diabetestalk.net

What Is The Meaning Of Acidosis?

Acidosis Vs. Acidemia

Acidosis Vs. Acidemia

Watch short & fun videos Start Your Free Trial Today An error occurred trying to load this video. Try refreshing the page, or contact customer support. You must create an account to continue watching Start Your Free Trial To Continue Watching As a member, you'll also get unlimited access to over 70,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed. Coming up next: Polycythemia: Symptoms & Treatment Log in or sign up to add this lesson to a Custom Course. Custom Courses are courses that you create from Study.com lessons. Use them just like other courses to track progress, access quizzes and exams, and share content. Organize and share selected lessons with your class. Make planning easier by creating your own custom course. Create a new course from any lesson page or your dashboard. Click "Add to" located below the video player and follow the prompts to name your course and save your lesson. Click on the "Custom Courses" tab, then click "Create course". Next, go to any lesson page and begin adding lessons. Edit your Custom Course directly from your dashboard. Name your Custom Course and add an optional description or learning objective. Create chapters to group lesson within your course. Remove and reorder chapters and lessons at any time. Share your Custom Course or assign lessons and chapters. Share or assign lessons and chapters by clicking the "Teacher" tab on the lesson or chapter page you want to assign. Students' quiz scores and video views will be trackable in your "Teacher" tab. You can share your Custom Course by copying and pasting the course URL. Only Study.com members will be able to access the entire course. Create an account to start this course today Are you confused Continue reading >>

> Renal Tubular Acidosis

> Renal Tubular Acidosis

Each time our internal organs do something, such as digesting food or healing damaged tissue, chemical reactions take place in the body's cells. These reactions cause acid to go into the bloodstream. Normally, the kidneys remove excess acid from blood, but certain diseases, genetic defects, or drugs can damage a kidney's ability to do this important job. This can allow too much acid to build up in the blood and cause problems. When this happens, it's called renal tubular acidosis (RTA). Without treatment, RTA can affect a child's growth and cause kidney stones, fatigue, muscle weakness, and other symptoms. Over time, untreated acidosis can lead to long-term problems like bone disease, kidney disease, and kidney failure. Fortunately, such complications are rare, since most cases of RTA can be effectively treated with medicines or by treating the condition that's causing the acid to build up. The kidneys are a pair of bean-shaped organs located toward the back of the abdominal cavity, just above the waist. The kidneys remove waste products and extra water from the food a person eats, returning chemicals the body needs (such as sodium, phosphorus, and potassium) back into the bloodstream. The extra water combines with other waste to become urine (pee). The main functional units of the kidneys, where the blood filtering happens, are tiny structures called nephrons. Each kidney has about a million nephrons, and each nephron has a renal tubule, a tube where the acid and waste products filtered from the blood are secreted into urine. Having a disease or defect can interfere with how the renal tubules function, which can lead to RTA. There are a few different kinds of RTA. The first two types are named for the part of the renal tubule in which the damage or defect is found. Typ Continue reading >>

Acidosis At Birth Significance For Very Premature, Low-birthweight Infants

Acidosis At Birth Significance For Very Premature, Low-birthweight Infants

Acidosis at birth significance for very premature, low-birthweight infants Summarized from Randolph D, Nolen T, Ambalaven N et al. Outcomes of extremely low birthweight infants with acidosis at birth. Arch Dis Child Fetal Neonatal Ed 2014 (published online February 19, 2014 ahead of print publication) Available at: Umbilical-cord blood gas analysis provides objective evidence of the metabolic status of neonates at the time of delivery. Perinatal metabolic acidosis is indicative of hypoxia (sometimes the result of asphyxia during birth) and associated risk of permanent brain damage. A recently published study sought to assess the incidence and significance of perinatal acidosis for that very small subset of newborns that are born very prematurely (<28 weeks gestation) and have extremely low birthweight (<1000 g). Around a third of these most vulnerable newborns do not survive and for those who do survive, around a third suffer neurodevelopmental impairment, manifest as one or more of a range of permanent life-disabling conditions that include cerebral palsy, blindness, deafness, cognitive deficit, etc. The principal question addressed by the study is: can the presence of acidosis at birth be used to help predict outcome for these highly vulnerable babies? The study population comprised 3979 babies born at hospitals across the US between 2002 and 2007 with birthweight in the range of 400-1000 g. Mean ( SD) gestational age for the cohort was 26 ( 2.0) weeks. For each of these very premature babies the results of cord blood gas analysis were retrieved. Additionally, clinical data relating to each pregnancy/birth, as well as eventual outcome for the baby were recovered. For the purposes of the study acidosis was defined as either cord-blood pH less than 7.0 or cord-blood ba Continue reading >>

Merck And The Merck Manuals

Merck And The Merck Manuals

Acidosis is caused by an overproduction of acid in the blood or an excessive loss of bicarbonate from the blood (metabolic acidosis) or by a buildup of carbon dioxide in the blood that results from poor lung function or depressed breathing (respiratory acidosis). If an increase in acid overwhelms the body's acid-base control systems, the blood will become acidic. As blood pH drops (becomes more acidic), the parts of the brain that regulate breathing are stimulated to produce faster and deeper breathing (respiratory compensation). Breathing faster and deeper increases the amount of carbon dioxide exhaled. The kidneys also try to compensate by excreting more acid in the urine. However, both mechanisms can be overwhelmed if the body continues to produce too much acid, leading to severe acidosis and eventually heart problems and coma. The acidity or alkalinity of any solution, including blood, is indicated on the pH scale. Metabolic acidosis develops when the amount of acid in the body is increased through ingestion of a substance that is, or can be broken down (metabolized) to, an acid—such as wood alcohol (methanol), antifreeze (ethylene glycol), or large doses of aspirin (acetylsalicylic acid). Metabolic acidosis can also occur as a result of abnormal metabolism. The body produces excess acid in the advanced stages of shock and in poorly controlled type 1 diabetes mellitus (diabetic ketoacidosis). Even the production of normal amounts of acid may lead to acidosis when the kidneys are not functioning normally and are therefore not able to excrete sufficient amounts of acid in the urine. Major Causes of Metabolic Acidosis Diabetic ketoacidosis (buildup of ketoacids) Drugs and substances such as acetazolamide, alcohols, and aspirin Lactic acidosis (buildup of lactic acid Continue reading >>

What Is Metabolic Acidosis?

What Is Metabolic Acidosis?

Metabolic acidosis happens when the chemical balance of acids and bases in your blood gets thrown off. Your body: Is making too much acid Isn't getting rid of enough acid Doesn't have enough base to offset a normal amount of acid When any of these happen, chemical reactions and processes in your body don't work right. Although severe episodes can be life-threatening, sometimes metabolic acidosis is a mild condition. You can treat it, but how depends on what's causing it. Causes of Metabolic Acidosis Different things can set up an acid-base imbalance in your blood. Ketoacidosis. When you have diabetes and don't get enough insulin and get dehydrated, your body burns fat instead of carbs as fuel, and that makes ketones. Lots of ketones in your blood turn it acidic. People who drink a lot of alcohol for a long time and don't eat enough also build up ketones. It can happen when you aren't eating at all, too. Lactic acidosis. The cells in your body make lactic acid when they don't have a lot of oxygen to use. This acid can build up, too. It might happen when you're exercising intensely. Big drops in blood pressure, heart failure, cardiac arrest, and an overwhelming infection can also cause it. Renal tubular acidosis. Healthy kidneys take acids out of your blood and get rid of them in your pee. Kidney diseases as well as some immune system and genetic disorders can damage kidneys so they leave too much acid in your blood. Hyperchloremic acidosis. Severe diarrhea, laxative abuse, and kidney problems can cause lower levels of bicarbonate, the base that helps neutralize acids in blood. Respiratory acidosis also results in blood that's too acidic. But it starts in a different way, when your body has too much carbon dioxide because of a problem with your lungs. Continue reading >>

Respiratory Acidosis

Respiratory Acidosis

LABORATORY TESTS The following lab tests can be used to interpret and explain acidosis and alkalosis conditions. All are measured on blood samples. 1. pH: This measures hydrogen ions - Normal pH = 7.35-7.45 2. pCO2= Partial Pressure of Carbon Dioxide: Although this is a pressure measurement, it relates to the concentration of GASEOUS CO2 in the blood. A high pCO2 may indicate acidosis. A low pCO2 may indicate alkalosis. 3. HCO3- = Bicarbonate: This measures the concentration of HCO3- ion only. High values may indicate alkalosis since bicarbonate is a base. Low values may indicate acidosis. 4. CO2 = Carbon Dioxide Content: This is a measure of ALL CO2 liberated on adding acid to blood plasma. This measure both carbon dioxide dissolved and bicarbonate ions and is an older test. Do not confuse with pCO2 Typically, dissolved carbon dioxide = l.2-2.0 mmoles/L and HCO3- = 22-28 mmoles/L Therefore, although it is listed as CO2 content, the lab test really reflects HCO3- concentration. Respiratory Acidosis .ABNORMAL pH IN THE BODY: ACIDOSIS AND ALKALOSIS: INTRODUCTION: Normal blood pH is maintained between 7.35 and 7.45 by the regulatory systems. The lungs regulate the amount of carbon dioxide in the blood and the kidneys regulate the bicarbonate. When the pH decreases to below 7.35 an acidosis condition is present. Acidosis means that the hydrogen ions are increased and that pH and bicarbonate ions are decreased. A greater number of hydrogen ions are present in the blood than can be absorbed by the buffer systems. Alkalosis results when the pH is above 7.45. This condition results when the buffer base (bicarbonate ions) is greater than normal and the concentration of hydrogen ions are decreased. Both acidosis and alkalosis can be of two different types: respiratory and metabol Continue reading >>

In The Brain, Acidity Means Anxiety

In The Brain, Acidity Means Anxiety

By Neuroskeptic | December 14, 2009 11:30 am According to Mormon author and fruit grower Dr Robert O. Young , pretty much all diseases are caused by our bodies being too acidic. By adopting an alkaline lifestyle to raise your internal pH (lower pH being more acidic), youll find that if you maintain the saliva and the urine pH, ideally at 7.2 or above, you will never get sick. Thats right you will NEVER get sick! Wow. Important aspects of the alkaline lifestyle include eating plenty of the right sort of fruits and vegetables, ideally ones grown by Young, and taking plenty of nutritional supplements . These dont come cheap, but when the payoff is being free of all diseases, who could complain? Young calls his amazing theory the Alkavorian Approach, aka the New Biology. Almost everyone else calls it quack medicine and pseudoscience. Because it is quack medicine and pseudoscience. But a paper just published in Cell suggests an interesting role for pH in, of all things, anxiety and panic The amygdala is a chemosensor that detects carbon dioxide and acidosis to elicit fear behavior . The authors, Ziemann et al, were interested in a protein called Acid Sensing Ion Channel 1a, ASIC1a, which as the name suggests, is acid-sensitive. Nerve cells expressing ASIC1a are activated when the fluid around them becomes more acidic. One of the most common causes of acidosis (a fall in body pH) is carbon dioxide, CO2 . Breathing is how we get rid of the CO2 produced by our bodies; if breathing is impaired, for example during suffocation, CO2 levels rise, and pH falls as CO2 is converted to carbonic acid in the bloodstream. In previous work, Ziemann et al found that the amygdala contains lots of ASIC1a. This is intriguing, because the amygdala is a brain region believed to be involved in fe Continue reading >>

Acidosis Ph And Ill Health

Acidosis Ph And Ill Health

"Acidosis, Ph, and ill Health" Acidosis is a condition in which there is too much acid in the body fluids. When nutritionists talk about acid- or alkaline-forming foods, they are referring to the condition of the food after ingestion. There are many food substances which are acidic in their natural form that become alkaline when broken down within the body. Every year the number of prescriptions written for acid-alkaline imbalances continues to increase. Antiacids, alkalizers, specific digestive enzymes, etc. remain popular as household "remedies" for many acute digestive disorders. The temporary relief experienced by these so-called remedies is interpreted by the majority of sufferers as being a cure for the problem. Nothing could be further from the truth. These drugs work in much the same way as a lazy housecleaner sweeps the dust under the rug; that is, covering up the symptom, but not eliminating the cause. Our bodies are like the rug in that they will only allow the drugs to cover up the problem for so long. Eventually, these acute digestive disorders will become chronic, resulting in a more difficult condition for the body to deal with. So, what was once simply a minor case of acid indigestion or heartburn becomes a major digestive ailment. The stomach, liver, small and large intestines, kidneys and pancreas can all be seriously impaired, both from consumption of an improper diet and from the use of drugs that cover up an overly-acidic diet and the, consequent indigestion. Almost anyone who has been eating the standard diet of meat, dairy foods and refined and processed foods will suffer in varying degrees from an acid-alkaline imbalance. Add to this fare: alcohol, cigarettes, drugs and condiments, and the percentages will rise even higher. The physicist MANFRED Continue reading >>

Anion Gap (blood) - Health Encyclopedia - University Of Rochester Medical Center

Anion Gap (blood) - Health Encyclopedia - University Of Rochester Medical Center

If you may have swallowed a poison, such as wood alcohol, salicylate (in aspirin), and ethylene glycol (in antifreeze), your provider may test your blood for it. If your provider thinks you have ketoacidosis, you might need a urine dipstick test for ketone compounds. Ketoacidosis is a health emergency. Many things may affect your lab test results. These include the method each lab uses to do the test. Even if your test results are different from the normal value, you may not have a problem. To learn what the results mean for you, talk with your healthcare provider. Results are given in milliequivalents per liter (mEq/L). Normal results are 3 to 10mEq/L, although the normal level may vary from lab to lab. If your results are higher, it may mean that you have metabolic acidosis. Hypoalbuminemia means you haveless albumin protein than normal. If you have this condition, your expected normal result must be lower. The test requires a blood sample, which is drawn through a needle from a vein in your arm. Taking a blood sample with a needle carries risks that include bleeding, infection, bruising, or feeling dizzy. When the needle pricks your arm, you may feel a slight stinging sensation or pain. Afterward, the site may be slightly sore. Being dehydrated or retaining water in your body can affect your results. Antibiotics such as penicillin can also affect your results. You don't need to prepare for this test. But be sure your healthcare provider knows about all medicines, herbs, vitamins, and supplements you are taking. This includes medicines that don't need a prescription and any illicit drugs you may use. Continue reading >>

Uncompensated, Partially Compensated, Or Combined Abg Problems

Uncompensated, Partially Compensated, Or Combined Abg Problems

Arterial Blood Gas (ABG) analysis requires in-depth expertise. If the results are not understood right, or are wrongly interpreted, it can result in wrong diagnosis and end up in an inappropriate management of the patient. ABG analysis is carried out when the patient is dealing with the following conditions: • Breathing problems • Lung diseases (asthma, cystic fibrosis, COPD) • Heart failure • Kidney failure ABG reports help in answering the following questions: 1. Is there acidosis or alkalosis? 2. If acidosis is present, whether it is in an uncompensated state, partially compensated state, or in fully compensated state? 3. Whether acidosis is respiratory or metabolic? ABG reports provide the following descriptions: PaCO2 (partial pressure of dissolved CO2 in the blood) and PaO2 (partial pressure of dissolved O2 in the blood) describe the efficiency of exchange of gas in the alveolar level into the blood. Any change in these levels causes changes in the pH. HCO3 (bicarbonate in the blood) maintains the pH of the blood within normal range by compensatory mechanisms, which is either by retaining or increasing HCO3 excretion by the kidney. When PaCO2 increases, HCO3 decreases to compensate the pH. The following table summarizes the changes: ABG can be interpreted using the following analysis points: Finding acidosis or alkalosis: • If pH is more it is acidosis, if pH is less it is alkalosis. Finding compensated, partially compensated, or uncompensated ABG problems: • When PaCO2 is high, but pH is normal instead of being acidic, and if HCO3 levels are also increased, then it means that the compensatory mechanism has retained more HCO3 to maintain the pH. • When PaCO2 and HCO3 values are high but pH is acidic, then it indicates partial compensation. It means t Continue reading >>

Causes And Consequences Of Fetal Acidosis

Causes And Consequences Of Fetal Acidosis

The causes and consequences ofacute (minutes or hours) andchronic (days or weeks) fetal acidosis are different In the past much attention has been paid to acute acidosis during labour, but in previously normal fetuses this israrely associated with subsequent damage In contrast, chronic acidosis, which is often not detected antenatally, is associated with a significant increase in neurodevelopmental delay The identification of small for gestational age fetuses by ultrasound scans and the use of Doppler waveforms to detect which of these have placental dysfunction mean that these fetuses can be monitored antenatally Delivery before hypoxia has produced chronic acidosis, may prevent subsequent damage and good timing of delivery remains the only management option at present. What is acidosis? Acidosis means a high hydrogen ion concentration in the tissues. Acidaemia refers to a high hydrogen ion concentration in the blood and is the most easily measured indication of tissue acidosis. The unit most commonly used is pH, which is log to base 10 of the reciprocal of the hydrogen ion concentration. Whereas blood pH can change quickly, tissue pH is more stable. The cut off taken to define acidaemia in adults is a pH of less than 7.36, but after labour and normal delivery much lower values commonly occur in the fetus (pH 7.00), often with no subsequent ill effects. Studies looking at the pH of fetuses from cord blood samples taken antenatally and at delivery have established reference ranges. Other indices sometimes used to assess acidosis are the base excess or bicarbonate. Neither of these is measured by conventional blood gas machines but is calculated from the measured pH and pCO2. The major sources of hydrogen ions in the fetus are carbonic and lactic acids from aerobic and a Continue reading >>

Acidosis

Acidosis

What is acidosis? Acidosis is a serious metabolic imbalance in which there is an excess of acidic molecules in the body. This can occur as a result of acid overproduction, impaired acid transport, acid underexcretion, or any combination. With overproduction, the body makes too much acid. This can occur in sepsis, a life-threatening widespread infection in which the body makes too much lactic acid. With underexcretion, the body is unable to rid itself of excess acid. This can occur in renal failure and various lung diseases. In renal failure, the kidneys are unable to cleanse the blood of acid. In pulmonary diseases, the lungs are unable to exhale sufficient carbon dioxide. Carbon dioxide is a gaseous form of acid that builds up in the bloodstream. Both conditions may coexst in a number of serious diseases, such as pneumonia and pulmonary edema (fluid in the lungs), which is seen in a particularly severe form of heart failure. Doctors diagnose acidosis with blood tests, the most common of which is known as a pH test. The normal pH of the body is 7.4 (a lower pH value is more acidic, higher pH is more alkaline). Acidosis is defined as a pH less than 7.4. Specific blood tests may be used to identify particular acids, such as lactic acid. The treatment of acidosis depends on its cause. Therapy may range from simple interventions, such as oral medications and intravenous fluids, to invasive measures, such as dialysis and surgery. The outcome of acidosis depends on its severity. Seek immediate medical care (call 911) for serious symptoms, such as rapid breathing, confusion, shortness of breath, and lethargy, especially in the setting of lung disease, kidney disease, or other diseases that can cause acidosis. Seek prompt medical care if you are being treated for chronic acidos Continue reading >>

The Quick And Dirty Guide To Acid Base Balance | Medictests.com

The Quick And Dirty Guide To Acid Base Balance | Medictests.com

Your patient has a ph of 6.9 Is he acidic or alkalotic? Your patient has a ph of 7.4 Is he acidic or alkalotic? Your patient has a ph of 7.7 Is he acidic or alkalotic? Your patient has a ph of 7.25 Is he acidic or alkalotic? Your patient has a ph of 7.43 Is he acidic or alkalotic? Your patient has a ph of 8.0 Is he acidic or alkalotic? 1. acidic 2. normal 3. Alkaline 4. Acidic 5. Normal 6. Alkaline You take in oxygen by inhaling, your body turns oxygen into carbon dioxide, you exhale and remove the carbon dioxide from your body. Carbon dioxide is "respiratory acid."When you're not breathing adequately, you are not getting rid of this "respiratory acid" and it builds up in the tissues. The extra CO2 molecules combine with water in your body to form carbonic acid and makes your pH go up. This is bad. We can measure the amount of respiratory acid in the arterial blood using blood gases. They measure the amount of each gas in your blood. We measure the pH, the amount of carbon dioxide (PaCO2) and the amount of oxygen in the blood (PaO2). PaCO2 is the partial pressure of carbon dioxide. We can measure it to see how much respiratory acid (CO2) there is in the blood. We use arterial blood gas tests to check it. How much respiratory acid (CO2) should there be? The normal value is 35-45 mmHg (mmHg just means millimeters of mercury, its a measurement of pressure.) The (a) in PaCO2 just stands for arterial. If you measured venous blood gasses, the levels are different and PvCO2 is used. If CO2 is HIGH, it means there is a buildup of respiratory acids because he's not breathing enough CO2 away. If your pH is acidic, and your CO2 is HIGH, its considered respiratory acidosis. If CO2 is LOW, it means there are not enough respiratory acids because he's probably hyperventilating too mu Continue reading >>

What Are The Dangers Of High Or Low Ph Levels?

What Are The Dangers Of High Or Low Ph Levels?

A woman is getting her heartbeat listened to.Photo Credit: Medioimages/Photodisc/Photodisc/Getty Images What Are the Dangers of High or Low PH Levels? Joseph Pritchard graduated from Our Lady of Fatima Medical School with a medical degree. He has spent almost a decade studying humanity. Dr. Pritchard writes as a San Francisco biology expert for a prominent website and thoroughly enjoys sharing the knowledge he has accumulated. Your body needs to maintain an optimum acid-base balance, or pH level, to ensure the various processes within your body occur without problems, according to the University of Maryland Medical Center. When your bodys pH level becomes high, the condition is known as alkalosis. When your bodys pH level becomes low, the condition is called acidosis. Both alkalosis and acidosis can have dangerous consequences if untreated. Alkalosis can cause arrhythmia, or an irregular heartbeat, notes the New York Times Health Guide. This may occur when your body hyperventilates. The consequent irregularity in breathing can cause the heart to beat at irregular intervals as well. In order to diagnosis alkalosis, doctors will check carbon dioxide and sodium bicarbonate levels in your blood. These two chemicals help regulate breathing, heart rate and organ function. If you have high pH levels, your carbon dioxide will be low and sodium bicarbonate levels will be high. This will cause an increase in your breathing rate and cardiac arrhythmia. You may experience difficulty breathing, chest pain and palpitations. Alkalosis can induce a coma if pH levels are sufficiently high, notes the New York Times Health Guide. This may be a consequence of breathing difficulties typical of alkalosis. The risk of an alkalosis-induced coma may be affected by other factors, such as the le Continue reading >>

Feline Chronic Kidney Disease

Feline Chronic Kidney Disease

Home > Key Issues > Metabolic Acidosis Overview Metabolic acidosis means that the levels of acid in the cat's body are too high. It is extremely common in CKD cats, usually cats in Stage IV, and can make the cat feel ill and the CKD progress faster. It can be tricky to diagnose, but fortunately it is relatively easy to treat. What is Metabolic Acidosis? There is a delicate balance within the body known as acid-base balance (pH): Metabolic acidosis means that this balance is disrupted, in that levels of acid in the cat's body are too high, so the blood pH is too low (acidic). Acid is produced in the body as a result of diet. In healthy cats, the kidneys help to balance acid levels in the body in two ways: Bicarbonate ions (which are alkaline) in the kidneys help protect against acid build-up in the body; Any excess acids that do arise are flushed from the body by the kidneys. Unfortunately the excessive urine flow of CKD washes the protective bicarbonate ions out of the kidneys. On the other hand, the damaged kidneys may no longer flush the acids from the body properly. As a result of these damaged mechanisms, acidity levels in the blood rise, and the body’s pH becomes too low. This is known as acidosis. "Metabolic" means that the acidosis is caused by kidney disease. This is to differentiate it from another type of acidosis known as respiratory acidosis, which is caused by the lungs not expelling carbon dioxide properly. I know a lot of people get confused by the word "acidosis" and think it is the same thing as excess stomach acid, but that is not the case. Gastrin is a gastrointestinal hormone which stimulates the secretion of gastric acid, which helps the stomach digest food. The kidneys are responsible for the excretion of gastrin, but in CKD this function may not Continue reading >>

More in ketosis