diabetestalk.net

What Is Ketosis In Cattle

Ketosis (acetonaemia)

Ketosis (acetonaemia)

General information Ketosis in cattle is associated with an inadequate supply of the nutrients necessary for the normal carbohydrate and fat metabolism that is seen mainly in times of high milk production in early lactation. The excessive ketone bodies in the bloodstream come from the breakdown of fat when the animal is forced to draw on its bodily reserves for energy. Although the metabolism of body fat provides energy for cows, the nervous system is dependent on glucose, and the ketones produced as a result of excessive fat metabolism can have toxic effects. The excess ketone bodies are eliminated in the urine, milk and breath of the animal. Overview Cause Ketosis may develop from poor diet or periods of stress such as cold, wet weather. It may also affect apparently well-fed cows producing very large volumes of milk. In pasture-fed cows the condition is usually seen when the grass is drying off and green feed is scarce. The disease is relatively common in lactating cows in Australia but often goes unnoticed in its mild forms. The mortality rate in affected cattle is low and spontaneous recoveries occur in many cases. The disease is usually seen in early lactation (within the first 2 months after calving) and may cause significant production losses. Five types of the disease are recognised: Primary underfeeding or starvation ketosis - feed quality inadequate. Secondary underfeeding ketosis - inadequate feed intake due to another disease or condition. Ketogenic or alimentary ketosis - from feeds high in ketogenic material. Ketosis due to a specific nutritional deficiency - cobalt and possibly phosphorus deficiency have been suspected as causes. Spontaneous ketosis - where causes are not able to be established. Predisposing factors Age - cows of any age may be affected Continue reading >>

Overview Of Ketosis In Cattle

Overview Of Ketosis In Cattle

(Acetonemia, Ketonemia) By Thomas H. Herdt, DVM, MS, DACVN, DACVIM, Professor, Department of Large Animal Clinical Sciences and Diagnostic Center for Population and Animal Health, Michigan State University Ketosis is a common disease of adult cattle. It typically occurs in dairy cows in early lactation and is most consistently characterized by partial anorexia and depression. Rarely, it occurs in cattle in late gestation, at which time it resembles pregnancy toxemia of ewes (see Pregnancy Toxemia in Ewes and Does). In addition to inappetence, signs of nervous dysfunction, including pica, abnormal licking, incoordination and abnormal gait, bellowing, and aggression, are occasionally seen. The condition is worldwide in distribution but is most common where dairy cows are bred and managed for high production. Etiology and Pathogenesis: The pathogenesis of bovine ketosis is incompletely understood, but it requires the combination of intense adipose mobilization and a high glucose demand. Both of these conditions are present in early lactation, at which time negative energy balance leads to adipose mobilization, and milk synthesis creates a high glucose demand. Adipose mobilization is accompanied by high blood serum concentrations of nonesterified fatty acids (NEFAs). During periods of intense gluconeogenesis, a large portion of serum NEFAs is directed to ketone body synthesis in the liver. Thus, the clinicopathologic characterization of ketosis includes high serum concentrations of NEFAs and ketone bodies and low concentrations of glucose. In contrast to many other species, cattle with hyperketonemia do not have concurrent acidemia. The serum ketone bodies are acetone, acetoacetate, and β-hydroxybutyrate (BHB). There is speculation that the pathogenesis of ketosis cases oc Continue reading >>

250 Yearbook Of Agriculture 1956

250 Yearbook Of Agriculture 1956

To obtain best results in treatment, an adequate concentration of the drug must be maintained in the udder for a period of time. Best results are usually obtained when the drugs are administered once or twice daily over a period of 2 to 4 days, depending upon the causative agent and the nature of the case. Most staphylococcal infections must be treated longer than streptococcal infections. Clinical cases must be treated longer than cases not showing symptoms to produce a cure. Many of the antibiotics are available in various vehicles, such as ointments and water-in-oil emulsions, that are designed for infusion into the udder. The vehicles aid in maintaining an adequate therapeutic level of the anti- biotic in the udder for about 24 to 48 hours after i injection. Because anti- biotics can persist for several days in the udder, the milk from the treated cows should not be marketed during the period of treatment or for at least 72 hours after the last treatment. The antibiotics interfere with the growth of the bacteria necessary for the pro- duction of cheese. The drugs are administered by in- fusion into the infected quarter through the teat canal. First, though, the teat must be washed thoroughly and the teat orifice cleansed with a pledget of cotton wetted with alcohol. Because drugs do not cure all infec- tions caused by some of the bacteria and yeasts, the danger exists of intro- ducing these resistant micro-organisms into the udders while treating for another type of organism and of allow- ing a more severe form of mastitis to develop. Faulty technique in prepar- ing the teat for injection and contam- ination of the instruments, drug, or vehicle may be to blame. In treating acute mastitis, it is desir- able to have the drugs administered intravenously or intramuscula Continue reading >>

Minimizing The Risk For Ketosis In Dairy Herds

Minimizing The Risk For Ketosis In Dairy Herds

En Español: Minimizando el Riesgo de Cetosis en el Ganado Lechero This article is part of our series of original articles on emerging featured topics. Please check here to see other articles in this series. Introduction Although most cases of ketosis occur in fresh dairy cows, feeding practices and cow health prepartum can predispose cows to experiencing ketosis after calving. Most cases of primary ketosis occur within the first 2 weeks of calving, and even most secondary ketosis (occurring after the onset of another disease) occurs within the first 30 to 60 days in milk. In general, less than 5% of the cows in a herd should experience clinical ketosis. However, some reports have indicated that the incidence of subclinical ketosis may affect 40% of cows, with the incidence rate varying widely among farms, and may be as high as 80% on individual farms. The major focus prepartum to reduce the risk for ketosis after calving is maintaining feed intake in late gestation and avoiding overconditioning cows during late lactation and the dry period. Cows should dry off and freshen at a body condition score (BCS) of 3.5. Cows with a BCS equal to or greater than 4.0 will likely have lower intake prepartum and be at higher risk for fatty liver and ketosis at and after calving. Recent work at the University of Minnesota indicates that cows with a BCS greater than 3.5 and producing over 16 lb of colostrum are at a higher risk for ketosis. Feeding programs for far-off and close-up cows should be designed to maintain intake during late gestation, i.e., minimizing the drop in intake during the last week of gestation, to reduce the risk for ketosis after calving. These prepartum diets should contain high-fiber forages and provide adequate but not excessive amounts of energy. A 20% or gr Continue reading >>

Ketosis In Dairy Cows (acetoneamia)

Ketosis In Dairy Cows (acetoneamia)

What is Ketosis? Ketosis is essentially the cows response to a negative energy balance. In other words:Energy used > energy taken in (eaten) What is the cause: Ketosis can be divided into 2 categories:- 1. Primary ketosis - The cow is not obtaining the energy requirement that she needs from the diet that she is eating. 2. Secondary ketosis – A problem with the cow is stopping her from eating enough food to match her energy requirements e.g an LDA stops the cow eating but she still needs energy to move, produce milk etc. A more commonly seen problem in dairy cows these days is subclinical ketosis. This is generally seen in dairy herds as a group problem rather than a individual cow issue. Cows with subclinical ketosis don't show such strong bulling activity, don't come bulling as early, don't achieve their potential peak milk yield (and subsequently have significantly reduced lactationas yield) and are more prone to disease and conditions such as LDAs (left displaced abomasum. In short they take longer to get going and never achieve their potential in the lactation which costsyoutime and money. Subclinical ketosis often indicates a problemi the transition diet or management. What do cows need energy for? Seems a simple question but cows use large amounts of energy just to exist. Energy is needed to:- Maintain body temperature Move Breathe Digest their food Produce milk Fight infections Show bulling activity Produce eggs/ ovulate You can appreciate how much heat a cow produces when you are stood in a milking parlour on a freezing winter morning – heats up pretty quickly doesn’t it. How is it diagnosed?: Some people can smell a characteristic sweetness to the cows breath but not everyone can smell this. Your vet can usually make a tentative diagnosis using the clinic Continue reading >>

Cut Down On Ketosis

Cut Down On Ketosis

Ketosis is one of the most common metabolic diseases on dairy farms. It occurs when cows have an abnormal response to negative energy balance. After calving, all cows experience some degree of negative energy balance, mobilize body fat for the additional energy needed for milk production and lose weight during the first several months of lactation. But, if cows mobilize excessive amounts of fat, the metabolic process of converting this fat to energy can result in an undesirable buildup of ketones in the bloodstream. Clinical signs Watch for the following clinical signs: decreased milk production, poor appetite, decreased rumen fill, dehydration, sunken eyes and constipation. In severe cases, known as nervous ketosis, cows will exhibit neurologic signs such as weakness, running into walls, or compulsive licking/chewing. Cow-side diagnostic tests If you suspect ketosis, you have several options to help confirm the diagnosis. 1. Urine test strips. Once the cow urinates, hold the ketone strip into the urine and watch for a color change (purple) which often occurs within seconds. The urine strips are the least costly test; however, they do miss some cows with ketosis (due to lower sensitivity). 2. Milk Ketone Test strips. The milk test strips measure the amount of beta hydroxybutyrate (BHBA) in the milk which is the primary cow ketone. This test is more costly than the urine strip, but it is more sensitive than that test. Squirt milk into a clean container, dip in the strip for the manufacturer"s recommended amount of time, then compare the color change to the code on the bottle. 3. Precision Extra Blood BHBA meter. This is the most sensitive ketosis cow-side test. This meter is a human diabetic meter that measures ketones as well as glucose levels. Insert the strip into the Continue reading >>

New Tools Help Us Spot Ketotic Cows

New Tools Help Us Spot Ketotic Cows

The author is a dairy practitioner and owner/partner in Countryside Veterinary Clinic, Lowville, N.Y. When a cow's intake of energy does not meet her energy needs for maintenance and milk production, she begins to burn fat as an energy source. One common form of ketosis (Type I) occurs when a cow is in negative energy balance. She is not consuming enough energy to meet her metabolic needs. This generally occurs in early lactation when the cow's feed intake is unable to keep up with climbing milk production. When a cow's intake of energy does not meet her energy needs, she begins to burn fat as an energy source. The liver is the necessary organ to convert fat into usable energy (sugar). Think of the liver as a factory with an output limit. It can only convert so much fat into sugar. Once this pathway is overwhelmed, the liver produces ketones. Ketones can be used as an energy source, but they are much less efficient, and they cause the cow to feel sick. This becomes a downward spiral . . . the cow does not feel well, eats less, burns more fat, and makes more ketones. She now has clinical ketosis. Two other forms of ketosis can occur as a result of either "fat cow syndrome" or the consumption of forages high in butyric acid. "Fat cow" (or Type II) ketosis occurs when dry matter intake declines before freshening. This most commonly occurs in overconditioned cows but can also occur when dry matter intake is restricted to cows prior to freshening. This often is the result of overcrowding or improperly balanced prefresh rations. Cows with Type II ketosis are very difficult to manage and don't respond well to treatment. Butyric acid-induced ketosis is caused by the direct consumption of ketones in the diet. This causes poor dry matter intake and the obvious downward spiral as Continue reading >>

What Is A Ketogenic Diet?

What Is A Ketogenic Diet?

Alright, here’s what the ketogenic diet (often referred to as “keto”) is and the basics of how to follow it. What is the ketogenic diet? For those who don’t know the ketogenic diet is a low-carb, high fat diet (LCHF) with many health benefits. It involves drastically reducing carbohydrate intake, and replacing it with fat. The reduction in carbs puts your body into a metabolic state called ketosis. When this happens, your body becomes incredibly efficient at burning fat for energy. It also turns fat into ketones in the liver, which can supply energy for the brain. Benefits: Ketogenic diets generally cause massive reductions in blood sugar and insulin levels. This, along with the increased level of ketones provide the numerous cited health benefits. Ketogenic benefits include: Fighting diabetes Epilepsy control Alzheimer’s disease Certain cancers Cognitive performance High blood pressure control Satiety Weight/fat loss Reduced cholesterol levels The most obvious and commonly cited benefits is the decreased insulin levels. This is why fasting becomes a great solution to people’s type 2 diabetes, cushing’s disease and many other metabolic diseases. Fasting as well as the ketogenic diet increases insulin sensitivity, improves insulin resistance and allows your body to use the hormone insulin more effectively (which is important for fat loss). There are also four different classifications of the ketogenic diet. The standard ketogenic diet is accepted as reducing your carbohydrates intake to 5% carbs, with just enough protein (20%, let’s say) and the rest coming from fats. Inflammation is the root cause of so many of our ailments, which lower insulin levels decrease. Energy use: The basic principle around ketogenic diets is that our bodies first port of call f Continue reading >>

Research-article Ketosis In Dairy Cattle

Research-article Ketosis In Dairy Cattle

First page preview Copyright © 1968 American Dairy Science Association. Published by Elsevier Inc. All rights reserved. View more articles Continue reading >>

Ketosis

Ketosis

Not to be confused with Ketoacidosis. Ketosis is a metabolic state in which some of the body's energy supply comes from ketone bodies in the blood, in contrast to a state of glycolysis in which blood glucose provides energy. Ketosis is a result of metabolizing fat to provide energy. Ketosis is a nutritional process characterised by serum concentrations of ketone bodies over 0.5 mM, with low and stable levels of insulin and blood glucose.[1][2] It is almost always generalized with hyperketonemia, that is, an elevated level of ketone bodies in the blood throughout the body. Ketone bodies are formed by ketogenesis when liver glycogen stores are depleted (or from metabolising medium-chain triglycerides[3]). The main ketone bodies used for energy are acetoacetate and β-hydroxybutyrate,[4] and the levels of ketone bodies are regulated mainly by insulin and glucagon.[5] Most cells in the body can use both glucose and ketone bodies for fuel, and during ketosis, free fatty acids and glucose synthesis (gluconeogenesis) fuel the remainder. Longer-term ketosis may result from fasting or staying on a low-carbohydrate diet (ketogenic diet), and deliberately induced ketosis serves as a medical intervention for various conditions, such as intractable epilepsy, and the various types of diabetes.[6] In glycolysis, higher levels of insulin promote storage of body fat and block release of fat from adipose tissues, while in ketosis, fat reserves are readily released and consumed.[5][7] For this reason, ketosis is sometimes referred to as the body's "fat burning" mode.[8] Ketosis and ketoacidosis are similar, but ketoacidosis is an acute life-threatening state requiring prompt medical intervention while ketosis can be physiological. However, there are situations (such as treatment-resistant Continue reading >>

What Is It Like To Experience Ketosis?

What Is It Like To Experience Ketosis?

Ketosis is great, it's the transition that stinks. Being in ketosis means that your body is receiving its primary energy from ketones, which come from fat. The standard American diet is pretty high in carbohydrates, which convert to glucose in the blood. As long as your body has glucose around, it will always pick that over ketones. The transition from processing glucose to processing ketones invariably creates a gap in energy delivery to the brain (and other parts of the body), which will NOT kill you but which WILL trigger a stress response in the form of aches, headaches, fatigue, fogginess, etc. Really, it will vary by person. YMMV. If you fast (don't eat anything), you could be in ketosis in 24-48 hours (apparently, I've never tried it). If you carb-restrict your diet to less than 20-40g carbohydrates per day, you could be in ketosis within 3-5 days. It depends on a few factors, but mostly how much glycogen you have stored in your liver (glycogen converts to glucose). I was listening to a Tim Ferris podcast with Dom D'Agostino (Dom D’Agostino on Fasting, Ketosis, and the End of Cancer) where they talk about exogenous ketones among other things. Exogenous ketones are apparently available in several forms (BHB monoester, AcAc di-ester, BHB mineral salt) and if taken during the transition period will eradicate any negative side effects. I haven't tried them for myself (Peter Attia has! but it's intriguing to think that the one thing that prevents most people from enjoying ketosis (the crappy transition) could be optional. While in ketosis, I experience a little bit higher than normal energy level and fewer food cravings. I can think more clearly. I get hungry less often. I am frequently thirsty (this is normal side effect, and if you are in ketosis you should be dri Continue reading >>

Ketosis

Ketosis

Ketosis is a metabolic disease that occurs when the cow is in severe state of negative energy balance. In this state, the cow mobilises large quantities of body fat but cannot convert this to energy through the usual pathways. Instead, ketone bodies are produced which in small amounts can be used by the cow for energy. However, when ketone production is high, the cow cannot use all the ketone bodies for energy and ketone levels increase in the blood. When this occurs the cow may suffer from ketosis. Types of Ketosis Type 1 ketosis is a result of a sudden drop in energy intake. This can be due to underfeeding or adverse weather events (e.g. snow storms) that prevent the cows from eating sufficient amounts of dry matter. Type 2 ketosis generally occurs post-calving, when the cow is mobilising excess body fat to meet the demands of milk production. Cows that are too fat at calving (BCS > 5) or cows that have been overfed pre-calving are particularly at risk. Silage ketosis is due to cows ingesting poor quality silage. The silage undergoes a secondary fermentation and when ingested will increase the risk of ketosis. Symptoms Ketosis can be displayed in two ways: Wasting form Lethargy (head down, lack of energy) Decreased dry matter intake Decreased milk production Often a sweet smell on the breath (acetone) Nervous form Excitable, uncoordinated and can become aggressive Strange behaviour such as eating soil, licking fence posts and gates, walking in circles, or standing with heads raised up and pushed into a corner etc. If a cow shows signs of ketosis seek advice from your veterinarian Prevention It is important to prevent ketosis from occurring, rather than treating cases as they appear. Prevention depends on adequate feeding and management of body condition score (BCS). E Continue reading >>

What Is Body Condition Scoring In Cattle?

What Is Body Condition Scoring In Cattle?

Body condition scoring in cattle is a means to measure the level of fatness over the skeletal frame of a cow, bull, steer, heifer or even calf. Body condition scoring is a means of determining and monitoring fertility (level of reproduction) and feed efficiency. Body condition scoring is also used in all other animals, however it's much more a determinant of health status than production, particularly in companion animals. Body condition scoring or BCS is evaluated using a number system. In cattle (both beef and dairy) there are actually two number systems, the name of either systems depends on where you live. The first is the scale from 1 to 5, and the second being 1 to 9. In the United States, the 1 to 9 scale is primarily used in beef cattle (would be considered the Beef BCS scale), and 1 to 5 is typically the Dairy BCS scale. In Canada, the 1 to 9 scale is considered the American scale, and 1 to 5 the Canadian scale, this because the latter is used commonly in both beef and dairy cattle. As per the scale goes, 1 is the most emaciated with no fat cover, and 5 (or 9) is very fat or obese. Normal condition for cows is between 2.5 and 3.5 (CDN BCS) or 5 and 6 (USA BCS). The Canadian and American scoring system is basically the same with these formula conversions: CDN BCS = (USA BCS + 1)/2 USA BCS = (CDN BCS -1)2 Each score (and I'm going to use the Canadian system for a little more simplicity) is as follows: Score 1: Entire body: Extremely thin; all skeletal structures visible; no muscle tissue evident & no external fat present. Hair coat dull. Survival during stress doubtful. Backbone: Individual vertebrae well defined and very sharp. Able to place fingers between each vertebra Shortribs: visually prominent as individuals; very sharp to the touch. Tail head & hooks: vi Continue reading >>

Preventive Strategies For Ketosis

Preventive Strategies For Ketosis

Parturition and the onset of lactation challenges calcium and energy homeostasis in dairy cows predisposing them to periparturient disorders that affect health, production and reproductive performance says Carlos Risco, DVM, Dipl. ACT, University of Florida. Dairy cattle experience a negative carbohydrate balance, from -3 weeks and + 3 weeks from calving and are at risk to develop ketosis, Risco explained at the 2010 Western Veterinary Conference. Milk production, in particular, drives the high requirements for glucose because other fuels cannot substitute for lactose in milk. To counteract this, the cow mobilizes body fat and protein stores in the form of non-esterified fatty acids (NEFA) and amino acids. This promotes gluconeogenesis and occurs under the influence of low serum concentrations of insulin. Volatile fatty acids (acetate, propionate, butyrate [BHBA]) produced in the rumen are also presented to the liver as fuels. Acetate and butyrate are ketogenic, and propionate is glycogenic. The key to prevention of ketosis is to maximize dry matter intake before and after calving to prevent excessive NEFA mobilization. Preventing ketosis in the first place is key to avoid some post-partum issues. Risco outlined some preventive strategies: The transition ration. To prevent ketosis the transition ration should maximize DMI, provide adequate energy density, and minimize ketogenic precursors. Silage with a high butyric acid content should not be fed. Introduce ration changes gradually. Manage transition cows to maximize DMI, e.g., provide adequate bunk space. Avoid over-conditioning of cows in late lactation and the early dry period. Niacin (nicotinic acid) fed in transition rations at 6–12 g /d may help reduce blood ketone levels. Propylene glycol may be administered pr Continue reading >>

Ketosis

Ketosis

Idiots' Guide to The Biochemistry and Management of Ketosis Ketosis is a disease of dry cows that shows up in fresh cows. Fundamentally, we have a situation where the cow is mobilizing body fat (condition) faster than the liver is able to metabolize it. In order for the liver to normally metabolize that fat, glucose is required. If glucose availability is limited due to inadequate substrate (mostly propionate from the diet) or glucose production via gluconeogenesis is inadequate or impaired, then ketosis can result because of the inability to convert the fat to energy. Loss/mobilization of body fat is a normal part of the onset of lactation. As the rate of fat mobilization rises, circulating NEFA levels begin to rise. If these fatty acids reach the liver and begin to accumulate in significant amounts, the liver switches away from TCA towards ketogenesis in an attempt to provide more energy and eliminate the fat buildup. Ketogenesis produces the ketone bodies, acetoacetate and beta-hydroxybutyrate. Some ketone production is normal in all periparturient cows, so diagnosis is made on clinical history, physical examination, and the presence of significant ketones in milk or urine. Presence of ketones in milk or urine is inadequate, in and or itself, to make the diagnosis of clinical ketosis. Feed intake, or lack thereof, is a critical component in the onset of ketosis. In all cows, dry matter intake begins to decline approximately one month prior to calving, although many people will not notice this decline until several days prior to calving. as feed intake declines and galactopoeisis begins, body fats are mobilized, resulting in an increase in circulationg NEFA levels. NEFAs themselves are mild appetite suppressants, so they continue to hamper feed intake. NEFAs are also Continue reading >>

More in ketosis