diabetestalk.net

What Is The Cause Of Respiratory Acidosis?

Respiratory Acidosis: Types, Causes, Symptoms, Treatment

Respiratory Acidosis: Types, Causes, Symptoms, Treatment

What is Respiratory Acidosis? Respiratory Acidosis which is also known by the names of Respiratory Failure or Ventilatory Failure is a pathological condition of the respiratory system in which the lungs of the body are not able to remove enough carbon dioxide from the body thus making the blood and other fluids in the body more acidic in nature. This is because the body must balance the ions that control pH. In majority of the cases, Respiratory Acidosis is caused due to an underlying condition. Under normal circumstances, the lungs take in oxygen and release carbon dioxide. The oxygen is taken from the lungs to different parts of the body while the carbon dioxide is released from the lungs to the air. Sometimes what happens is that the lungs lose their capacity to remove enough carbon dioxide from the body and some amount of carbon dioxide still remains within the body, which increases the acidic content in the blood and other fluids in the body causing Respiratory Acidosis. Some of the underlying conditions like asthma, COPD, pneumonia and sleep apnea are the primary causes for development of Respiratory Acidosis. What are the Types of Respiratory Acidosis? Respiratory Acidosis is of two types, of which one is acute and the second is chronic. Acute Respiratory Acidosis: This occurs quickly and the symptoms caused by it are also quite severe. This is in fact a medical emergency and any individual who has acute Respiratory Acidosis needs to be treated emergently. Any delay in treatment or if left untreated may cause life-threatening complications. Chronic Respiratory Acidosis: This type of Respiratory Acidosis develops over time and is relatively asymptomatic. In fact, the body gets used to the increased acidic content, but chronic respiratory acidosis may become acute Continue reading >>

Respiratory Acidosis

Respiratory Acidosis

Respiratory acidosis can arise from a break in any one of these links. For example, it can be caused from depression of the respiratory center through drugs or metabolic disease, or from limitations in chest wall expansion due to neuromuscular disorders or trauma (Table 90-1). It can also arise from pulmonary disease, card iog en ic pu lmon a ryedema, a spira tion of a foreign body or vomitus, pneumothorax and pleural space disease, or through mechanical hypoventilation. Unless there is a superimposed or secondary metabolic acidosis, the plasma anion gap will usually be normal in respiratory acidosis. Introduction Respiratory acidosis is characterized by an increased arterial blood PCO2 and H+ ion concentration. The major cause of respiratory acidosis is alveolar hypoventilation. The expected physiologic response is an increased PHCO3. The increase in concentration of bicarbonate ions (HCO3) in plasma (PHCO3) is tiny in patients with acute respiratory acidosis, but is much larger in patients with chronic respiratory acidosis. Respiratory alkalosis is caused by hyperventilation and is characterized by a low arterial blood PCO2 and H+ ion concentration. The expected physiologic response is a decrease in PHCO3. As in respiratory acidosis, this response is modest in patients with acute respiratory alkalosis and much larger in patients with chronic respiratory alkalosis. Although respiratory acid-base disorders are detected by measurement of PCO2 and pH in arterial blood and may reveal the presence of a serious underlying disease process that affected ventilation, it is important to recognize the effect of changes in capillary blood PCO2 in the different organs on the binding of H+ ions to intracellular proteins, which may change their charge, shape, and possibly their funct Continue reading >>

Acidbase Disturbances In Intensive Care Patients: Etiology, Pathophysiology And Treatment

Acidbase Disturbances In Intensive Care Patients: Etiology, Pathophysiology And Treatment

Acidbase disturbances in intensive care patients: etiology, pathophysiology and treatment Center for Critical Care Nephrology, CRISMA Center, Department of Critical Care Medicine Correspondence and offprint requests to: John A. Kellum; E-mail: [email protected] Search for other works by this author on: Center for Critical Care Nephrology, CRISMA Center, Department of Critical Care Medicine Nephrology Dialysis Transplantation, Volume 30, Issue 7, 1 July 2015, Pages 11041111, Mohammed Al-Jaghbeer, John A. Kellum; Acidbase disturbances in intensive care patients: etiology, pathophysiology and treatment, Nephrology Dialysis Transplantation, Volume 30, Issue 7, 1 July 2015, Pages 11041111, Acidbase disturbances are very common in critically ill and injured patients as well as contribute significantly to morbidity and mortality. An understanding of the pathophysiology of these disorders is vital to their proper management. This review will discuss the etiology, pathophysiology and treatment of acidbase disturbances in intensive care patientswith particular attention to evidence from recent studies examining the effects of fluid resuscitation on acidbase and its consequences. acidbase physiology , acidosis , alkalosis , anion gap , strong ion difference The modern intensive care unit is a place where complex acidbase and electrolyte disorders are common, with one study, showing that 64% of critically ill patients have acute metabolic acidosis [ 1 ]. Although it is generally believed that most cases of acidbase derangement are mild and self-limiting, extremes of blood pH in either direction, especially when happening quickly, can have significant multiorgan consequences. Advances in evaluating acidbase balance have helped in understanding the impact of fluids in the critic Continue reading >>

Respiratory Acidosis

Respiratory Acidosis

Causes of respiratory acidosis include: Diseases of the lung tissue (such as pulmonary fibrosis, which causes scarring and thickening of the lungs) Diseases of the chest (such as scoliosis) Diseases affecting the nerves and muscles that signal the lungs to inflate or deflate Drugs that suppress breathing (including powerful pain medicines, such as narcotics, and "downers," such as benzodiazepines), often when combined with alcohol Severe obesity, which restricts how much the lungs can expand Obstructive sleep apnea Chronic respiratory acidosis occurs over a long time. This leads to a stable situation, because the kidneys increase body chemicals, such as bicarbonate, that help restore the body's acid-base balance. Acute respiratory acidosis is a condition in which carbon dioxide builds up very quickly, before the kidneys can return the body to a state of balance. Some people with chronic respiratory acidosis get acute respiratory acidosis because an illness makes their condition worse. Continue reading >>

Respiratory Acidosis

Respiratory Acidosis

DEFINITION Respiratory acidosis = a primary acid-base disorder in which arterial pCO2 rises to an abnormally high level. PATHOPHYSIOLOGY arterial pCO2 is normally maintained at a level of about 40 mmHg by a balance between production of CO2 by the body and its removal by alveolar ventilation. PaCO2 is proportional to VCO2/VA VCO2 = CO2 production by the body VA = alveolar ventilation an increase in arterial pCO2 can occur by one of three possible mechanisms: presence of excess CO2 in the inspired gas decreased alveolar ventilation increased production of CO2 by the body CAUSES Inadequate Alveolar Ventilation central respiratory depression drug depression of respiratory centre (eg by opiates, sedatives, anaesthetics) neuromuscular disorders lung or chest wall defects airway obstruction inadequate mechanical ventilation Over-production of CO2 -> hypercatabolic disorders Malignant hyperthermia Thyroid storm Phaeochromocytoma Early sepsis Liver failure Increased Intake of Carbon Dioxide Rebreathing of CO2-containing expired gas Addition of CO2 to inspired gas Insufflation of CO2 into body cavity (eg for laparoscopic surgery) EFFECTS CO2 is lipid soluble -> depressing effects on intracellular metabolism RESP increased minute ventilation via both central and peripheral chemoreceptors CVS increased sympathetic tone peripheral vasodilation by direct effect on vessels acutely the acidosis will cause a right shift of the oxygen dissociation curve if the acidosis persists, a decrease in red cell 2,3 DPG occurs which shifts the curve back to the left CNS cerebral vasodilation increasing cerebral blood flow and intracranial pressure central depression at very high levels of pCO2 potent stimulation of ventilation this can result in dyspnoea, disorientation, acute confusion, headache, Continue reading >>

Respiratory Acidosis/ Alkalosis

Respiratory Acidosis/ Alkalosis

Don't miss your chance to win free admissions prep materials! Click here to see a list of raffles . So, I am reading up on acid-base disturbances, which have always given me a bit of trouble. I think I am understanding them a lot better now, but am still confused about how the different lung diseases in particular cause either resp. acidosis or alkalosis. Different resources say different things and the sources I've taken a look at don't really do a good job of explainingthe reason why a particular disease causes acidosis or alkalosis. Take for example, restrictive and obstructive lung diseases. I can understand that with an obstructive lung disease you have trouble getting air out of the lungs, so less CO2 is removed --> respiratory acidosis. But what about restrictive lung disease? Different books say different things - some say that they cause resp. acidosis, while others say they cause resp. alkalosis. Nobody seems to give a good explanation either way. I think I can reason out that restrictive lung disease, esp. interstitial lung disease, --> imparied diffusion of CO2 out of the lungs --> resp. acidosis). What about pulmonary edema and pneumonia? Some sources say resp acidosis and some say resp alkalosis? Finally, one of the major causes I've seen for resp. alkalosis is hypoxemia (due to stimulation of peripheral chemoreceptors). However, it seems that most pulmonary causes of hypercapnia would also cause hypoxemia. So why wouldn't all pulmonary causes of hypercapnia cause a respiratory alkalosis? Finally, I've noticed that severe anemia is listed as a cause of respiratory alkalosis, but can't find the mechanism for this. Since anemia only decreases O2 content and doesn't affect the PaO2, I'm guessing it has nothing to do with peripheral chemoreceptor stimulation. Continue reading >>

Respiratory Acidosis

Respiratory Acidosis

A.D.A.M., Inc. is accredited by URAC, also known as the American Accreditation HealthCare Commission (www.urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows rigorous standards of quality and accountability. A.D.A.M. is among the first to achieve this important distinction for online health information and services. Learn more about A.D.A.M.'s , and . A.D.A.M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health on the Net Foundation (www.hon.ch). The information provided herein should not be used during any medical emergency or for the diagnosis or treatment of any medical condition. A licensed medical professional should be consulted for diagnosis and treatment of any and all medical conditions. Call 911 for all medical emergencies. Links to other sites are provided for information only -- they do not constitute endorsements of those other sites. © 1997- 2008 A.D.A.M., Inc. Any duplication or distribution of the information contained herein is strictly prohibited. Continue reading >>

Respiratory Acidosis

Respiratory Acidosis

Practice Essentials Respiratory acidosis is an acid-base balance disturbance due to alveolar hypoventilation. Production of carbon dioxide occurs rapidly and failure of ventilation promptly increases the partial pressure of arterial carbon dioxide (PaCO2). [1] The normal reference range for PaCO2 is 35-45 mm Hg. Alveolar hypoventilation leads to an increased PaCO2 (ie, hypercapnia). The increase in PaCO2, in turn, decreases the bicarbonate (HCO3–)/PaCO2 ratio, thereby decreasing the pH. Hypercapnia and respiratory acidosis ensue when impairment in ventilation occurs and the removal of carbon dioxide by the respiratory system is less than the production of carbon dioxide in the tissues. Lung diseases that cause abnormalities in alveolar gas exchange do not typically result in alveolar hypoventilation. Often these diseases stimulate ventilation and hypocapnia due to reflex receptors and hypoxia. Hypercapnia typically occurs late in the disease process with severe pulmonary disease or when respiratory muscles fatigue. (See also Pediatric Respiratory Acidosis, Metabolic Acidosis, and Pediatric Metabolic Acidosis.) Acute vs chronic respiratory acidosis Respiratory acidosis can be acute or chronic. In acute respiratory acidosis, the PaCO2 is elevated above the upper limit of the reference range (ie, >45 mm Hg) with an accompanying acidemia (ie, pH < 7.35). In chronic respiratory acidosis, the PaCO2 is elevated above the upper limit of the reference range, with a normal or near-normal pH secondary to renal compensation and an elevated serum bicarbonate levels (ie, >30 mEq/L). Acute respiratory acidosis is present when an abrupt failure of ventilation occurs. This failure in ventilation may result from depression of the central respiratory center by one or another of the foll Continue reading >>

The Four Primary Disturbances Of Acid-base Balance

The Four Primary Disturbances Of Acid-base Balance

Primary Respiratory Acidosis initiating event: V�A (hypoventilation) chronic obstructive pulmonary disease (COPD) weak respiratory muscles (neuromuscular diseases) barbiturate poisoning (central nervous system depression) resultant effects: CO2 retention PaCO2, [H+] and pH compensations: 2� metabolic alkalosis HCO3- retention via PaCO2 effect on renal proximal tubules Primary Respiratory Alkalosis initiating event: V�A (hyperventilation) salicylate intoxication (over-aggressive aspirin therapy) hyperexcitability psychogenic paroxysmal hyperventilation ("brown paper bag" therapy) artificial ventilation resultant effects: CO2 elimination PaCO2, [H+] and pH compensations: 2� metabolic acidosis HCO3- retention via reverse PaCO2 effect on renal proximal tubules Primary Metabolic Acidosis initiating events: renal and extrarenal diabetes mellitus and ketoacidosis (larger than normal anion gap) severe shock or heart failure and lactic acidosis (larger than normal anion gap) diarrhea and loss of bicarbonate ions (normal anion gap) renal tubular acidosis and retention of hydrogen ions (normal anion gap) resultant effects: [H+] and/or [HCO3-], pH compensations: 2� respiratory alkalosis (with renal participation if possible) CO2 elimination via acid drive on ventilation Kussmaul respiration (characteristic deep labored breathing) Primary Metabolic Alkalosis initiating events: renal and extrarenal chronic potassium ion depletion (aggressive diuretic therapy, hyperaldosteronism) protracted vomiting (pyloric obstruction, gastric ulcers) and loss of gastric acids dehydration and depletion of extracellular fluid volume (contraction alkalosis) resultant effects: [H+] and/or [HCO3-], pH urine pH will be paradoxically low (acidic) if there is chronic depletion of potassium ions c Continue reading >>

Shared Flashcard Set

Shared Flashcard Set

Details Title Acid Base Balance Description Acid Base Balance Total Cards 214 Subject Nursing Level Undergraduate 2 Created 10/14/2012 Click here to study/print these flashcards. Create your own flash cards! Sign up here. Additional Nursing Flashcards Cards Term An opioid drug overdose would put a patient at most risk for what acid/base imbalance? Definition Respiratory Acidosis Term Pulmonary Edema would put a patient at most risk for what acid/base imbalance? Definition Respiratory Acidosis Term Chest trauma would put a patient at most risk for what acid/base imbalance? Definition Respiratory Acidosis Term Neuromuscular disease would put a patient at most risk for what acid/base imbalance? Definition Respiratory Acidosis Term COPD would put a patient at most risk for what acid/base imbalance? Definition Respiratory Acidosis Term Airway obstruction would put a patient at most risk for what acid/base imbalance? Definition Respiratory Acidosis Term Pneumonia would put a patient at most risk for what acid/base imbalance? Definition Respiratory Acidosis Term TB would put a patient at most risk for what acid/base imbalance? Definition Respiratory Acidosis Term Emphysema would put a patient at most risk for what acid/base imbalance? Definition Respiratory Acidosis Term Asthma would put a patient at most risk for what acid/base imbalance? Definition Respiratory Acidosis Term Cigarrette smoking would put a patient at most risk for what acid/base imbalance? Definition Respiratory Acidosis Term Pleural effusion would put a patient at most risk for what acid/base imbalance? Definition Respiratory Acidosis Term What is pleural effusion? Definition excess fluid that accumulates in the pleura, the fluid-filled space that surrounds the lungs Pleural effusion is excess fluid that accu Continue reading >>

Respiratory Acidosis

Respiratory Acidosis

Sort Medical Management improve respiratory ventilation via: -mechanical ventilation -bronchodilators, antibiotics, anticoagulants -pulmonary hygiene; coughing, turning, deep breathing INCENTATIVE SPIROMETER postural drainage -adequate hydration -supplemental oxygen (beware if chronic hypercapnia) *COPD pt's are accustomed to increased CO2 levels; a lack of O2 called hypoxic drive stimulates these pt's to breathe -monitor I&O, VS (always include O2 sat), ABGs In a patient with respiratory acidosis you will see... decreased pH & increased CO2 hypoventilation rapid, shallow respirations increased BP dyspnea headache hyperkalemia disorientation increased cardiac output muscle weakness hyppoxia Continue reading >>

Respiratory Acidosis Treatment

Respiratory Acidosis Treatment

Respiratory acidosis treatment is initiated according to the underlying cause. Thus, it differs for every affected individual. This article provides some information on the same. Respiratory acidosis is a medical condition, which refers to the inability of the lungs to remove all the carbon dioxide from the body. This disturbs the acid-base balance in the body. As a result, some body fluids including blood, turn acidic. This condition is also referred to as ventilatory failure or respiratory failure. Furthermore, it aggravates every time a person consumes something that produces acid in blood. The pH drop in blood stimulates the parts of brain, which are responsible for controlling breathing. The brain tries to combat this problem by rapid and deeper breathing, in order to expel carbon dioxide. If the amount of carbon dioxide in blood goes beyond control, then it may lead to severe acidosis or even coma. The treatment highly depends upon its causing factor. In any case, it is always aimed at improving the function of lungs. The various options are as follows: They are particularly effective in curing respiratory acidosis caused due to diseases of the airways. Bronchodilators like albuterol open the airways, so as to facilitate the breathing process. This is more beneficial for the people affected by asthma and emphysema. They are recommended in cases of severe respiratory acidosis. It includes breathing with the support of mechanical ventilators, in order to increase the oxygen supply in the blood. Oxygen can also be supplied through mask or small tubes, however, care must be taken that the amount of oxygen does not exceed the prescribed level. Over oxygenation can worsen this medical condition in the people affected with lung diseases. They are used to treat respirato Continue reading >>

Respiratory Acidosis

Respiratory Acidosis

LABORATORY TESTS The following lab tests can be used to interpret and explain acidosis and alkalosis conditions. All are measured on blood samples. 1. pH: This measures hydrogen ions - Normal pH = 7.35-7.45 2. pCO2= Partial Pressure of Carbon Dioxide: Although this is a pressure measurement, it relates to the concentration of GASEOUS CO2 in the blood. A high pCO2 may indicate acidosis. A low pCO2 may indicate alkalosis. 3. HCO3- = Bicarbonate: This measures the concentration of HCO3- ion only. High values may indicate alkalosis since bicarbonate is a base. Low values may indicate acidosis. 4. CO2 = Carbon Dioxide Content: This is a measure of ALL CO2 liberated on adding acid to blood plasma. This measure both carbon dioxide dissolved and bicarbonate ions and is an older test. Do not confuse with pCO2 Typically, dissolved carbon dioxide = l.2-2.0 mmoles/L and HCO3- = 22-28 mmoles/L Therefore, although it is listed as CO2 content, the lab test really reflects HCO3- concentration. Respiratory Acidosis .ABNORMAL pH IN THE BODY: ACIDOSIS AND ALKALOSIS: INTRODUCTION: Normal blood pH is maintained between 7.35 and 7.45 by the regulatory systems. The lungs regulate the amount of carbon dioxide in the blood and the kidneys regulate the bicarbonate. When the pH decreases to below 7.35 an acidosis condition is present. Acidosis means that the hydrogen ions are increased and that pH and bicarbonate ions are decreased. A greater number of hydrogen ions are present in the blood than can be absorbed by the buffer systems. Alkalosis results when the pH is above 7.45. This condition results when the buffer base (bicarbonate ions) is greater than normal and the concentration of hydrogen ions are decreased. Both acidosis and alkalosis can be of two different types: respiratory and metabol Continue reading >>

Respiratory Acidosis

Respiratory Acidosis

Respiratory Acidosis Definition Respiratory acidosis is a condition in which a build-up of carbon dioxide in the blood produces a shift in the body's pH balance and causes the body's system to become more acidic. This condition is brought about by a problem either involving the lungs and respiratory system or signals from the brain that control breathing. Description Respiratory acidosis is an acid imbalance in the body caused by a problem related to breathing. In the lungs, oxygen from inhaled air is exchanged for carbon dioxide from the blood. This process takes place between the alveoli (tiny air pockets in the lungs) and the blood vessels that connect to them. When this exchange of oxygen for carbon dioxide is impaired, the excess carbon dioxide forms an acid in the blood. The condition can be acute with a sudden onset, or it can develop gradually as lung function deteriorates. Causes and symptoms Respiratory acidosis can be caused by diseases or conditions that affect the lungs themselves, such as emphysema, chronic bronchitis, asthma, or severe pneumonia. Blockage of the airway due to swelling, a foreign object, or vomit can induce respiratory acidosis. Drugs like anesthetics, sedatives, and narcotics can interfere with breathing by depressing the respiratory center in the brain. Head injuries or brain tumors can also interfere with signals sent by the brain to the lungs. Such neuromuscular diseases as Guillain-Barré syndrome or myasthenia gravis can impair the muscles around the lungs making it more difficult to breathe. Conditions that cause chronic metabolic alkalosis can also trigger respiratory acidosis. The most notable symptom will be slowed or difficult breathing. Headache, drowsiness, restlessness, tremor, and confusion may also occur. A rapid heart rate Continue reading >>

Evaluation Of Respiratory Acidosis

Evaluation Of Respiratory Acidosis

Diagnostic Approach Once respiratory acidosis has been identified by ABG analysis, the approach to narrowing the differential diagnosis and determining the severity of the patient's condition is aided by the identification of its acuity (acute or chronic). This is done through the synthesis of information from the ABG itself, history, and physical exam. [8] Historical findings may immediately point to the underlying cause, such as head trauma and drug ingestion, or provide only limited information, as with the obtunded patient. The physical exam should focus on assessment of the neurologic and respiratory systems with careful examination of the lung fields, which can yield useful information regarding the presence of underlying parenchymal disease. Further laboratory studies are warranted when metabolic abnormalities or specific systemic diseases are suspected etiologies. Radiographic imaging is key to the evaluation of respiratory acidosis, as it can provide rapid screening for head, cervical, or chest pathology. ABG analysis Step 1: Is there acidosis? Acidosis is indicated by an arterial blood gas pH below the normal range (i.e., <7.35) Step 2: Respiratory or metabolic? Respiratory acidosis is indicated by an increase in the arterial carbon dioxide levels above the normal range of 35 to 45 mmHg (4.7-6.0 kPa). It is important to note that the degree of acidosis and the potential concerns are different depending on whether the problem is respiratory or metabolic. An equivalent pH in metabolic acidosis (e.g., 7.0) is a much worse clinical sign, as the body has dual buffering and compensatory mechanisms for metabolic acid (the carbamate-bicarbonate system: bicarbonate buffer, and carbon dioxide elimination). Elevated carbon dioxide, on the other hand, causes a dramatic fa Continue reading >>

More in ketosis