diabetestalk.net

What Is The Key Differentiating Factor Between Dka And Hhs

Management Of The Hyperosmolar Hyperglycaemic State (hhs) In Adults With Diabetes (aug 2012)

Management Of The Hyperosmolar Hyperglycaemic State (hhs) In Adults With Diabetes (aug 2012)

Management of the hyperosmolar hyperglycaemic state (HHS) in adults with diabetes (Aug 2012) Management of the hyperosmolar hyperglycaemic state (HHS) in adults with diabetes (Aug 2012) Unlike the other common diabetes emergency, diabetic ketoacidosis (DKA), guidelines on the management of the hyperglycaemic hyperosmolar state (HHS) in adults are uncommon and often there is little to differentiate them from the management of DKA. However, HHS is different and treatment requires a different approach. The person with HHS is often elderly, frequently with multiple co-morbidities but always very sick. Even when specific hospital guidelines are available, adherence to and use of these is variable amongst the admitting teams. In many hospitals these patients are managed by non-specialist teams, and it is not uncommon for the most junior member, who is least likely to be aware of the hospital guidance, to be given responsibility for the initial management of this complex and challenging condition. Diabetes specialist teams are rarely involved at an early stage and sometimes never at all. To address these issues the Joint British Diabetes Societies (JBDS) for inpatient care, supported by NHS Diabetes, has produced up-to-date guidance for healthcare professionals to diagnose and manage HHS. JBDS-IP is supported by Diabetes UK, the Association of British Clinical Diabetologists (ABCD) and the Diabetes Inpatient Specialist Nurse UK Group. The aim of JBDS-IP is to improve inpatient diabetes care throughout the UK. This is mainly through the development and use of high quality evidence based guidelines, and through better inpatient care pathways. Continue reading >>

Difference Between Dka And Hhs

Difference Between Dka And Hhs

DKA vs HHS “DKA” means “diabetic ketoacidosis” and “HHS” means “Hyperosmolar Hyperglycemic Syndrome.” Both DKA and HHS are the two complications of diabetes mellitus. Though there are many differences between DKA and HHS, the basic problem is associated with insulin deficiency. When comparing the two, HHS has a higher mortality rate. When DKA has a mortality rate of 2 to 5 per cent, HHS has a 15 per cent mortality rate. Diabetic ketoacidosis is seen mainly in type 1 diabetic patients but is also seen in some type 2 diabetic patients. Hyperosmolar Hyperglycemic Syndrome is mainly seen in older patients having type 2 diabetes. DKA is mainly characterized by hyperglycemia, acidosis-producing derangements, and dehydration. Infection, disruption of insulin, and onset of diabetes are some of the common causes of DKA. Hyperglycemia, dehydration and hyperosmolarity are some of the common characteristics of Hyperosmolar Hyperglycemic Syndrome. But HHS does not have ketoacidosis. Some of the early symptoms of diabetic ketoacidosis include increased thirst and increased urination. Other symptoms include malaise, weakness, and fatigue. Bacterial infection, illness, insulin deficiency, stress, and insulin infusion catheter blockage are some of the causes that lead to DKA. When compared to diabetic ketoacidosis, the Hyperosmolar Hyperglycemic Syndrome develops only over the course of a week. Diabetic ketoacidosis develops rapidly. Increased dehydration, acute illness, vomiting, dementia, pneumonia, immobility, and urinary tract infections are some of the common causes of Hyperosmolar Hyperglycemic Syndrome. One of the main goals of treatment of DKA involves correcting high blood glucose levels by injecting insulin as well as replacing fluid lost because of vomiting an Continue reading >>

Hyperosmolar Hyperglycaemic State

Hyperosmolar Hyperglycaemic State

Professional Reference articles are written by UK doctors and are based on research evidence, UK and European Guidelines. They are designed for health professionals to use. You may find the Type 2 Diabetes article more useful, or one of our other health articles. Synonyms: hyperosmolar hyperglycaemic nonketotic coma (HONK), diabetic nonketotic coma, hyperosmolar nonketotic state, hyperosmolar nonketotic hyperglycaemia (HNKH) See also separate articles Coma, Diabetes and Intercurrent Illness, Management of Type 2 Diabetes Mellitus, Diabetic Ketoacidosis and Childhood Ketoacidosis. Hyperosmolar hyperglycaemic state (HHS) occurs in people with type 2 diabetes. Very high blood glucose levels (often over 40 mmol/L) develop as a result of a combination of illness, dehydration and an inability to take normal diabetes medication due to the effect of illness. HHS is characterised by severe hyperglycaemia with marked serum hyperosmolarity, without evidence of significant ketosis. HHS is a potentially life-threatening emergency. Hyperglycaemia causes an osmotic diuresis with hyperosmolarity leading to an osmotic shift of water into the intravascular compartment, resulting in severe intracellular dehydration. Ketosis does not occur due to the presence of basal insulin secretion sufficient to prevent ketogenesis but insufficient to reduce blood glucose. A mixed picture of HHS and diabetic ketoacidosis (DKA) may occur. There is no precise definition of HHS but there are characteristic features that differentiate it from other hyperglycaemic states such as DKA. These are:[1] Hypovolaemia. Marked hyperglycaemia (30 mmol/L or more) without significant hyperketonaemia (<3 mmol/L) or acidosis (pH>7.3, bicarbonate >15 mmol/L). Osmolality usually 320 mosmol/kg or more. Causative conditions Continue reading >>

Differentiating Between Dka And Hhs.

Differentiating Between Dka And Hhs.

Authors: Christy McDonald Lenahan, MSN, RN, FNP-BC, and Brenda Holloway, DNSc, MSN, RN, FNP-BC, Lafayette, LA, Mobile, AL wo of the most common metabolic emergencies associated with diabetes mellitus are diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar state (HHS). 1 Although each disorder results in severe hyperglycemia, the underlying pathophysiology, clinical presentation, and treatment are vastly different. 2 It is imperative that clinicians be keenly aware of these differences, considering the variation in clinical pathways associated with each hyperglycemic emergency. 3 This article will compare and contrast the epidemiology, associated risk factors, differential diagnoses, clinical presentation, diagnosis, and medical management of DKA and HHS. Persons of African American ethnicity and older persons are at an increased risk for the development of HHS. 8 Rates of hospital admissions associated with HHS are signicantly lower than those associated with DKA and account for less than 1% of all diabetic-related admissions. 3 It should be noted, however, that between the years of 1997 and 2009 there was a 52.4% increase in the HHS hospitalization rate among children and adolescents. 9 Moreover, it is predicted that as the occurrence of type 2 diabetes mellitus (T2DM) continues to rise, so will the occurrence of HHS. 1 Mortality rates associated with HHS are signicantly higher than those associated with DKA and range from 10% to 20%. 1 Although gender appears to have no effect on the incidence of DKA, being a member of an ethnic minority, including African and Hispanic, places one at an increased risk for the development of DKA. 4 Data suggest that the incidence of DKA has steadily risen, from 80,000 hospital discharges in 1988 to 140,000 hospital discharges i Continue reading >>

What Is The Difference Between Hyperglycemia And Hypoglycemia?

What Is The Difference Between Hyperglycemia And Hypoglycemia?

By Debra A. Sokol-McKay, MS, CVRT, CDE, CLVT, OTR/L, SCLV What Is Hyperglycemia? In relation to diabetes, hyperglycemia refers to chronically high blood glucose levels. Most medical professionals define hyperglycemia by using the blood glucose goals that you and your physician have established and combining those goals with the blood glucose target ranges set by the American Diabetes Association. It's important to understand that you'll probably experience high blood glucose levels from time to time, despite your best efforts at control. As with any chronic disease, talk with your physician and diabetes care team if the pattern of your blood glucose readings is consistently higher or lower than your blood glucose goals. Complications from Hyperglycemia Persistent hyperglycemia can cause a wide range of chronic complications that affect almost every system in your body. When large blood vessels are affected, it can lead to: Stroke (cerebral vascular disease) Heart attack or Congestive Heart Failure (coronary heart disease) Circulation disorders and possible amputation (peripheral vascular disease) When smaller blood vessels are affected, it can lead to: Kidney disease (nephropathy) Nerve damage (neuropathy) Diabetic eye disease (retinopathy) Joseph Monks: Writer, Producer, and Film Director Joseph Monks, who has diabetic retinopathy, creates and produces films for his production company Sight Unseen Pictures. He is also the first blind filmmaker to direct a feature film. Says Joe, "I'm not uncomfortable with the term 'blind.' I'm not thrilled about it, of course, but it's accurate. The lights went out for me in early 2002 as a result of diabetic retinopathy—the death of my retinas. It is what it is, so when it happened, I decided that I wasn't going to let it put an en Continue reading >>

Diabetic Ketoacidosis And Hyperglycemic Hyperosmolar Syndrome

Diabetic Ketoacidosis And Hyperglycemic Hyperosmolar Syndrome

In Brief Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic syndrome (HHS) are two acute complications of diabetes that can result in increased morbidity and mortality if not efficiently and effectively treated. Mortality rates are 2–5% for DKA and 15% for HHS, and mortality is usually a consequence of the underlying precipitating cause(s) rather than a result of the metabolic changes of hyperglycemia. Effective standardized treatment protocols, as well as prompt identification and treatment of the precipitating cause, are important factors affecting outcome. The two most common life-threatening complications of diabetes mellitus include diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar syndrome (HHS). Although there are important differences in their pathogenesis, the basic underlying mechanism for both disorders is a reduction in the net effective concentration of circulating insulin coupled with a concomitant elevation of counterregulatory hormones (glucagon, catecholamines, cortisol, and growth hormone). These hyperglycemic emergencies continue to be important causes of morbidity and mortality among patients with diabetes. DKA is reported to be responsible for more than 100,000 hospital admissions per year in the United States1 and accounts for 4–9% of all hospital discharge summaries among patients with diabetes.1 The incidence of HHS is lower than DKA and accounts for <1% of all primary diabetic admissions.1 Most patients with DKA have type 1 diabetes; however, patients with type 2 diabetes are also at risk during the catabolic stress of acute illness.2 Contrary to popular belief, DKA is more common in adults than in children.1 In community-based studies, more than 40% of African-American patients with DKA were >40 years of age and more than 2 Continue reading >>

Diabetic Ketoacidosis And Hypersmolar Non-ketotic Coma

Diabetic Ketoacidosis And Hypersmolar Non-ketotic Coma

Diabetic Ketoacidosis and Hypersmolar Non-ketotic coma Diabetic Ketoacidosis and Hypersmolar Non-ketotic coma Diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar state (HHS) are the most serious acute metabolic complications of diabetes. Recent data indicate there are more than 144,000 hospital admissions per year for DKA in the United States and the number of cases show an upward trend, with a 30% increase in the annual number of cases between 1995 and 2009. Treatment of DKA utilizes a large number of resources with an annual medical expense of $2.4 billion. The rate of hospital admissions for HHS is lower than for DKA, accounting for less than 1% of all diabetes-related admissions. Although DKA and HHS are often discussed as separate entities, they represent points along a spectrum of hyperglycemic emergencies due to poorly controlled diabetes. Both DKA and HHS are characterized by insulinopenia and severe hyperglycemia. Clinically, they differ only by the degree of dehydration and the severity of metabolic acidosis. DKA has long been considered a key clinical feature of type 1 diabetes (T1D), but in contrast to popular belief, DKA is more common in patients with type 2 diabetes (T2D). T2D now accounts for up to one half of all newly diagnosed diabetes in children ages 10-21 years. In the U.S., the SEARCH for Diabetes in Youth Study found that 29.4% of participants under 20 years of age with T1D presented with DKA, compared with 9.7% of youth with T2D. In community-based studies more than 40% of patients with DKA are older than 40 and more than 20% are older than 55. Patients with T2D may develop DKA under stressful conditions such as trauma, surgery or infections. In addition, in recent years an increasing number of unprovoked ketoacidosis cases without preci Continue reading >>

Hyperglycemic Crises: Diabetic Ketoacidosis (dka), And Hyperglycemic Hyperosmolar State (hhs)

Hyperglycemic Crises: Diabetic Ketoacidosis (dka), And Hyperglycemic Hyperosmolar State (hhs)

Go to: Diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar state (HHS) are acute metabolic complications of diabetes mellitus that can occur in patients with both type 1 and 2 diabetes mellitus. Timely diagnosis, comprehensive clinical and biochemical evaluation, and effective management is key to the successful resolution of DKA and HHS. Critical components of the hyperglycemic crises management include coordinating fluid resuscitation, insulin therapy, and electrolyte replacement along with the continuous patient monitoring using available laboratory tools to predict the resolution of the hyperglycemic crisis. Understanding and prompt awareness of potential of special situations such as DKA or HHS presentation in comatose state, possibility of mixed acid-base disorders obscuring the diagnosis of DKA, and risk of brain edema during the therapy are important to reduce the risks of complications without affecting recovery from hyperglycemic crisis. Identification of factors that precipitated DKA or HHS during the index hospitalization should help prevent subsequent episode of hyperglycemic crisis. For extensive review of all related areas of Endocrinology, visit WWW.ENDOTEXT.ORG. Go to: INTRODUCTION Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS) represent two extremes in the spectrum of decompensated diabetes. DKA and HHS remain important causes of morbidity and mortality among diabetic patients despite well developed diagnostic criteria and treatment protocols (1). The annual incidence of DKA from population-based studies is estimated to range from 4 to 8 episodes per 1,000 patient admissions with diabetes (2). The incidence of DKA continues to increase and it accounts for about 140,000 hospitalizations in the US in 2009 (Figure 1 a) (3). Continue reading >>

Dka Vs Hhs (hhns) Nclex Review

Dka Vs Hhs (hhns) Nclex Review

Diabetic ketoacidosis vs hyperglycemic hyperosmolar nonketotic syndrome (HHNS or HHS): What are the differences between these two complications of diabetes mellitus? This NCLEX review will simplify the differences between DKA and HHNS and give you a video lecture that easily explains their differences. Many students get these two complications confused due to their similarities, but there are major differences between these two complications. After reviewing this NCLEX review, don’t forget to take the quiz on DKA vs HHNS. Lecture on DKA and HHS DKA vs HHNS Diabetic Ketoacidosis Affects mainly Type 1 diabetics Ketones and Acidosis present Hyperglycemia presents >300 mg/dL Variable osmolality Happens Suddenly Causes: no insulin present in the body or illness/infection Seen in young or undiagnosed diabetics Main problems are hyperglycemia, ketones, and acidosis (blood pH <7.35) Clinical signs/symptoms: Kussmaul breathing, fruity breath, abdominal pain Treatment is the same as in HHNS (fluids, electrolyte replacement, and insulin) Watch potassium levels closely when giving insulin and make sure the level is at least 3.3 before administrating. Hyperglycemic Hyperosmolar Nonketotic Syndrome Affects mainly Type 2 diabetics No ketones or acidosis present EXTREME Hyperglycemia (remember heavy-duty hyperglycemia) >600 mg/dL sometimes four digits High Osmolality (more of an issue in HHNS than DKA) Happens Gradually Causes: mainly illness or infection and there is some insulin present which prevents the breakdown of ketones Seen in older adults due to illness or infection Main problems are dehydration & heavy-duty hyperglycemia and hyperosmolarity (because the glucose is so high it makes the blood very concentrated) More likely to have mental status changes due to severe dehydrat Continue reading >>

Hyperosmolar Non Ketotic Hypergycaemic Coma (honk) - Deranged Physiology

Hyperosmolar Non Ketotic Hypergycaemic Coma (honk) - Deranged Physiology

Hyperosmolar Non Ketotic Hypergycaemic Coma (HONK) Though a distinction is being made between diabetic ketoacidosis and HONK, the two really form a part of the same disease spectrum. Some ketoacidosis is present in HONK, and some hyperosmolarity is present in DKA. However, different mechanisms are at play. HONK is distinct form DKA, and the distinction is not entirely arbitrary, at least from the management point of view. For instance, even though the conditions co-exist 30% of the time, it is possible to treat pure HONK without any supplemental insulin (because there is a satisfactory amount of it in circulation already).DKA is 3 times more common, but HONK has 3 times greater mortality. The chapter on DKA presents a table of discriminating features to help distinguish HONK from DKA. Past CICM SAQs involving HONk have included the following: Question 24 from the first paper of 2017 (management strategy) Question 1 from the second paper of 2016 (DKA vs HONK) Question 17 from the first paper of 2014 (DKA vs HONK) Question 18.1 from the second paper of 2008 (diagnosis and complications) Question 13 from the first paper of 2002 (pathophysiology, complications and treatment) Similarly to DKA, a stress response which mobilises metabolic substrates in a Type 2 diabetic will result in HONK. Precipitating Factors for Hyperosmolar Hyperglycaemia The key distinction between DKA and HONK seems to be the fact that in HONk, there is still enough insulin to overcome the ketogenic effects of glucagon. Glucagon inhibits acetyl-CoA carboxylase, which normally converts acetyl-CoA into malonyl-CoA. Malonyl CoA inhibits acyl-carnitine synthesis; if this is uninhibited, it results in a stream of fatty acids being sucked up into the mitochondria to be converted into ketones. Thus, we have a Continue reading >>

Diabetes Update: Acute Complications

Diabetes Update: Acute Complications

"Diabetes update: Acute complications" CE credit is no longer available for this article. Originally posted April 2001 MARJORIE CYPRESS, MS, C-ANP, CDE MARJORIE CYPRESS is a nurse practitioner and certified diabetes educator for Lovelace Health Systems, Albuquerque, N.M. Series Editor: Carolyn Robertson, RN, MSN, CDE KEY WORDS: acute complications, hyperglycemia, hypoglycemia, diabetic ketoacidosis, hyperosmolar hyperglycemic state, ketosis Critically high or low blood sugar in a patient with diabetes is a medical emergency. You'll need to be able to quickly identify and know how to manage the acute complications of diabetes to help a patient avoid a tragic outcome. Here's how. Jump to: Choose article section... Emergency treatment of acute complications of diabetes demands quick recognition of the problem and immediate intervention. High blood sugar can progress to diabetic ketoacidosis (DKA) in Type 1 diabetics, and hyperosmolar hyperglycemic state (HHS) in those with Type 2. But every diabetic patient taking a hypoglycemic agent is at risk for hypoglycemia, the most common—and most feared—complication. Here we'll review the pathophysiology behind DKA, HHS, and hypoglycemia; provide assessments that help distinguish one complication from another; and discuss emergency treatments and nursing strategies that can prevent a potentially fatal outcome. Too much sugar, too little insulin DKA, often referred to as diabetic coma, occurs when there's a profound lack of insulin in the body. Without insulin, the body can't use glucose for fuel. Cells starve as sugar accumulates. The blood becomes thick with sugar, which promotes osmotic diuresis. As the body loses water, the excess sugar spills into the urine, taking important electrolytes with it. Patients become thirsty and Continue reading >>

Diabetic Ketoacidosis And Hyperosmolar Hyperglycemic State In Adults: Clinical Features, Evaluation, And Diagnosis

Diabetic Ketoacidosis And Hyperosmolar Hyperglycemic State In Adults: Clinical Features, Evaluation, And Diagnosis

INTRODUCTION Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS, also known as hyperosmotic hyperglycemic nonketotic state [HHNK]) are two of the most serious acute complications of diabetes. DKA is characterized by ketoacidosis and hyperglycemia, while HHS usually has more severe hyperglycemia but no ketoacidosis (table 1). Each represents an extreme in the spectrum of hyperglycemia. The precipitating factors, clinical features, evaluation, and diagnosis of DKA and HHS in adults will be reviewed here. The epidemiology, pathogenesis, and treatment of these disorders are discussed separately. DKA in children is also reviewed separately. (See "Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Epidemiology and pathogenesis".) Continue reading >>

Diabetic Ketoacidosis And Hyperglycaemic Hyperosmolar State

Diabetic Ketoacidosis And Hyperglycaemic Hyperosmolar State

The hallmark of diabetes is a raised plasma glucose resulting from an absolute or relative lack of insulin action. Untreated, this can lead to two distinct yet overlapping life-threatening emergencies. Near-complete lack of insulin will result in diabetic ketoacidosis, which is therefore more characteristic of type 1 diabetes, whereas partial insulin deficiency will suppress hepatic ketogenesis but not hepatic glucose output, resulting in hyperglycaemia and dehydration, and culminating in the hyperglycaemic hyperosmolar state. Hyperglycaemia is characteristic of diabetic ketoacidosis, particularly in the previously undiagnosed, but it is the acidosis and the associated electrolyte disorders that make this a life-threatening condition. Hyperglycaemia is the dominant feature of the hyperglycaemic hyperosmolar state, causing severe polyuria and fluid loss and leading to cellular dehydration. Progression from uncontrolled diabetes to a metabolic emergency may result from unrecognised diabetes, sometimes aggravated by glucose containing drinks, or metabolic stress due to infection or intercurrent illness and associated with increased levels of counter-regulatory hormones. Since diabetic ketoacidosis and the hyperglycaemic hyperosmolar state have a similar underlying pathophysiology the principles of treatment are similar (but not identical), and the conditions may be considered two extremes of a spectrum of disease, with individual patients often showing aspects of both. Pathogenesis of DKA and HHS Insulin is a powerful anabolic hormone which helps nutrients to enter the cells, where these nutrients can be used either as fuel or as building blocks for cell growth and expansion. The complementary action of insulin is to antagonise the breakdown of fuel stores. Thus, the relea Continue reading >>

Hyperglycemic Crises

Hyperglycemic Crises

- ECG, CXR, cultures (blood, urine, sputum, etc) - correct insulin deficiency: IV insulin bolus, IV insulin continuous infusion - maintain electrolyte balance: sodium, potassium, calcium, magnesium, phosphate, bicarbonate - identify precipitating causes: starvation, dementia, medications, infection - frequent patient monitoring (clinical and laboratory) - restores intravascular and intracellular volume - rapid hydration facilitates insulin correction of hyperosmolar state - must monitor for electrolyte changes: sodium, postassium, calcium, magnesium, phosphate, bicarbonate - presence of hemodynamic instability or comorbid conditions may influence rehydration strategy (hypotension, CHF, fluid overload, CKD) - IV normal saline (NS 0.9% NaCl) infused at a rate of 15-20 ml/kg/h for one hour (1-1.5 liters) -- normo or hypernatremia: IV 1/2 NS 250-500 ml/h -- used corrected Na when BG >100 mg/dl (corrected Na = Na + 1.6 x each 100 mg/dl greater than 100 mg/dl) - when blood glucose reaches 200 mg/dl (DKA) or 300 mg/dl (HHS) change to 5% dextrose (D5W) and 1/2 NS at 150-250 ml/h - DO NOT START if K <3.3 meq/L - REPLACE K FIRST (can cause arrthymia) - IV route preferred: easier to titrate, shorter half life of IV insulin so less risk of hypoglycemia - if BG doesn't decrease by 10% in first hour, increase infusion rate - reduce infusion to 0.02-0.05 units/kg/h when BG goal is met: DKA 200 mg/dl HHS 300 mg/dl - restore or maintain electrolyte balance- most often need to correct potassium, phosphate, and bicarbonate - give K if potassium <5 mEq/l- to prevent insulin induced hypokalemia, 20-30 mEq/l added to IV fluids - if phosphate <1.0 mg/dl- 20-30 mEq/l added to IV fluids - bicarbonate, pH < 6.9- contoversial, 100 mml NaHCO3 in 400 ml H20 and 20 mEq K. infuse over 2 hours until Continue reading >>

Hyperosmolar Hyperglycemic State

Hyperosmolar Hyperglycemic State

Background Hyperosmolar hyperglycemic state (HHS) is one of two serious metabolic derangements that occurs in patients with diabetes mellitus (DM). [1] It is a life-threatening emergency that, although less common than its counterpart, diabetic ketoacidosis (DKA), has a much higher mortality rate, reaching up to 5-10%. (See Epidemiology.) HHS was previously termed hyperosmolar hyperglycemic nonketotic coma (HHNC); however, the terminology was changed because coma is found in fewer than 20% of patients with HHS. [2] HHS is most commonly seen in patients with type 2 DM who have some concomitant illness that leads to reduced fluid intake, as seen, for example, in elderly institutionalized persons with decreased thirst perception and reduced ability to drink water. [3] Infection is the most common preceding illness, but many other conditions, such as stroke or myocardial infarction, can cause this state. [3] Once HHS has developed, it may be difficult to identify or differentiate it from the antecedent illness. (See Etiology.) HHS is characterized by hyperglycemia, hyperosmolarity, and dehydration without significant ketoacidosis. Most patients present with severe dehydration and focal or global neurologic deficits. [2, 4, 5] The clinical features of HHS and DKA overlap and are observed simultaneously (overlap cases) in up to one third of cases. According to the consensus statement published by the American Diabetes Association, diagnostic features of HHS may include the following (see Workup) [4, 6] : Effective serum osmolality of 320 mOsm/kg or greater Profound dehydration, up to an average of 9L Detection and treatment of an underlying illness are critical. Standard care for dehydration and altered mental status is appropriate, including airway management, intravenous (I Continue reading >>

More in ketosis