diabetestalk.net

What Is Ketoacidosis Wiki

Ketone Bodies

Ketone Bodies

Ketone bodies Acetone Acetoacetic acid (R)-beta-Hydroxybutyric acid Ketone bodies are three water-soluble molecules (acetoacetate, beta-hydroxybutyrate, and their spontaneous breakdown product, acetone) that are produced by the liver from fatty acids[1] during periods of low food intake (fasting), carbohydrate restrictive diets, starvation, prolonged intense exercise,[2], alcoholism or in untreated (or inadequately treated) type 1 diabetes mellitus. These ketone bodies are readily picked up by the extra-hepatic tissues, and converted into acetyl-CoA which then enters the citric acid cycle and is oxidized in the mitochondria for energy.[3] In the brain, ketone bodies are also used to make acetyl-CoA into long-chain fatty acids. Ketone bodies are produced by the liver under the circumstances listed above (i.e. fasting, starving, low carbohydrate diets, prolonged exercise and untreated type 1 diabetes mellitus) as a result of intense gluconeogenesis, which is the production of glucose from non-carbohydrate sources (not including fatty acids).[1] They are therefore always released into the blood by the liver together with newly produced glucose, after the liver glycogen stores have been depleted (these glycogen stores are depleted after only 24 hours of fasting)[1]. When two acetyl-CoA molecules lose their -CoAs, (or Co-enzyme A groups) they can form a (covalent) dimer called acetoacetate. Beta-hydroxybutyrate is a reduced form of acetoacetate, in which the ketone group is converted into an alcohol (or hydroxyl) group (see illustration on the right). Both are 4-carbon molecules, that can readily be converted back into acetyl-CoA by most tissues of the body, with the notable exception of the liver. Acetone is the decarboxylated form of acetoacetate which cannot be converted Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Diabetic Ketoacidosis Definition Diabetic ketoacidosis is a dangerous complication of diabetes mellitus in which the chemical balance of the body becomes far too acidic. Description Diabetic ketoacidosis (DKA) always results from a severe insulin deficiency. Insulin is the hormone secreted by the body to lower the blood sugar levels when they become too high. Diabetes mellitus is the disease resulting from the inability of the body to produce or respond properly to insulin, required by the body to convert glucose to energy. In childhood diabetes, DKA complications represent the leading cause of death, mostly due to the accumulation of abnormally large amounts of fluid in the brain (cerebral edema). DKA combines three major features: hyperglycemia, meaning excessively high blood sugar kevels; hyperketonemia, meaning an overproduction of ketones by the body; and acidosis, meaning that the blood has become too acidic. Insulin deficiency is responsible for all three conditions: the body glucose goes largely unused since most cells are unable to transport glucose into the cell without the presence of insulin; this condition makes the body use stored fat as an alternative source instead of the unavailable glucose for energy, a process that produces acidic ketones, which build up because they require insulin to be broken down. The presence of excess ketones in the bloodstream in turn causes the blood to become more acidic than the body tissues, which creates a toxic condition. Causes and symptoms DKA is most commonly seen in individuals with type I diabetes, under 19 years of age and is usually caused by the interruption of their insulin treatment or by acute infection or trauma. A small number of people with type II diabetes also experience ketoacidosis, but this is rare give Continue reading >>

Ketosis

Ketosis

Not to be confused with Ketoacidosis. Ketosis is a metabolic state in which some of the body's energy supply comes from ketone bodies in the blood, in contrast to a state of glycolysis in which blood glucose provides energy. Ketosis is a result of metabolizing fat to provide energy. Ketosis is a nutritional process characterised by serum concentrations of ketone bodies over 0.5 mM, with low and stable levels of insulin and blood glucose.[1][2] It is almost always generalized with hyperketonemia, that is, an elevated level of ketone bodies in the blood throughout the body. Ketone bodies are formed by ketogenesis when liver glycogen stores are depleted (or from metabolising medium-chain triglycerides[3]). The main ketone bodies used for energy are acetoacetate and β-hydroxybutyrate,[4] and the levels of ketone bodies are regulated mainly by insulin and glucagon.[5] Most cells in the body can use both glucose and ketone bodies for fuel, and during ketosis, free fatty acids and glucose synthesis (gluconeogenesis) fuel the remainder. Longer-term ketosis may result from fasting or staying on a low-carbohydrate diet (ketogenic diet), and deliberately induced ketosis serves as a medical intervention for various conditions, such as intractable epilepsy, and the various types of diabetes.[6] In glycolysis, higher levels of insulin promote storage of body fat and block release of fat from adipose tissues, while in ketosis, fat reserves are readily released and consumed.[5][7] For this reason, ketosis is sometimes referred to as the body's "fat burning" mode.[8] Ketosis and ketoacidosis are similar, but ketoacidosis is an acute life-threatening state requiring prompt medical intervention while ketosis can be physiological. However, there are situations (such as treatment-resistant Continue reading >>

Diabetes: What Is Ketoacidosis And How Can Be Avoided & Treated?

Diabetes: What Is Ketoacidosis And How Can Be Avoided & Treated?

Good question! According to Wikipedia: Diabetic ketoacidosis is a potentially life-threatening complication in patients with diabetes mellitus. In order to define ketoacidosis a little better, let's go back to the source: diabetes. Someone who is diabetic is unable to produce insulin, a hormone necessary for the transfer of sugar from the bloodstream to the cells, which in turn produce energy. If this progression is disrupted, through lack of insulin for example, the body has to try to compensate by creating energy elsewhere. And so the body starts to burn fat and muscle to meet its energy needs. Unfortunately, this chemical reaction produces molecules known as ketone bodies. In small quantities, these are fine, and it is in fact normal to have traces of them in your blood (approximately 1mg/dl). However, if the quantity of ketones surpasses this threshold by too much, it starts to affect the pH of your blood (which becomes progressively more acidic). Even the slightest drop in pH can have dangerous effects: as the quantity of the ketones in your blood increases, and the blood pH diminishes, your kidneys start having problems. Eventually, if the ketoacidosis is left untreated, your kidneys can fail and you can die from dehydration, tachycardia and hypotension. A number of other symptoms can appear in extreme cases. Fortunately for us, the quantity of ketones has to be consequential, and it usually takes a while before individuals start manifesting symptoms. In my case, my diabetes went undiagnosed for a month and a half before it was discovered, and even then my ketone levels were relatively normal. If you're a diabetic, ketoacidosis can be easily avoided by controlling your blood sugar levels and maintaining a healthy lifestyle. Some doctors, preferring to stay on the Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Also known as: DKA Severe diabetic ketoacidosis is a medical emergency and requires prompt treatment to correct dehydration, electrolyte disturbances and acidosis. It is a complication of insulin dependent Diabetes Mellitus. DKA is the result of marked insulin deficiency, and ketonaemia and ketoacidosis occur approximately 15 days after insulin concentrations are suppressed to fasting levels. Marked insulin suppression occurs on average 4 days after fasting glucose levels reach 30mmol/L. Many cats with DKA have other intercurrent conditions which may precipitate the condition including: infection, pancreatitis or renal insufficiency. Pathophysiology Insulin deficiency leads to increased breakdown of fat that releases fatty acids into the circulation. Free fatty acids are oxidised in the liver to ketones that are used by many tissues as an energy source instead of glucose. This occurs when intracellular levels of glucose are insufficient for energy metabolism as a result of severe insulin deficiency. In the liver, instead of being converted to triglycerides, free fatty acids are oxidised to acetoacetate, which is converted to hydroxybutyrate or acetone. Ketones are acids that cause central nervous system depression and act in the chemoreceptor trigger zone to cause nausea, vomiting and anorexia. They also accelerate osmotic water loss in the urine. Dehydration results from inadequate fluid intake in the face of accelerated water loss due to glucosuria and ketonuria. Dehydration and subsequent reduced tissue perfusion compounds the acidosis through lactic acid production. There is whole body loss of electrolytes including sodium, potassium, magnesium and phosphate and there is also intracellular redistribution of electrolytes following insulin therapy which may compound p Continue reading >>

Ketoacidosis

Ketoacidosis

Ketoacidosis is a metabolic state associated with high concentrations of ketone bodies, formed by the breakdown of fatty acids and the deamination of amino acids. The two common ketones produced in humans are acetoacetic acid and β-hydroxybutyrate. Ketoacidosis is a pathological metabolic state marked by extreme and uncontrolled ketosis. In ketoacidosis, the body fails to adequately regulate ketone production causing such a severe accumulation of keto acids that the pH of the blood is substantially decreased. In extreme cases ketoacidosis can be fatal.[1] Ketoacidosis is most common in untreated type 1 diabetes mellitus, when the liver breaks down fat and proteins in response to a perceived need for respiratory substrate. Prolonged alcoholism may lead to alcoholic ketoacidosis. Ketoacidosis can be smelled on a person's breath. This is due to acetone, a direct by-product of the spontaneous decomposition of acetoacetic acid. It is often described as smelling like fruit or nail polish remover.[2] Ketosis may also give off an odor, but the odor is usually more subtle due to lower concentrations of acetone. Treatment consists most simply of correcting blood sugar and insulin levels, which will halt ketone production. If the severity of the case warrants more aggressive measures, intravenous sodium bicarbonate infusion can be given to raise blood pH back to an acceptable range. However, serious caution must be exercised with IV sodium bicarbonate to avoid the risk of equally life-threatening hypernatremia. Cause[edit] Three common causes of ketoacidosis are alcohol, starvation, and diabetes, resulting in alcoholic ketoacidosis, starvation ketoacidosis, and diabetic ketoacidosis respectively.[3] In diabetic ketoacidosis, a high concentration of ketone bodies is usually accomp Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a serious complications of untreated diabetes. In this complication, severely insufficient insulin levels in the body results into high blood sugar that leads to the production and buildup of ketones in the blood. These ketones are slightly acidic, and large amounts of them can lead to ketoacidosis. If remained untreated, the condition leads to diabetic coma and may be fatal. Diabetic ketoacidosis (DKA) gets triggered by a stressful event on the body, such as an illness or severe lack of insulin. DKA is more common in people with type 1 diabetes. In some cases, identification of DKA is the first indication that a person has diabetes. Early Sluggish and extreme tiredness Fruity smell to breath (like acetone) Extreme thirst, despite large fluid intake Constant urination/bedwetting Extreme weight loss Presence of Oral Thrush or yeast infections that fail to go away Muscle wasting Agitation / Irritation / Aggression / Confusion Late At this stage, Diabetic ketoacidosis reaches a life-threatening level: Vomiting. Although this can be a sign of hyperglycemia and isn't always a late-stage sign, it can occur with or without ketoacidosis. Confusion Abdominal pain Loss of appetite Flu-like symptoms Unconsciousness (diabetic coma) Being lethargic and apathetic Extreme weakness Kussmaul breathing (air hunger). In this condition, patients breathe more deeply and/or more rapidly The major risk factors accelerating on set of diabetic ketoacidosis include the following: Diabetes mellitus: Type 1 diabetics are at a higher risk of DKA, because they must rely on outside insulin sources for survival. DKA can occur in patients with type 2, particularly in obese children. Age: DKA may occur at any age, but younger people below 19 years of age are more susceptib Continue reading >>

Diabetic Coma

Diabetic Coma

Diabetic coma is a reversible form of coma found in people with diabetes mellitus. It is a medical emergency.[1] Three different types of diabetic coma are identified: Severe low blood sugar in a diabetic person Diabetic ketoacidosis (usually type 1) advanced enough to result in unconsciousness from a combination of a severely increased blood sugar level, dehydration and shock, and exhaustion Hyperosmolar nonketotic coma (usually type 2) in which an extremely high blood sugar level and dehydration alone are sufficient to cause unconsciousness. In most medical contexts, the term diabetic coma refers to the diagnostical dilemma posed when a physician is confronted with an unconscious patient about whom nothing is known except that they have diabetes. An example might be a physician working in an emergency department who receives an unconscious patient wearing a medical identification tag saying DIABETIC. Paramedics may be called to rescue an unconscious person by friends who identify them as diabetic. Brief descriptions of the three major conditions are followed by a discussion of the diagnostic process used to distinguish among them, as well as a few other conditions which must be considered. An estimated 2 to 15 percent of diabetics will suffer from at least one episode of diabetic coma in their lifetimes as a result of severe hypoglycemia. Types[edit] Severe hypoglycemia[edit] People with type 1 diabetes mellitus who must take insulin in full replacement doses are most vulnerable to episodes of hypoglycemia. It is usually mild enough to reverse by eating or drinking carbohydrates, but blood glucose occasionally can fall fast enough and low enough to produce unconsciousness before hypoglycemia can be recognized and reversed. Hypoglycemia can be severe enough to cause un Continue reading >>

Diabetic Ketoacidosis (dka)

Diabetic Ketoacidosis (dka)

Also see Pet Diabetes Wiki: Ketoacidosis A Ketone Primer by an FDMB user What are Ketones? Ketones or ketone bodies (acetone, acetoacetic acid, and beta-hydroxybutyric acid) are waste products of fatty acid breakdown in the body. This is the result of burning fat, rather than glucose, to fuel the body. The body tries to dispose of excess ketones as quickly as possible when they are present in the blood. The kidneys filter out ketones and excrete them into the urine. Should you care about ketones? YES! If they build up, they can lead to very serious energy problems in the body, resulting in diabetic ketoacidosis, a true medical emergency. If the condition is not reversed and other systemic stresses are present, ketones may continue to rise and a condition known as diabetic ketoacidosis (DKA) may occur. This condition can progress very quickly and cause severe illness. It is potentially fatal even when treated. Recognition of DKA and rapid treatment by your veterinarian can save your cat's life. Signs of Diabetic Ketoacidosis (DKA) Drinking excessive amounts of water OR no water Excessive urination Diminished activity Not eating for over 12 hours Vomiting Lethargy and depression Weakness Breathing very fast Dehydration Ketone odor on breath (smells like nail-polish remover or fruit) Causes of Diabetic Ketoacidosis (DKA) Insulin dependent diabetes mellitus Inadequate insulin dosing or production Infection Concurrent diseas that stresses the animal Estrus Medication noncompliance Lethargy and depression Stress Surgery Idiopathic (unknown causes) Risk Factors for DKA Any condition that causes an insulin deficiency History of corticosteroid or beta-blocker administration Diagnosis Laboratory tests performed by your vet are necessary for diagnosis. Depending on how sick your c Continue reading >>

Alcoholic Ketoacidosis.

Alcoholic Ketoacidosis.

AKA is an acute metabolic disorder that occurs in ethanol abusers who have usually had a recent binge and who, because of gastritis or another intercurrent illness, stop eating and drinking and often vomit repeatedly. This causes dehydration and ketoacidosis which, unlike in diabetics, is usually associated with little or no hyperglycemia or glucosuria. Despite the ketoacidosis, blood pH findings are variable, depending on the severity of coexisting metabolic alkalosis (owing to vomiting) and respiratory alkalosis (owing to pain or delirium tremens). The metabolic disorders respond rapidly and gratifyingly to parenteral rehydration and administration of glucose, potassium salts, and thiamine. Insulin is usually not necessary, except in patients known or suspected to have diabetes. Because some patients have serious coexisting acute illnesses (which may even have precipitated the acute metabolic disorder), assiduous search for those and the appropriate treatment are essential. The prognosis for the acute metabolic disorder per se is excellent, that for coexisting illness depends on the illness, and that for the ethanol abuse is still often problematic.[1] References Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Use Continue reading >>

Pediatric Diabetic Ketoacidosis

Pediatric Diabetic Ketoacidosis

Practice Essentials Diabetic ketoacidosis, in pediatric and adult cases, is a metabolic derangement caused by the absolute or relative deficiency of the anabolic hormone insulin. Together with the major complication of cerebral edema, it is the most important cause of mortality and severe morbidity in children with diabetes. Signs and symptoms Symptoms of acidosis and dehydration include the following: Symptoms of hyperglycemia, a consequence of insulin deficiency, include the following: Patients with diabetic ketoacidosis may also have the following signs and symptoms: Cerebral edema Most cases of cerebral edema occur 4-12 hours after initiation of treatment. Diagnostic criteria of cerebral edema include the following: Major criteria include the following: Minor criteria include the following: See Clinical Presentation for more detail. Laboratory studies The following lab studies are indicated in patients with diabetic ketoacidosis: Imaging studies Head computed tomography (CT) scanning - If coma is present or develops Chest radiography - If clinically indicated Electrocardiography Electrocardiography (ECG) is a useful adjunct to monitor potassium status. Characteristic changes appear with extremes of potassium status. See the images below. Consciousness Check the patient’s consciousness level hourly for up to 12 hours, especially in a young child with a first presentation of diabetes. The Glasgow coma scale is recommended for this purpose. See Workup for more detail. Management Replacement of the following is essential in the treatment of diabetic ketoacidosis: Insulin - Continuous, low-dose, intravenous (IV) insulin infusion is generally considered the safest and most effective insulin delivery method for diabetic ketoacidosis Potassium - After initial resuscitatio Continue reading >>

Alcoholic Ketoacidosis

Alcoholic Ketoacidosis

What is alcoholic ketoacidosis? Cells need glucose (sugar) and insulin to function properly. Glucose comes from the food you eat, and insulin is produced by the pancreas. When you drink alcohol, your pancreas may stop producing insulin for a short time. Without insulin, your cells won’t be able to use the glucose you consume for energy. To get the energy you need, your body will start to burn fat. When your body burns fat for energy, byproducts known as ketone bodies are produced. If your body is not producing insulin, ketone bodies will begin to build up in your bloodstream. This buildup of ketones can produce a life-threatening condition known as ketoacidosis. Ketoacidosis, or metabolic acidosis, occurs when you ingest something that is metabolized or turned into an acid. This condition has a number of causes, including: shock kidney disease abnormal metabolism In addition to general ketoacidosis, there are several specific types. These types include: alcoholic ketoacidosis, which is caused by excessive consumption of alcohol diabetic ketoacidosis (DKA), which mostly develops in people with type 1 diabetes starvation ketoacidosis, which occurs most often in women who are pregnant, in their third trimester, and experiencing excessive vomiting Each of these situations increases the amount of acid in the system. They can also reduce the amount of insulin your body produces, leading to the breakdown of fat cells and the production of ketones. Alcoholic ketoacidosis can develop when you drink excessive amounts of alcohol for a long period of time. Excessive alcohol consumption often causes malnourishment (not enough nutrients for the body to function well). People who drink large quantities of alcohol may not eat regularly. They may also vomit as a result of drinking too Continue reading >>

Ketoacidosis

Ketoacidosis

Ketones in the urine or blood, as detected by urine testing stix or a blood ketone testing meter, [1] may indicate the beginning of diabetic ketoacidosis (DKA), a dangerous and often quickly fatal condition caused by low insulin levels [2] combined with certain other systemic stresses. DKA can be fixed if caught quickly. Because of the hyperglycemia Cushing's disease creates, it's possible (but not frequent) to find ketones in the urine. [3] The three ketone bodies are acetone, acetoacetic acid, and beta-hydroxybutyric acid, with the predominating ketone body formed being beta-hydroxybutyrate acid. [4] Though they are referred to as "bodies" this is a misnomer as they are dissolved substances. [5][6] Ketones are produced by the liver as part of fat metabolism and are normally not found in sufficient quantity to be able to be measured in urine or blood (non-diabetics or well-controlled diabetics). [7] Since the body is set up to normally burn glucose as its fuel, when glucose isn't available as an energy source, (untreated/poorly treated diabetes and some other unrelated medical conditions), it begins to burn fat for energy instead. The result of the body turning to burning fat instead of glucose means more ketone production which is able to be measured when testing either urine or blood for them. [4][6] Diabetics of all species therefore need to be checked for ketones with urine testing stix, available at any pharmacy, whenever insulin level may be too low, and any of the following signs or triggers are present: Note that the triggers and signs are somewhat interchangeable because ketoacidosis is, once begun, a set of vicious circles which will make itself worse. So dehydration, hyperglycemia, fasting, and presence of ketones are not only signs, they're also sometimes t Continue reading >>

Ketoacidosis In A Patient With Type 2 Diabetes – Flatbush Diabetes

Ketoacidosis In A Patient With Type 2 Diabetes – Flatbush Diabetes

There is increasing recognition of a group of patients with type 2 diabetes who can present with ketoacidosis. Most reports have been of patients of African descent; however, the condition has been reported in other groups. This is a case of a Caucasian patient who has had three presentations with ketoacidosis and whose diabetes is not usually insulin-dependent. A patient, aged 48 years, presented with diabetic ketoacidosis (DKA) in a semi-comatose condition. She had a 3-day history of vomiting and loss of appetite. In the previous weeks she had undergone radiotherapy for metastatic squamous cell carcinoma (skin primary). The patient had two similar episodes of DKA, one 20 months and another 3 months earlier. Two of the patient’s brothers had type 2 diabetes. The patient was not abusing alcohol and did not have a history of pancreatitis. Three years prior to this admission the patient had been diagnosed elsewhere with type 2 diabetes, for which she had been on metformin and a small dose of insulin glargine. Two months after stopping her insulin glargine she developed her first episode of DKA while visiting our town. DKA, was diagnosed on the basis of arterial pH 7.03, blood glucose level 25.9 mmol/L, bicarbonate level of 5 mmol/L and positive urinary ketones. It was felt that infected skin lesions may have precipitated the DKA. Eleven days later, she was discharged on metformin 250 mg twice daily and a falling dose of insulin glargine (26 units a day). She was then lost to follow-up in our centre, but apparently soon after did not require insulin and maintained adequate gylcaemic control for 18 months until just prior to her next admission solely on metformin 1 g twice daily. The next admission for DKA occurred while living in a city. She was discharged on insulin but Continue reading >>

Why Isnt Ketoacidosis A Problem For Lc And Vlc Paleo-eaters?

Why Isnt Ketoacidosis A Problem For Lc And Vlc Paleo-eaters?

I'm sitting in a lecture about nutrition and metabolism for people with diabetes. The instructor keeps insisting that if you are metabolizing ketones for any length of time, it will result in ketoacidosis, and eventually kill you. I've not heard anything about LC and VLC paleo eaters having problems with ketoacidosis, but I'm not sure how we avoid it while primarily metabolizing ketone bodies. I understand that people with diabetes have more issues to work with, and are metabolically deranged, but how do people with normal metabolisms avoid acidosis issues? Can anyone please shed some light on this for me? I googled around and haven't found explanation. Continue reading >>

More in ketosis