diabetestalk.net

What Is Ketosis In Cows

Ketosis: Understanding The Biology

Ketosis: Understanding The Biology

The transition to lactation period is the most challenging period in the dairy cow life cycle, specifically in terms of metabolic disorders. Cows with ketosis produce less milk, are more likely to develop a displaced abomasum, and are more likely to be culled from the herd. As with many disorders, ketosis has been historically separated into either clinical ketosis (hyperketonemia with clinical signs) or sub-clinical ketosis (hyperketonemia without clinical signs). Incidence of sub-clinical ketosis ranges from 40 to 60% of cows while clinical ketosis occurs in 2 to 15% of cows. It has been demonstrated that sub-clinical ketosis is just as costly and detrimental to animal health as clinical ketosis, largely because it can go undetected without active testing and management protocols. Each case of hyperketonemia costs approximately $361 and 247 for first calf heifers and cows, respectively. Treatment and Detection Methods Intravenous Dextrose Historically, ketosis has been most commonly treated with intravenous dextrose. However, this treatment may not be ideal. The dose of glucose typically administered (500 mL of 50% dextrose) increases blood glucose concentrations 8 times the normal concentration immediately after administration; blood glucose then returns to pretreatment concentrations within 2 h (Sakai et al., 1996). This elevation in blood glucose initiates a regulatory cascade that begins with a 12-fold increase in insulin concentration and ends with downregulation of liver glucose production, decreased mobilization of fat stores, and decreased oxidation of mobilized NEFA within the liver. Glucose not transported into the cell during this insulin peak is excreted through the kidneys adding a risk of electrolyte imbalance. High glucose concentrations have also been Continue reading >>

Fresh Cow Ketosis Tests Pay Back Big

Fresh Cow Ketosis Tests Pay Back Big

A drop of blood is all that’s needed Editor’s note: This is the first of a six-part series on transition cow management that will run in 2015. When it comes to fresh cow health, an ounce of prevention can result in pounds more milk, fewer displaced abomasums (DAs) and less culling. All of it adds up to potentially thousands of dollars saved each year. And it all can be had with the use of a simple, easy-to-use blood test of cows in your fresh pen. Most dairy farmers, unless they routinely test for subclinical ketosis, are blissfully unaware of how prevalent the disease is in their herds. But work in New York and Wisconsin herds done by veterinarian researchers Jessica McArt, Cornell University, and Gary Oetzel, University of Wisconsin, suggest subclinical ketosis is challenging fresh cows through early transition. The study, done during the summer of 2010, involved 1,800 cows in four herds—two each in New York and Wisconsin. Nearly 45% of cows were subclincally ketotic during the first two weeks after calving. The good news is subclinical cows that were treated responded well, averaging 1.5 lb. more milk per day, had fewer DAs and were culled less frequently. For every 100 fresh cows tested twice between three and nine days in milk, the net economic return was roughly $1,200. What makes all this possible are easy-to-use test strips requiring just a drop of blood from the tail vein. A very small amount of blood is added to the end of the test strip and then read by a meter. The Cornell and Wisconsin vet-erinarians have found the Precision Xtra ketone meter from Abbott gives excellent results with no additional calibration needed from the human system. The meter measures whole blood beta-hydroxybutyrate (BHBA). A reading of 1.2 mmol/L or more indicates subclinical k Continue reading >>

Preventive Strategies For Ketosis

Preventive Strategies For Ketosis

Parturition and the onset of lactation challenges calcium and energy homeostasis in dairy cows predisposing them to periparturient disorders that affect health, production and reproductive performance says Carlos Risco, DVM, Dipl. ACT, University of Florida. Dairy cattle experience a negative carbohydrate balance, from -3 weeks and + 3 weeks from calving and are at risk to develop ketosis, Risco explained at the 2010 Western Veterinary Conference. Milk production, in particular, drives the high requirements for glucose because other fuels cannot substitute for lactose in milk. To counteract this, the cow mobilizes body fat and protein stores in the form of non-esterified fatty acids (NEFA) and amino acids. This promotes gluconeogenesis and occurs under the influence of low serum concentrations of insulin. Volatile fatty acids (acetate, propionate, butyrate [BHBA]) produced in the rumen are also presented to the liver as fuels. Acetate and butyrate are ketogenic, and propionate is glycogenic. The key to prevention of ketosis is to maximize dry matter intake before and after calving to prevent excessive NEFA mobilization. Preventing ketosis in the first place is key to avoid some post-partum issues. Risco outlined some preventive strategies: The transition ration. To prevent ketosis the transition ration should maximize DMI, provide adequate energy density, and minimize ketogenic precursors. Silage with a high butyric acid content should not be fed. Introduce ration changes gradually. Manage transition cows to maximize DMI, e.g., provide adequate bunk space. Avoid over-conditioning of cows in late lactation and the early dry period. Niacin (nicotinic acid) fed in transition rations at 6–12 g /d may help reduce blood ketone levels. Propylene glycol may be administered pr Continue reading >>

What Is It Like To Experience Ketosis?

What Is It Like To Experience Ketosis?

Ketosis is great, it's the transition that stinks. Being in ketosis means that your body is receiving its primary energy from ketones, which come from fat. The standard American diet is pretty high in carbohydrates, which convert to glucose in the blood. As long as your body has glucose around, it will always pick that over ketones. The transition from processing glucose to processing ketones invariably creates a gap in energy delivery to the brain (and other parts of the body), which will NOT kill you but which WILL trigger a stress response in the form of aches, headaches, fatigue, fogginess, etc. Really, it will vary by person. YMMV. If you fast (don't eat anything), you could be in ketosis in 24-48 hours (apparently, I've never tried it). If you carb-restrict your diet to less than 20-40g carbohydrates per day, you could be in ketosis within 3-5 days. It depends on a few factors, but mostly how much glycogen you have stored in your liver (glycogen converts to glucose). I was listening to a Tim Ferris podcast with Dom D'Agostino (Dom D’Agostino on Fasting, Ketosis, and the End of Cancer) where they talk about exogenous ketones among other things. Exogenous ketones are apparently available in several forms (BHB monoester, AcAc di-ester, BHB mineral salt) and if taken during the transition period will eradicate any negative side effects. I haven't tried them for myself (Peter Attia has! but it's intriguing to think that the one thing that prevents most people from enjoying ketosis (the crappy transition) could be optional. While in ketosis, I experience a little bit higher than normal energy level and fewer food cravings. I can think more clearly. I get hungry less often. I am frequently thirsty (this is normal side effect, and if you are in ketosis you should be dri Continue reading >>

Ketosis In Dairy Cows (acetoneamia)

Ketosis In Dairy Cows (acetoneamia)

What is Ketosis? Ketosis is essentially the cows response to a negative energy balance. In other words:Energy used > energy taken in (eaten) What is the cause: Ketosis can be divided into 2 categories:- 1. Primary ketosis - The cow is not obtaining the energy requirement that she needs from the diet that she is eating. 2. Secondary ketosis – A problem with the cow is stopping her from eating enough food to match her energy requirements e.g an LDA stops the cow eating but she still needs energy to move, produce milk etc. A more commonly seen problem in dairy cows these days is subclinical ketosis. This is generally seen in dairy herds as a group problem rather than a individual cow issue. Cows with subclinical ketosis don't show such strong bulling activity, don't come bulling as early, don't achieve their potential peak milk yield (and subsequently have significantly reduced lactationas yield) and are more prone to disease and conditions such as LDAs (left displaced abomasum. In short they take longer to get going and never achieve their potential in the lactation which costsyoutime and money. Subclinical ketosis often indicates a problemi the transition diet or management. What do cows need energy for? Seems a simple question but cows use large amounts of energy just to exist. Energy is needed to:- Maintain body temperature Move Breathe Digest their food Produce milk Fight infections Show bulling activity Produce eggs/ ovulate You can appreciate how much heat a cow produces when you are stood in a milking parlour on a freezing winter morning – heats up pretty quickly doesn’t it. How is it diagnosed?: Some people can smell a characteristic sweetness to the cows breath but not everyone can smell this. Your vet can usually make a tentative diagnosis using the clinic Continue reading >>

Ketosis

Ketosis

Idiots' Guide to The Biochemistry and Management of Ketosis Ketosis is a disease of dry cows that shows up in fresh cows. Fundamentally, we have a situation where the cow is mobilizing body fat (condition) faster than the liver is able to metabolize it. In order for the liver to normally metabolize that fat, glucose is required. If glucose availability is limited due to inadequate substrate (mostly propionate from the diet) or glucose production via gluconeogenesis is inadequate or impaired, then ketosis can result because of the inability to convert the fat to energy. Loss/mobilization of body fat is a normal part of the onset of lactation. As the rate of fat mobilization rises, circulating NEFA levels begin to rise. If these fatty acids reach the liver and begin to accumulate in significant amounts, the liver switches away from TCA towards ketogenesis in an attempt to provide more energy and eliminate the fat buildup. Ketogenesis produces the ketone bodies, acetoacetate and beta-hydroxybutyrate. Some ketone production is normal in all periparturient cows, so diagnosis is made on clinical history, physical examination, and the presence of significant ketones in milk or urine. Presence of ketones in milk or urine is inadequate, in and or itself, to make the diagnosis of clinical ketosis. Feed intake, or lack thereof, is a critical component in the onset of ketosis. In all cows, dry matter intake begins to decline approximately one month prior to calving, although many people will not notice this decline until several days prior to calving. as feed intake declines and galactopoeisis begins, body fats are mobilized, resulting in an increase in circulationg NEFA levels. NEFAs themselves are mild appetite suppressants, so they continue to hamper feed intake. NEFAs are also Continue reading >>

Sudden Drops In Milk Production

Sudden Drops In Milk Production

This page contains information about conditions that may cause sudden drop in milk production. Many conditions affecting sudden drop in milk production do not have obvious clinical signs. Continue reading >>

Ketotic Cows: Treatment And Prognosis (proceedings)

Ketotic Cows: Treatment And Prognosis (proceedings)

12Next An absolute requirement for treating ketosis in cattle is to identify and treat the primary cause for the negative energy balance. Symptomatic treatment for ketosis without attacking the primary cause is doomed to failure. Propylene glycol is a routine treatment for ketosis. Only 2 oral formulations are approved for use in cattle as a treatment and the dose rate is 8 oz, q 12 h, for up to 10 days (2 other formulations labeled for use as preventive treatment). Research suggests that 296 ml once/day as on oral drench is just as effective as 887 ml once/day. Propylene glycol is absorbed from the rumen as propylene glycol, some propylene glycol is metabolized to propionate in the rumen, but most is absorbed intact and metabolized to glucose in liver. Propylene glycol increases serum [glucose], decreases serum β-OH butyrate & NEFA concentrations but only if a functional liver as propylene glycol must be metabolized. Propylene glycol is only beneficial if rumen motility to aid mixing and absorption. Glycerol (same dose rate as propylene glycol) and sodium propionate (uncertain dose rate) also reported to be of use but are both considered inferior to propylene glycol. Sodium propionate may have palatability problems. Calcium propionate has been examined, but the evidence is not convincing that it is superior to propylene glycol, even though it also has calcium. Not very soluble, and large volumes need to be administered. 500 ml of 50% Dextrose IV is also a routine treatment (one time administration of 250 g). Numerous approved products for treating ketosis in cattle. A cow uses 50-70 g glucose/hour for maintenance and 200 g glucose/hour high production, from a total blood glucose pool <40 g. Milk is 4.5% lactose, 50 kg of milk contains 2.25 kg lactose (glucose and gala Continue reading >>

Overview Of Ketosis In Cattle

Overview Of Ketosis In Cattle

(Acetonemia, Ketonemia) By Thomas H. Herdt, DVM, MS, DACVN, DACVIM, Professor, Department of Large Animal Clinical Sciences and Diagnostic Center for Population and Animal Health, Michigan State University Ketosis is a common disease of adult cattle. It typically occurs in dairy cows in early lactation and is most consistently characterized by partial anorexia and depression. Rarely, it occurs in cattle in late gestation, at which time it resembles pregnancy toxemia of ewes (see Pregnancy Toxemia in Ewes and Does). In addition to inappetence, signs of nervous dysfunction, including pica, abnormal licking, incoordination and abnormal gait, bellowing, and aggression, are occasionally seen. The condition is worldwide in distribution but is most common where dairy cows are bred and managed for high production. Etiology and Pathogenesis: The pathogenesis of bovine ketosis is incompletely understood, but it requires the combination of intense adipose mobilization and a high glucose demand. Both of these conditions are present in early lactation, at which time negative energy balance leads to adipose mobilization, and milk synthesis creates a high glucose demand. Adipose mobilization is accompanied by high blood serum concentrations of nonesterified fatty acids (NEFAs). During periods of intense gluconeogenesis, a large portion of serum NEFAs is directed to ketone body synthesis in the liver. Thus, the clinicopathologic characterization of ketosis includes high serum concentrations of NEFAs and ketone bodies and low concentrations of glucose. In contrast to many other species, cattle with hyperketonemia do not have concurrent acidemia. The serum ketone bodies are acetone, acetoacetate, and β-hydroxybutyrate (BHB). There is speculation that the pathogenesis of ketosis cases oc Continue reading >>

Ketosis

Ketosis

Not to be confused with Ketoacidosis. Ketosis is a metabolic state in which some of the body's energy supply comes from ketone bodies in the blood, in contrast to a state of glycolysis in which blood glucose provides energy. Ketosis is a result of metabolizing fat to provide energy. Ketosis is a nutritional process characterised by serum concentrations of ketone bodies over 0.5 mM, with low and stable levels of insulin and blood glucose.[1][2] It is almost always generalized with hyperketonemia, that is, an elevated level of ketone bodies in the blood throughout the body. Ketone bodies are formed by ketogenesis when liver glycogen stores are depleted (or from metabolising medium-chain triglycerides[3]). The main ketone bodies used for energy are acetoacetate and β-hydroxybutyrate,[4] and the levels of ketone bodies are regulated mainly by insulin and glucagon.[5] Most cells in the body can use both glucose and ketone bodies for fuel, and during ketosis, free fatty acids and glucose synthesis (gluconeogenesis) fuel the remainder. Longer-term ketosis may result from fasting or staying on a low-carbohydrate diet (ketogenic diet), and deliberately induced ketosis serves as a medical intervention for various conditions, such as intractable epilepsy, and the various types of diabetes.[6] In glycolysis, higher levels of insulin promote storage of body fat and block release of fat from adipose tissues, while in ketosis, fat reserves are readily released and consumed.[5][7] For this reason, ketosis is sometimes referred to as the body's "fat burning" mode.[8] Ketosis and ketoacidosis are similar, but ketoacidosis is an acute life-threatening state requiring prompt medical intervention while ketosis can be physiological. However, there are situations (such as treatment-resistant Continue reading >>

250 Yearbook Of Agriculture 1956

250 Yearbook Of Agriculture 1956

To obtain best results in treatment, an adequate concentration of the drug must be maintained in the udder for a period of time. Best results are usually obtained when the drugs are administered once or twice daily over a period of 2 to 4 days, depending upon the causative agent and the nature of the case. Most staphylococcal infections must be treated longer than streptococcal infections. Clinical cases must be treated longer than cases not showing symptoms to produce a cure. Many of the antibiotics are available in various vehicles, such as ointments and water-in-oil emulsions, that are designed for infusion into the udder. The vehicles aid in maintaining an adequate therapeutic level of the anti- biotic in the udder for about 24 to 48 hours after i injection. Because anti- biotics can persist for several days in the udder, the milk from the treated cows should not be marketed during the period of treatment or for at least 72 hours after the last treatment. The antibiotics interfere with the growth of the bacteria necessary for the pro- duction of cheese. The drugs are administered by in- fusion into the infected quarter through the teat canal. First, though, the teat must be washed thoroughly and the teat orifice cleansed with a pledget of cotton wetted with alcohol. Because drugs do not cure all infec- tions caused by some of the bacteria and yeasts, the danger exists of intro- ducing these resistant micro-organisms into the udders while treating for another type of organism and of allow- ing a more severe form of mastitis to develop. Faulty technique in prepar- ing the teat for injection and contam- ination of the instruments, drug, or vehicle may be to blame. In treating acute mastitis, it is desir- able to have the drugs administered intravenously or intramuscula Continue reading >>

Ketosis In Dairy Cows

Ketosis In Dairy Cows

Ketosis is a metabolic disease which usually occurs in cows in early lactation. At this time the cow's appetite is depressed after calving and energy intake cannot meet the increasing demand of the rising milk yield. This period of 'negative energy balance' is normal in all newly calved cows but it is the level at which this happens that is important. To meet energy requirements, the cow loses weight by mobilizing back fat which is then transported (as NEFAs) to the liver and broken down to release energy. During periods of high energy demand the liver cannot fully utilize the fat and metabolites known as ketones, such as acetone and beta-hydroxybutyrate, are produced. If too much weight is lost, these ketones overflow into the blood resulting in a further depression of appetite and subsequently reduced milk yield. Typically, cows will lose 0.5 in body condition score from calving to service but many lose more than that. Fat cows already have lower dry matter intakes post calving and so their body condition score drops even more, taking them to the point of ketosis. Cows that have been dry for a long period of time or cows that have some sort of metabolic disease during calving, or dystocia, are also more susceptible to ketosis. Ketosis is a worsening problem in UK dairy cattle, with approximately 30% having 'hidden ketosis'. It is commonly characterized by anorexia, depression and reduced productivity, lower milk yields and poorer fertility. Even when at sub clinical level, cows are at higher risk of suffering a wide range of metabolic and reproductive diseases which can further reduce income and add extra cost. The direct costs of ketosis include the input by the vet and herdsperson, drugs, discarded milk and reduced yield. Longer term problems are extended calving in Continue reading >>

Minimizing The Risk For Ketosis In Dairy Herds

Minimizing The Risk For Ketosis In Dairy Herds

En Español: Minimizando el Riesgo de Cetosis en el Ganado Lechero This article is part of our series of original articles on emerging featured topics. Please check here to see other articles in this series. Introduction Although most cases of ketosis occur in fresh dairy cows, feeding practices and cow health prepartum can predispose cows to experiencing ketosis after calving. Most cases of primary ketosis occur within the first 2 weeks of calving, and even most secondary ketosis (occurring after the onset of another disease) occurs within the first 30 to 60 days in milk. In general, less than 5% of the cows in a herd should experience clinical ketosis. However, some reports have indicated that the incidence of subclinical ketosis may affect 40% of cows, with the incidence rate varying widely among farms, and may be as high as 80% on individual farms. The major focus prepartum to reduce the risk for ketosis after calving is maintaining feed intake in late gestation and avoiding overconditioning cows during late lactation and the dry period. Cows should dry off and freshen at a body condition score (BCS) of 3.5. Cows with a BCS equal to or greater than 4.0 will likely have lower intake prepartum and be at higher risk for fatty liver and ketosis at and after calving. Recent work at the University of Minnesota indicates that cows with a BCS greater than 3.5 and producing over 16 lb of colostrum are at a higher risk for ketosis. Feeding programs for far-off and close-up cows should be designed to maintain intake during late gestation, i.e., minimizing the drop in intake during the last week of gestation, to reduce the risk for ketosis after calving. These prepartum diets should contain high-fiber forages and provide adequate but not excessive amounts of energy. A 20% or gr Continue reading >>

Ketosis In Cattle Symptoms And Treatments

Ketosis In Cattle Symptoms And Treatments

Ketosis is a fairly common disease among adult cattle, although usually it occurs in dairy cattle.Ketosis typically occurs the first six weeks of parturition.It occurs in dairy cattle because of their inability to intake enough nutrients to meet their energy needs.This can lead to hypoglycemia which is a pathologic state produced by a lower than normal level of glucose.That in turn leads to the formation of ketone bodies from the body and fat stores. Although they are only broken down for energy to used by the heart and brain in the times of low glucose levels. Ketosis is not an immediate thing like many other illnesses, it gradually occurs. Some typical symptoms you will notice about your cattle if they have ketosis happen to be a decreased appetite,marked weight loss,decreased milk production,acetone odor of breath,nervousness, and hard, mucus covered feces. For confined cattle, usually decreased appetite is the first sign that they might have ketosis.Also if they are fed in components such as part forage, part grain, they will tend to go for the forage more than they will go for the grain.If you fed your cattle in herds, then usually you will see reduced milk production,lethargy and an somewhat “empty” appearing abdomen.When cattle are physically examined with having ketosis they may appear sightly dehydrated. Treatment for ketosis in cattle is more commonly done by IV administration of 500 ml of 50% dextrose solution. This treatment allows rapid recovery but the effects are often producing results beyond itself therefore relapses of ketosis are pretty common.Another treatment that can be used is the administration of glucocorticoids such as dexamethasone or isoflupredone acetate.You typically administer 5-20mg dose intra muscularly. This treatment often has good Continue reading >>

Ketosis (acetonaemia)

Ketosis (acetonaemia)

General information Ketosis in cattle is associated with an inadequate supply of the nutrients necessary for the normal carbohydrate and fat metabolism that is seen mainly in times of high milk production in early lactation. The excessive ketone bodies in the bloodstream come from the breakdown of fat when the animal is forced to draw on its bodily reserves for energy. Although the metabolism of body fat provides energy for cows, the nervous system is dependent on glucose, and the ketones produced as a result of excessive fat metabolism can have toxic effects. The excess ketone bodies are eliminated in the urine, milk and breath of the animal. Overview Cause Ketosis may develop from poor diet or periods of stress such as cold, wet weather. It may also affect apparently well-fed cows producing very large volumes of milk. In pasture-fed cows the condition is usually seen when the grass is drying off and green feed is scarce. The disease is relatively common in lactating cows in Australia but often goes unnoticed in its mild forms. The mortality rate in affected cattle is low and spontaneous recoveries occur in many cases. The disease is usually seen in early lactation (within the first 2 months after calving) and may cause significant production losses. Five types of the disease are recognised: Primary underfeeding or starvation ketosis - feed quality inadequate. Secondary underfeeding ketosis - inadequate feed intake due to another disease or condition. Ketogenic or alimentary ketosis - from feeds high in ketogenic material. Ketosis due to a specific nutritional deficiency - cobalt and possibly phosphorus deficiency have been suspected as causes. Spontaneous ketosis - where causes are not able to be established. Predisposing factors Age - cows of any age may be affected Continue reading >>

More in ketosis