diabetestalk.net

What Is Metabolic Alkalosis And Acidosis?

Share on facebook

What is ALKALOSIS? What does ALKALOSIS mean? ALKALOSIS meaning - ALKALOSIS pronunciation - ALKALOSIS definition - ALKALOSIS explanation - How to pronounce ALKALOSIS? Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/... license. SUBSCRIBE to our Google Earth flights channel - https://www.youtube.com/channel/UC6Uu... Alkalosis is the result of a process reducing hydrogen ion concentration of arterial blood plasma (alkalemia). In contrast to acidemia (serum pH 7.35 or lower), alkalemia occurs when the serum pH is higher than normal (7.45 or higher). Alkalosis is usually divided into the categories of respiratory alkalosis and metabolic alkalosis or a combined respiratory/metabolic alkalosis. Respiratory alkalosis is caused by hyperventilation, resulting in a loss of carbon dioxide. Compensatory mechanisms for this would include increased dissociation of the carbonic acid buffering intermediate into hydrogen ions, and the related excretion of bicarbonate, both of which lower blood pH. Hyperventilation-induced alkalosis can be seen in several deadly central nervous system diseases such as strokes or Rett syndrome. Metabolic alkalosis can be caused by repeated vomiting, resulting in a loss of hydrochloric acid within the stomach content. Severe dehydration, and the consumption of alkali are other causes. It can also be caused by administration of diuretics and endocrine disorders such as Cushing's syndrome. Compensatory mechanism for metabolic alkalosis involve slowed breathing by the lungs to increase serum carbon dioxide, a condition leaning toward respiratory acidosis. As respiratory acidosis often accompanies the compensation for metabolic alkalosis, and vice versa, a delicate balance is created between these two conditions. Metabolic alkalosis is usually accompanied by low blood potassium concentration, causing, e.g., muscular weakness, muscle pain, and muscle cramps (from disturbed function of the skeletal muscles), and muscle spasms (from disturbed function of smooth muscles). It may also cause low blood calcium concentration. As the blood pH increases, blood transport proteins, such as albumin, become more ionized into anions. This causes the free calcium present in blood to bind more strongly with albumin. If severe, it may cause tetany.

Alkalosis

The kidneys and lungs maintain the proper balance (proper pH level) of chemicals called acids and bases in the body. Decreased carbon dioxide (an acid) level or increased bicarbonate (a base) level makes the body too alkaline, a condition called alkalosis. There are different types of alkalosis. These are described below. Respiratory alkalosis is caused by a low carbon dioxide level in the blood. This can be due to: Fever Being at a high altitude Lack of oxygen Liver disease Metabolic alkalosis is caused by too much bicarbonate in the blood. It can also occur due to certain kidney diseases. Hypochloremic alkalosis is caused by an extreme lack or loss of chloride, such as from prolonged vomiting. Hypokalemic alkalosis is caused by the kidneys' response to an extreme lack or loss of potassium. This can occur from taking certain water pills (diuretics). Compensated alkalosis occurs when the body returns the acid-base balance to normal in cases of alkalosis, but bicarbonate and carbon dioxide levels remain abnormal. Continue reading >>

Share on facebook

Popular Questions

  1. sonias

    3 This is my topic for this week in nursing school, respiratory & metabolic acidosis/ alkalosis. I am having trouble breaking it down. Can someone please help me understand this please? Any and all help is greatly appreciated.

  2. Esme12

    Normal values:
    PH = 7.35 - 7.45
    C02 = 35 - 45
    HC03 = 21-26
    Respiratory acidosis = low ph and high C02
    hypoventilation (eg: COPD, narcs or sedatives, atelectasis)
    *Compensated by metabolic alkalosis (increased HC03)
    For example:
    ph 7.20 C02 60 HC03 24 (uncompensated respiratory acidosis)
    ph 7.33 C02 55 HC03 29 (partially compensated respiratory acidosis)
    ph 7.37 C02 60 HC03 37 (compensated respiratory acidosis)
    Respiratory alkalosis : high ph and low C02
    hyperventilation (eg: anxiety, PE, pain, sepsis, brain injury)
    *Compensated by metabolic acidosis (decreased HC03)
    examples:
    ph 7.51 C02 26 HC03 25 (uncompensated respiratory alkalosis)
    ph 7.47 C02 32 HC03 20 (partially compensated respiratory alkalosis)
    ph 7.43 C02 30 HC03 19 (compensated respiratory alkalosis)
    Metabolic acidosis : low ph and low HC03
    diabetic ketoacidosis, starvation, severe diarrhea
    *Compensated by respiratory alkalosis (decreased C02)
    examples:
    ph 7.23 C02 36 HC03 14 (uncompensated metabolic acidosis)
    ph 7.31 C02 30 HC03 17 (partially compensated metabolic acidosis)
    ph 7.38 C02 26 HC03 20 (compensated metabolic acidosis)
    Metabloic alkalosis = high ph and high HC03
    severe vomiting, potassium deficit, diuretics
    *Compensated by respiratory acidosis (increased C02)
    example:
    ph 7.54 C02 44 HC03 29 (uncompensated metabolic alkalosis)
    ph 7.50 C02 49 HC03 32 (partially compensated metabolic alkalosis)
    ph 7.44 C02 52 HC02 35 (compensated metabolic alkalosis)
    *Remember that compensation corrects the ph.
    Now a simple way to remember this......
    CO2 = acid, makes things acidic
    HCO3 = base, makes things alkalotic
    Remember ROME
    R-Respiratory
    O-Opposite
    M-Metabolic
    E-Equal
    Ok always look at the pH first...
    pH<7.35 = acidosis
    pH>7.45 = alkalosis
    Then, if the CO2 is high or low, then it is respiratory...If the HCO3 is high or low then it is metabolic. How you remember that is that the respiratory system is involved with CO2 (blowing air off or slowing RR), and the kidneys (metabolic) are involved with HCO3 (excreting or not excreting).
    Here is how you think thru it: pH = 7.25 CO2 = 40 HCO3 = 17
    Ok, first, the pH is low so think acidosis. CO2 is WNL. HCO3 is low. Draw arrows if it helps. The abnormal values are both low (think Equal). Metabolic imbalances are equal. So, this must be metabolic acidosis!
    Now, for compensation...If you have a metabolic imbalance, the respiratory system is going to try to compensate. Respiratory = CO2. If the CO2 is normal in the ABG, then there is no compensation going on. Compensation in acidosis will decrease the CO2 because you want to get rid of the acid (CO2). In alkalosis, it will increase because you want to add more acid (CO2)
    If you have a respiratory imbalance, the kidneys will try to compensate. Kidneys = HCO3. If the HCO3 is normal in the ABG, then there is no compensation going on. Compensation in acidosis will increase HCO3 because you want to hold on to the base to make it more alkalotic. In alkalosis, it will decrease because you want to excrete the base to make it more acidic.

  3. Esme12

    Check out this tutorial
    Interactive Online ABG's acid base

  4. -> Continue reading
read more
Share on facebook

Anion gap usmle - anion gap metabolic acidosis normal anion gap metabolic acidosis

Metabolic Acidosis And Alkalosis

Page Index Metabolic Acidosis. Metabolic Alkalosis Emergency Therapy Treating Metabolic Acidosis Calculating the Dose Use Half the Calculated Dose Reasons to Limit the Bicarbonate Dose: Injected into Plasma Volume Fizzes with Acid Causes Respiratory Acidosis Raises Intracellular PCO2 Subsequent Residual Changes Metabolic Acidosis. The following is a brief summary. For additional information visit: E-Medicine (Christie Thomas) or Wikepedia Etiology: There are many causes of primary metabolic acidosis and they are commonly classified by the anion gap: Metabolic Acidosis with a Normal Anion Gap: Longstanding diarrhea (bicarbonate loss) Uretero-sigmoidostomy Pancreatic fistula Renal Tubular Acidosis Intoxication, e.g., ammonium chloride, acetazolamide, bile acid sequestrants Renal failure Metabolic Acidosis with an Elevated Anion Gap: lactic acidosis ketoacidosis chronic renal failure (accumulation of sulfates, phosphates, uric acid) intoxication, e.g., salicylates, ethanol, methanol, formaldehyde, ethylene glycol, paraldehyde, INH, toluene, sulfates, metformin. rhabdomyolysis For further details visit: E-Medicine (Christie Thomas). Treating Severe Metabolic Acidosis. The ideal treatme Continue reading >>

Share on facebook

Popular Questions

  1. sonias

    3 This is my topic for this week in nursing school, respiratory & metabolic acidosis/ alkalosis. I am having trouble breaking it down. Can someone please help me understand this please? Any and all help is greatly appreciated.

  2. Esme12

    Normal values:
    PH = 7.35 - 7.45
    C02 = 35 - 45
    HC03 = 21-26
    Respiratory acidosis = low ph and high C02
    hypoventilation (eg: COPD, narcs or sedatives, atelectasis)
    *Compensated by metabolic alkalosis (increased HC03)
    For example:
    ph 7.20 C02 60 HC03 24 (uncompensated respiratory acidosis)
    ph 7.33 C02 55 HC03 29 (partially compensated respiratory acidosis)
    ph 7.37 C02 60 HC03 37 (compensated respiratory acidosis)
    Respiratory alkalosis : high ph and low C02
    hyperventilation (eg: anxiety, PE, pain, sepsis, brain injury)
    *Compensated by metabolic acidosis (decreased HC03)
    examples:
    ph 7.51 C02 26 HC03 25 (uncompensated respiratory alkalosis)
    ph 7.47 C02 32 HC03 20 (partially compensated respiratory alkalosis)
    ph 7.43 C02 30 HC03 19 (compensated respiratory alkalosis)
    Metabolic acidosis : low ph and low HC03
    diabetic ketoacidosis, starvation, severe diarrhea
    *Compensated by respiratory alkalosis (decreased C02)
    examples:
    ph 7.23 C02 36 HC03 14 (uncompensated metabolic acidosis)
    ph 7.31 C02 30 HC03 17 (partially compensated metabolic acidosis)
    ph 7.38 C02 26 HC03 20 (compensated metabolic acidosis)
    Metabloic alkalosis = high ph and high HC03
    severe vomiting, potassium deficit, diuretics
    *Compensated by respiratory acidosis (increased C02)
    example:
    ph 7.54 C02 44 HC03 29 (uncompensated metabolic alkalosis)
    ph 7.50 C02 49 HC03 32 (partially compensated metabolic alkalosis)
    ph 7.44 C02 52 HC02 35 (compensated metabolic alkalosis)
    *Remember that compensation corrects the ph.
    Now a simple way to remember this......
    CO2 = acid, makes things acidic
    HCO3 = base, makes things alkalotic
    Remember ROME
    R-Respiratory
    O-Opposite
    M-Metabolic
    E-Equal
    Ok always look at the pH first...
    pH<7.35 = acidosis
    pH>7.45 = alkalosis
    Then, if the CO2 is high or low, then it is respiratory...If the HCO3 is high or low then it is metabolic. How you remember that is that the respiratory system is involved with CO2 (blowing air off or slowing RR), and the kidneys (metabolic) are involved with HCO3 (excreting or not excreting).
    Here is how you think thru it: pH = 7.25 CO2 = 40 HCO3 = 17
    Ok, first, the pH is low so think acidosis. CO2 is WNL. HCO3 is low. Draw arrows if it helps. The abnormal values are both low (think Equal). Metabolic imbalances are equal. So, this must be metabolic acidosis!
    Now, for compensation...If you have a metabolic imbalance, the respiratory system is going to try to compensate. Respiratory = CO2. If the CO2 is normal in the ABG, then there is no compensation going on. Compensation in acidosis will decrease the CO2 because you want to get rid of the acid (CO2). In alkalosis, it will increase because you want to add more acid (CO2)
    If you have a respiratory imbalance, the kidneys will try to compensate. Kidneys = HCO3. If the HCO3 is normal in the ABG, then there is no compensation going on. Compensation in acidosis will increase HCO3 because you want to hold on to the base to make it more alkalotic. In alkalosis, it will decrease because you want to excrete the base to make it more acidic.

  3. Esme12

    Check out this tutorial
    Interactive Online ABG's acid base

  4. -> Continue reading
read more
Share on facebook

Metabolic Alkalosis: Practice Essentials, Pathophysiology, Etiology

Author: Christie P Thomas, MBBS, FRCP, FASN, FAHA; Chief Editor: Vecihi Batuman, MD, FASN more... Metabolic alkalosis is a primary increase in serum bicarbonate (HCO3-) concentration. This occurs as a consequence of a loss of H+ from the body or a gain in HCO3-. In its pure form, it manifests as alkalemia (pH >7.40). As a compensatory mechanism, metabolic alkalosis leads to alveolar hypoventilation with a rise in arterial carbon dioxide tension (PaCO2), which diminishes the change in pH that would otherwise occur. Normally, arterial PaCO2 increases by 0.5-0.7 mm Hg for every 1 mEq/L increase in plasma bicarbonate concentration, a compensatory response that is very quick. If the change in PaCO2 is not within this range, then a mixed acid-base disturbance occurs. For example, if the increase in PaCO2 is more than 0.7 times the increase in bicarbonate, then metabolic alkalosis coexists with primary respiratory acidosis. Likewise, if the increase in PaCO2 is less than the expected change, then a primary respiratory alkalosis is also present. The first clue to metabolic alkalosis is often an elevated bicarbonate concentration that is observed when serum electrolyte measurements are obt Continue reading >>

Share on facebook

Popular Questions

  1. sonias

    3 This is my topic for this week in nursing school, respiratory & metabolic acidosis/ alkalosis. I am having trouble breaking it down. Can someone please help me understand this please? Any and all help is greatly appreciated.

  2. Esme12

    Normal values:
    PH = 7.35 - 7.45
    C02 = 35 - 45
    HC03 = 21-26
    Respiratory acidosis = low ph and high C02
    hypoventilation (eg: COPD, narcs or sedatives, atelectasis)
    *Compensated by metabolic alkalosis (increased HC03)
    For example:
    ph 7.20 C02 60 HC03 24 (uncompensated respiratory acidosis)
    ph 7.33 C02 55 HC03 29 (partially compensated respiratory acidosis)
    ph 7.37 C02 60 HC03 37 (compensated respiratory acidosis)
    Respiratory alkalosis : high ph and low C02
    hyperventilation (eg: anxiety, PE, pain, sepsis, brain injury)
    *Compensated by metabolic acidosis (decreased HC03)
    examples:
    ph 7.51 C02 26 HC03 25 (uncompensated respiratory alkalosis)
    ph 7.47 C02 32 HC03 20 (partially compensated respiratory alkalosis)
    ph 7.43 C02 30 HC03 19 (compensated respiratory alkalosis)
    Metabolic acidosis : low ph and low HC03
    diabetic ketoacidosis, starvation, severe diarrhea
    *Compensated by respiratory alkalosis (decreased C02)
    examples:
    ph 7.23 C02 36 HC03 14 (uncompensated metabolic acidosis)
    ph 7.31 C02 30 HC03 17 (partially compensated metabolic acidosis)
    ph 7.38 C02 26 HC03 20 (compensated metabolic acidosis)
    Metabloic alkalosis = high ph and high HC03
    severe vomiting, potassium deficit, diuretics
    *Compensated by respiratory acidosis (increased C02)
    example:
    ph 7.54 C02 44 HC03 29 (uncompensated metabolic alkalosis)
    ph 7.50 C02 49 HC03 32 (partially compensated metabolic alkalosis)
    ph 7.44 C02 52 HC02 35 (compensated metabolic alkalosis)
    *Remember that compensation corrects the ph.
    Now a simple way to remember this......
    CO2 = acid, makes things acidic
    HCO3 = base, makes things alkalotic
    Remember ROME
    R-Respiratory
    O-Opposite
    M-Metabolic
    E-Equal
    Ok always look at the pH first...
    pH<7.35 = acidosis
    pH>7.45 = alkalosis
    Then, if the CO2 is high or low, then it is respiratory...If the HCO3 is high or low then it is metabolic. How you remember that is that the respiratory system is involved with CO2 (blowing air off or slowing RR), and the kidneys (metabolic) are involved with HCO3 (excreting or not excreting).
    Here is how you think thru it: pH = 7.25 CO2 = 40 HCO3 = 17
    Ok, first, the pH is low so think acidosis. CO2 is WNL. HCO3 is low. Draw arrows if it helps. The abnormal values are both low (think Equal). Metabolic imbalances are equal. So, this must be metabolic acidosis!
    Now, for compensation...If you have a metabolic imbalance, the respiratory system is going to try to compensate. Respiratory = CO2. If the CO2 is normal in the ABG, then there is no compensation going on. Compensation in acidosis will decrease the CO2 because you want to get rid of the acid (CO2). In alkalosis, it will increase because you want to add more acid (CO2)
    If you have a respiratory imbalance, the kidneys will try to compensate. Kidneys = HCO3. If the HCO3 is normal in the ABG, then there is no compensation going on. Compensation in acidosis will increase HCO3 because you want to hold on to the base to make it more alkalotic. In alkalosis, it will decrease because you want to excrete the base to make it more acidic.

  3. Esme12

    Check out this tutorial
    Interactive Online ABG's acid base

  4. -> Continue reading
read more

No more pages to load

Related Articles

  • Metabolic And Respiratory Acidosis And Alkalosis

    Module 10: Fluid, Electrolyte, and Acid-Base Balance By the end of this section, you will be able to: Identify the three blood variables considered when making a diagnosis of acidosis or alkalosis Identify the source of compensation for blood pH problems of a respiratory origin Identify the source of compensation for blood pH problems of a metabolic/renal origin Normal arterial blood pH is restricted to a very narrow range of 7.35 to 7.45. A per ...

    ketosis Apr 29, 2018
  • Metabolic Acidosis And Metabolic Alkalosis Ppt

    Acidemia: Arterial blood pH below the normal range (<7.36) Alkalemia: Arterial bloodpH above the normal range (>7.44) Acidosis: a processthat tends to lower the pH (can be caused by fall in serum bicarbonate or a rise in PCO2 Alkalosis: a processthat tends to raise the pH (can be caused by increase in serum bicarbonate or a decrease in PCO2 Base Excess: the amount of strong acid needed to bring a solution back to a pH of 7.4 while keeping PCO2 a ...

    ketosis Apr 29, 2018
  • Respiratory And Metabolic Acidosis And Alkalosis

    Metabolic Acidosis Respiratory compensation for metabolic disorders is quite fast (within minutes) and reaches maximal values within 24 hours. A decrease in Pco2 of 1 to 1.5 mm Hg should be observed for each mEq/L decrease of in metabolic acidosis.27 A simple rule for deciding whether the fall in Pco2 is appropriate for the degree of metabolic acidosis is that the Pco2 should be equal to the last two digits of the pH. For example, compensation is ...

    ketosis Apr 2, 2018
  • Respiratory And Metabolic Acidosis And Alkalosis Chart

    An arterial blood gas (ABG) is a blood test that measures the acidity (pH) and the levels of oxygen and carbon dioxide in the blood . Blood for an ABG test is taken from an artery whereas most other blood tests are done on a sample of blood taken from a vein. This test is done to monitor several conditions that can cause serious health complications especially to critically ill individuals. Every day, a lot of nursing and medical students assign ...

    ketosis Apr 1, 2018
  • Difference Between Respiratory And Metabolic Acidosis And Alkalosis

    Metabolic/ respiratory acidosis and alkalosis Call me stupid--but I'm having such a time with determining whether a person is in respiratory or metabolic acidosis/alkalosis based on the ABG levels. I know how to determine the acidosis/ alkalosis part---its the difference between metabolic and respiratory that screws me up. If anyone has any suggestions on how to tell the two apart--please share!!!! Ummm, I can't help you without "refreshing." Th ...

    ketosis Apr 2, 2018
  • Metabolic And Respiratory Acidosis And Alkalosis Made Easy

    Hello Mr Ryan, Mr Trump, and whomever else this may concern. (And, if you are an American of any stripe, then as it turnsout it also concerns you.) I am a family physician. I interact with your constituentsall day, every day. I hear about their problems, their struggles, and often thelimitations they face regarding healthcare. I try to help them when I can. Thatsmy job in a nutshell. So let me tell you about one of your constituents who alsohapp ...

    ketosis Apr 2, 2018

More in ketosis