidosis in the Emergency of a Tertiary care hospital. The study was a prospective study conducted over a period of two years in Kasturba Medical College, Manipal Karnataka, India. Clinical profile of 60 diabetic patients admitted in the Emergency with the diagnosis of Diabetic ketoacidosis were analysed. Out of 60 patients, 12 were of Type 1 and 48 were Type 2 Diabetes Mellitus. Mean duration of diabetes was 8.65 years. Only 14 (23.3%) patients were taking regular treatment for Diabetes Mellitus whereas 32 (53.33%) patients were on irregular treatment and eight (13.33%) were not on any treatment at all. Continue reading >>

Abnormal Respirations

Abnormal Respirations

There are multiple types of normal and abnormal respiration. They include apnea, eupnea, orthopnea, dyspnea, hyperpnea, hyperventilation, hypoventilation, tachypnea, Kussmaul respiration, Cheyne-Stokes respiration, sighing respiration, Biot respiration, apneustic breathing, central neurogenic hyperventilation, and central neurogenic hypoventilation. Each pattern is clinically important and useful in evaluating patients. [1] [2] Evaluating respiratory patterns assists the clinician in understandingthe patient's current physiologic status. Abnormal breathing patterns suggest the possibility of underlying injury or metabolic derangements. Early recognition of abnormal respiratory patterns can aid the clinician in early intervention to prevent further deterioration of the patient's condition. Breathing is controlled centrally in the brainstem. It receives input from central and peripheral chemoreceptors as well as voluntary control from the cerebrum. The brainstem also receives input from the chemoreceptors and adjusts the rate and tidal volume based on pH and PaCO2. The regular cycle of breathing originates in the medulla. The medullary respiratory center has several widely dispersed groups of neurons that are referred to the dorsal and ventral respiratory groups. There does not appear to be separate inspiratory and expiratory centers. Bilateral dorsal respiratory groups (DRG) control the rhythm of breathing by producing inspiratory impulses. Neurons from this center send impulses to the motor neurons of the diaphragm and the external intercostal muscles. These nerves also extend to the ventral respiratory groups (VRG). Input from the airways, lungs, joint proprioceptors and peripheral chemoreceptors via the vagus and glossopharyngeal nerves modify the breathing pattern. Continue reading >>

Understanding The Presentation Of Diabetic Ketoacidosis

Understanding The Presentation Of Diabetic Ketoacidosis

Hypoglycemia, diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar nonketotic syndrome (HHNS) must be considered while forming a differential diagnosis when assessing and managing a patient with an altered mental status. This is especially true if the patient has a history of diabetes mellitus (DM). However, be aware that the onset of DKA or HHNS may be the first sign of DM in a patient with no known history. Thus, it is imperative to obtain a blood glucose reading on any patient with an altered mental status, especially if the patient appears to be dehydrated, regardless of a positive or negative history of DM. In addition to the blood glucose reading, the history — particularly onset — and physical assessment findings will contribute to the formulation of a differential diagnosis and the appropriate emergency management of the patient. Pathophysiology of DKA The patient experiencing DKA presents significantly different from one who is hypoglycemic. This is due to the variation in the pathology of the condition. Like hypoglycemia, by understanding the basic pathophysiology of DKA, there is no need to memorize signs and symptoms in order to recognize and differentiate between hypoglycemia and DKA. Unlike hypoglycemia, where the insulin level is in excess and the blood glucose level is extremely low, DKA is associated with a relative or absolute insulin deficiency and a severely elevated blood glucose level, typically greater than 300 mg/dL. Due to the lack of insulin, tissue such as muscle, fat and the liver are unable to take up glucose. Even though the blood has an extremely elevated amount of circulating glucose, the cells are basically starving. Because the blood brain barrier does not require insulin for glucose to diffuse across, the brain cells are rece Continue reading >>

More in ketosis