diabetestalk.net

What Is Hhs And Dka?

Hyperosmolar Hyperglycemic State

Hyperosmolar Hyperglycemic State

Background Hyperosmolar hyperglycemic state (HHS) is one of two serious metabolic derangements that occurs in patients with diabetes mellitus (DM). [1] It is a life-threatening emergency that, although less common than its counterpart, diabetic ketoacidosis (DKA), has a much higher mortality rate, reaching up to 5-10%. (See Epidemiology.) HHS was previously termed hyperosmolar hyperglycemic nonketotic coma (HHNC); however, the terminology was changed because coma is found in fewer than 20% of patients with HHS. [2] HHS is most commonly seen in patients with type 2 DM who have some concomitant illness that leads to reduced fluid intake, as seen, for example, in elderly institutionalized persons with decreased thirst perception and reduced ability to drink water. [3] Infection is the most common preceding illness, but many other conditions, such as stroke or myocardial infarction, can cause this state. [3] Once HHS has developed, it may be difficult to identify or differentiate it from the antecedent illness. (See Etiology.) HHS is characterized by hyperglycemia, hyperosmolarity, and dehydration without significant ketoacidosis. Most patients present with severe dehydration and focal or global neurologic deficits. [2, 4, 5] The clinical features of HHS and DKA overlap and are observed simultaneously (overlap cases) in up to one third of cases. According to the consensus statement published by the American Diabetes Association, diagnostic features of HHS may include the following (see Workup) [4, 6] : Effective serum osmolality of 320 mOsm/kg or greater Profound dehydration, up to an average of 9L Detection and treatment of an underlying illness are critical. Standard care for dehydration and altered mental status is appropriate, including airway management, intravenous (I Continue reading >>

Diabetic Ketoacidosis And Hyperosmolar Hyperglycemic State In Adults: Treatment

Diabetic Ketoacidosis And Hyperosmolar Hyperglycemic State In Adults: Treatment

INTRODUCTION Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS, also known as hyperosmotic hyperglycemic nonketotic state [HHNK]) are two of the most serious acute complications of diabetes. They are part of the spectrum of hyperglycemia, and each represents an extreme in the spectrum. The treatment of DKA and HHS in adults will be reviewed here. The epidemiology, pathogenesis, clinical features, evaluation, and diagnosis of these disorders are discussed separately. DKA in children is also reviewed separately. (See "Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Epidemiology and pathogenesis".) (See "Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Clinical features, evaluation, and diagnosis".) Continue reading >>

Dka And Hhs Flashcards | Quizlet

Dka And Hhs Flashcards | Quizlet

synthesis of NEW glucose (not from storage) from the liver and skeletal muscle; occurs during prolonged fasting and glycogen depletion; alanine, glycerol and lactate are precursors occurs in 'fed' state when high amounts of glucose and ATP are available Where/when is insulin synthesized/released? How is it innervated? inhibits glycogenolysis and gluconeogenesis; increases glucose transport into fat and muscle; Where/when is glucagon synthesized/released? How is it innervated? What does the release of glucagon do? (4) stimulation of amino acid uptake into liver; inhibition of glycolysis and fatty acid synthesis diabetic ketoacidosis: absence of insulin causing an increase in glucose and fatty acid breakdown with subsequent hyperglycemia and metabolic acidosis; gluconeogenesis and ketogenesis hyperosmolar hyperglycemic state: reduced insulin causing drastically elevated glucose levels and hyperosmolarity leading to severe volume depletion without acidosis A --> metabolic acidosis with increased anion gap (HCO3- <15; pH <7.3; anion gap >12) What are types of ketoacidosis? What is the major difference between them? starvation: requires 3-14 days of starvation; acidosis remains minimal (~7.3 at worst) alcoholic: chronic alcohol intake + fasting; severe acidosis (pH ~7) What causes dehydration and electrolyte deficiencies? hyperglycemia causes an increase in serum osmolarity; osmotic diuresis leads to excess water/electrolyte loss and potential for renal injury ketone testing: positive for ketones in serum or urine suggest DKA serum beta hydroxybutyrate (BHB) level: increase from 1:1 to 10:1 of BHB: acetoacetate; >3 mmol/L shows ketoacidosis What are differences between DKA and HHS? expansion of intravascular and intracellular volume What is the replacement rate for fluids? Continue reading >>

Hyperosmolar Hyperglycemic State

Hyperosmolar Hyperglycemic State

Hyperosmolar hyperglycemic state (HHS) is a complication of diabetes mellitus in which high blood sugar results in high osmolarity without significant ketoacidosis.[4] Symptoms include signs of dehydration, weakness, legs cramps, trouble seeing, and an altered level of consciousness.[2] Onset is typically over days to weeks.[3] Complications may include seizures, disseminated intravascular coagulopathy, mesenteric artery occlusion, or rhabdomyolysis.[2] The main risk factor is a history of diabetes mellitus type 2.[4] Occasionally it may occur in those without a prior history of diabetes or those with diabetes mellitus type 1.[3][4] Triggers include infections, stroke, trauma, certain medications, and heart attacks.[4] Diagnosis is based on blood tests finding a blood sugar greater than 30 mmol/L (600 mg/dL), osmolarity greater than 320 mOsm/kg, and a pH above 7.3.[2][3] Initial treatment generally consists of intravenous fluids to manage dehydration, intravenous insulin in those with significant ketones, low molecular weight heparin to decrease the risk of blood clotting, and antibiotics among those in whom there is concerns of infection.[3] The goal is a slow decline in blood sugar levels.[3] Potassium replacement is often required as the metabolic problems are corrected.[3] Efforts to prevent diabetic foot ulcers are also important.[3] It typically takes a few days for the person to return to baseline.[3] While the exact frequency of the condition is unknown, it is relatively common.[2][4] Older people are most commonly affected.[4] The risk of death among those affected is about 15%.[4] It was first described in the 1880s.[4] Signs and symptoms[edit] Symptoms of high blood sugar including increased thirst (polydipsia), increased volume of urination (polyurea), and i Continue reading >>

Confidential And Proprietary Any Use Of This Material Without Specific Permission Is Strictly Prohibited.

Confidential And Proprietary Any Use Of This Material Without Specific Permission Is Strictly Prohibited.

State of Ohio Overview of the diabetic ketoacidosis (DKA)/ hyperglycemic hyperosmolar state (HHS) episode of care CONFIDENTIAL AND PROPRIETARY Any use of this material without specific permission is strictly prohibited. CONFIDENTIAL AND PROPRIETARY Any use of this material without specific permission is strictly prohibited. December 23, 2016 | 1 Overview of the diabetic ketoacidosis (DKA)/hyperglycemic hyperosmolar state (HHS) episode of care 1. CLINICAL OVERVIEW AND RATIONALE FOR DEVELOPMENT OF THE DKA/HHS EPISODE 1.1 Rationale for development of the DKA/HHS episode of care DKA and HHS are among the most serious acute complications of diabetes. Clinically, DKA and HHS differ only by the degree of dehydration and the severity of metabolic acidosis. Both require prompt diagnosis and treatment. According to the American Diabetes Association, DKA accounts for more than $1 of every $4 spent on direct care for adult patients with Type I diabetes, and $1 of every $2 spent on patients experiencing multiple morbidities.1 In the United States, approximately 145,000 hospitalizations occur for DKA each year with an average cost of $17,500 per patient.2 The direct and indirect total annual cost of hospitalizations is estimated to be $2.4 billion.3 While the hospitalization rate for HHS is less than one percent of all diabetes-related admissions, death occurs in an estimated 5-16 percent of these patients, a rate 10 times higher than that of DKA.4 The complex pathophysiology of both DKA and HHS requires careful selection of approaches to restore glycemic control and deficiencies in intravascular volume and electrolytes. Appropriate treatment also includes the diagnosis and management of the underlying precipitating event. Death in patients with DKA/HHS is typically caused by the und Continue reading >>

Diabetic Ketoacidosis And Hyperglycemic Hyperosmolar Syndrome

Diabetic Ketoacidosis And Hyperglycemic Hyperosmolar Syndrome

In Brief Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic syndrome (HHS) are two acute complications of diabetes that can result in increased morbidity and mortality if not efficiently and effectively treated. Mortality rates are 2–5% for DKA and 15% for HHS, and mortality is usually a consequence of the underlying precipitating cause(s) rather than a result of the metabolic changes of hyperglycemia. Effective standardized treatment protocols, as well as prompt identification and treatment of the precipitating cause, are important factors affecting outcome. The two most common life-threatening complications of diabetes mellitus include diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar syndrome (HHS). Although there are important differences in their pathogenesis, the basic underlying mechanism for both disorders is a reduction in the net effective concentration of circulating insulin coupled with a concomitant elevation of counterregulatory hormones (glucagon, catecholamines, cortisol, and growth hormone). These hyperglycemic emergencies continue to be important causes of morbidity and mortality among patients with diabetes. DKA is reported to be responsible for more than 100,000 hospital admissions per year in the United States1 and accounts for 4–9% of all hospital discharge summaries among patients with diabetes.1 The incidence of HHS is lower than DKA and accounts for <1% of all primary diabetic admissions.1 Most patients with DKA have type 1 diabetes; however, patients with type 2 diabetes are also at risk during the catabolic stress of acute illness.2 Contrary to popular belief, DKA is more common in adults than in children.1 In community-based studies, more than 40% of African-American patients with DKA were >40 years of age and more than 2 Continue reading >>

Hyperosmolar Hyperglycemic State

Hyperosmolar Hyperglycemic State

GREGG D. STONER, MD, University of Illinois College of Medicine, Peoria, Illinois Am Fam Physician.2017Dec1;96(11):729-736. Hyperosmolar hyperglycemic state is a life-threatening emergency manifested by marked elevation of blood glucose and hyperosmolarity with little or no ketosis. Although there are multiple precipitating causes, underlying infections are the most common. Other causes include certain medications, nonadherence to therapy, undiagnosed diabetes mellitus, substance abuse, and coexisting disease. In children and adolescents, hyperosmolar hyperglycemic state is often present when type 2 diabetes is diagnosed. Physical findings include profound dehydration and neurologic symptoms ranging from lethargy to coma. Treatment begins with intensive monitoring of the patient and laboratory values, especially glucose, sodium, and potassium levels. Vigorous correction of dehydration is critical, requiring an average of 9 L of 0.9% saline over 48 hours in adults. After urine output is established, potassium replacement should begin. Once dehydration is partially corrected, adults should receive an initial bolus of 0.1 units of intravenous insulin per kg of body weight, followed by a continuous infusion of 0.1 units per kg per hour (or a continuous infusion of 0.14 units per kg per hour without an initial bolus) until the blood glucose level decreases below 300 mg per dL. In children and adolescents, dehydration should be corrected at a rate of no more than 3 mOsm per hour to avoid cerebral edema. Identification and treatment of underlying and precipitating causes are necessary. Hyperosmolar hyperglycemic state (HHS) is a life-threatening endocrine emergency that most commonly affects adults with type 2 diabetes mellitus. 1 , 2 However, the incidence increased by 52.4% Continue reading >>

Diabetic Ketoacidosis (dka) And Hyperosmolar Hyperglycaemic State (hhs) - Oxford Medicine

Diabetic Ketoacidosis (dka) And Hyperosmolar Hyperglycaemic State (hhs) - Oxford Medicine

PRINTED FROM OXFORD MEDICINE ONLINE (www.oxfordmedicine.com).Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Medicine Online for personal use(for details see Privacy Policy ). DKA or HHS? - DKA - HHS - Monitoring DKA and HHS - Complications of DKA and HHS - The next stage - Follow-up - Prevention of DKA/HHS - DKA/HHS in children <18 yrs of age - Summary. Access to the complete content on Oxford Medicine Online requires a subscription or purchase. Public users are able to search the site and view the abstracts for each book and chapter without a subscription. Please subscribe or login to access full text content. If you have purchased a print title that contains an access token, please see the token for information about how to register your code. For questions on access or troubleshooting, please check our FAQs , and if you can't find the answer there, please contact us . Continue reading >>

Hyperosmolar Hyperglycemic State (hhs)

Hyperosmolar Hyperglycemic State (hhs)

By Erika F. Brutsaert, MD, Assistant Professor, Albert Einstein College of Medicine; Attending Physician, Montefiore Medical Center Hyperosmolar hyperglycemic state is a metabolic complication of diabetes mellitus (DM) characterized by severe hyperglycemia, extreme dehydration, hyperosmolar plasma, and altered consciousness. It most often occurs in type 2 DM, often in the setting of physiologic stress. HHS is diagnosed by severe hyperglycemia and plasma hyperosmolality and absence of significant ketosis. Treatment is IV saline solution and insulin. Complications include coma, seizures, and death. Hyperosmolar hyperglycemic state (HHSpreviously referred to as hyperglycemic hyperosmolar nonketotic coma [HHNK] and nonketotic hyperosmolar syndrome) is a complication of type 2 diabetes mellitus and has an estimated mortality rate of up to20%, which is significantly higher than the mortality for diabetic ketoacidosis (currently < 1%). It usually develops after a period of symptomatic hyperglycemia in which fluid intake is inadequate to prevent extreme dehydration due to the hyperglycemia-induced osmotic diuresis. Acute infections and other medical conditions Drugs that impair glucose tolerance (glucocorticoids) or increase fluid loss (diuretics) Serum ketones are not present because the amounts of insulin present in most patients with type 2 DM are adequate to suppress ketogenesis. Because symptoms of acidosis are not present, most patients endure a significantly longer period of osmotic dehydration before presentation, and thus plasma glucose (> 600 mg/dL [> 33.3 mmol/L]) and osmolality (> 320 mOsm/L) are typically much higher than in diabetic ketoacidosis (DKA). The primary symptom of HHS is altered consciousness varying from confusion or disorientation to coma, usually as Continue reading >>

Diabetic Ketoacidosis And Hyperosmolar Hyperglycemic State In Adults: Clinical Features, Evaluation, And Diagnosis

Diabetic Ketoacidosis And Hyperosmolar Hyperglycemic State In Adults: Clinical Features, Evaluation, And Diagnosis

INTRODUCTION Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS, also known as hyperosmotic hyperglycemic nonketotic state [HHNK]) are two of the most serious acute complications of diabetes. DKA is characterized by ketoacidosis and hyperglycemia, while HHS usually has more severe hyperglycemia but no ketoacidosis (table 1). Each represents an extreme in the spectrum of hyperglycemia. The precipitating factors, clinical features, evaluation, and diagnosis of DKA and HHS in adults will be reviewed here. The epidemiology, pathogenesis, and treatment of these disorders are discussed separately. DKA in children is also reviewed separately. (See "Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Epidemiology and pathogenesis".) Continue reading >>

Treatment Of Diabetic Ketoacidosis (dka)/hyperglycemic Hyperosmolar State (hhs): Novel Advances In The Management Of Hyperglycemic Crises (uk Versus Usa)

Treatment Of Diabetic Ketoacidosis (dka)/hyperglycemic Hyperosmolar State (hhs): Novel Advances In The Management Of Hyperglycemic Crises (uk Versus Usa)

#The Author(s) 2017. This article is published with open access at Springerlink.com Purpose of Review Diabetic ketoacidosis (DKA) and hyper- glycemic hyperosmolar state (HHS) are diabetic emergencies that cause high morbidity and mortality. Their treatment dif- fers in the UK and USA. This review delineates the differ- ences in diagnosis and treatment between the two countries. Recent Findings Large-scale studies to determine optimal man- agement of DKA and HHS are lacking. The diagnosis of DKA is based on disease severity in the USA, which differs from the UK. The diagnosis of HHS in the USA is based on total rather than effective osmolality. Unlike the USA, the UK has separate guidelines for DKA and HHS. Treatment of DKA and HHS also differs with respect to timing of fluid and insulin initiation. Summary There is considerable overlap but important differ- ences between the UK and USA guidelines for the manage- ment of DKA and HHS. Further research needs to be done to delineate a unifying diagnostic and treatment protocol. Keywords Diabetic ketoacidosis .Management .Survey . Diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar state (HHS) are hyperglycemic emergencies that continue to account for increased burden of hospitaliza- tions in both the USA [1] and UK [2]. Historically, both DKA and HHS were initially described as one entity but subse- quently recognized as separate conditions. Since the advent of insulin, mortality has fallen for DKA and HHS, but the risk remains high. Previous work from the UK and seminal ran- domized controlled studies performed in the USA by Abbas Kitabchi form the basis of treatment of DKA and HHS. However, only a few of these were randomized studies to guide clinicians on the best way to manage DKA and HHS. Whilst the principles Continue reading >>

Diabetic Ketoacidosis And Hyperglycaemic Hyperosmolar State

Diabetic Ketoacidosis And Hyperglycaemic Hyperosmolar State

The hallmark of diabetes is a raised plasma glucose resulting from an absolute or relative lack of insulin action. Untreated, this can lead to two distinct yet overlapping life-threatening emergencies. Near-complete lack of insulin will result in diabetic ketoacidosis, which is therefore more characteristic of type 1 diabetes, whereas partial insulin deficiency will suppress hepatic ketogenesis but not hepatic glucose output, resulting in hyperglycaemia and dehydration, and culminating in the hyperglycaemic hyperosmolar state. Hyperglycaemia is characteristic of diabetic ketoacidosis, particularly in the previously undiagnosed, but it is the acidosis and the associated electrolyte disorders that make this a life-threatening condition. Hyperglycaemia is the dominant feature of the hyperglycaemic hyperosmolar state, causing severe polyuria and fluid loss and leading to cellular dehydration. Progression from uncontrolled diabetes to a metabolic emergency may result from unrecognised diabetes, sometimes aggravated by glucose containing drinks, or metabolic stress due to infection or intercurrent illness and associated with increased levels of counter-regulatory hormones. Since diabetic ketoacidosis and the hyperglycaemic hyperosmolar state have a similar underlying pathophysiology the principles of treatment are similar (but not identical), and the conditions may be considered two extremes of a spectrum of disease, with individual patients often showing aspects of both. Pathogenesis of DKA and HHS Insulin is a powerful anabolic hormone which helps nutrients to enter the cells, where these nutrients can be used either as fuel or as building blocks for cell growth and expansion. The complementary action of insulin is to antagonise the breakdown of fuel stores. Thus, the relea Continue reading >>

Difference Between Dka And Hhs

Difference Between Dka And Hhs

DKA vs HHS “DKA” means “diabetic ketoacidosis” and “HHS” means “Hyperosmolar Hyperglycemic Syndrome.” Both DKA and HHS are the two complications of diabetes mellitus. Though there are many differences between DKA and HHS, the basic problem is associated with insulin deficiency. When comparing the two, HHS has a higher mortality rate. When DKA has a mortality rate of 2 to 5 per cent, HHS has a 15 per cent mortality rate. Diabetic ketoacidosis is seen mainly in type 1 diabetic patients but is also seen in some type 2 diabetic patients. Hyperosmolar Hyperglycemic Syndrome is mainly seen in older patients having type 2 diabetes. DKA is mainly characterized by hyperglycemia, acidosis-producing derangements, and dehydration. Infection, disruption of insulin, and onset of diabetes are some of the common causes of DKA. Hyperglycemia, dehydration and hyperosmolarity are some of the common characteristics of Hyperosmolar Hyperglycemic Syndrome. But HHS does not have ketoacidosis. Some of the early symptoms of diabetic ketoacidosis include increased thirst and increased urination. Other symptoms include malaise, weakness, and fatigue. Bacterial infection, illness, insulin deficiency, stress, and insulin infusion catheter blockage are some of the causes that lead to DKA. When compared to diabetic ketoacidosis, the Hyperosmolar Hyperglycemic Syndrome develops only over the course of a week. Diabetic ketoacidosis develops rapidly. Increased dehydration, acute illness, vomiting, dementia, pneumonia, immobility, and urinary tract infections are some of the common causes of Hyperosmolar Hyperglycemic Syndrome. One of the main goals of treatment of DKA involves correcting high blood glucose levels by injecting insulin as well as replacing fluid lost because of vomiting an Continue reading >>

Hyperosmolar Hyperglycemic State

Hyperosmolar Hyperglycemic State

Acute hyperglycemia, or high blood glucose, may be either the initial presentation of diabetes mellitus or a complication during the course of a known disease. Inadequate insulin replacement (e.g., noncompliance with treatment) or increased insulin demand (e.g., during times of acute illness, surgery, or stress) may lead to acute hyperglycemia. There are two distinct forms: diabetic ketoacidosis (DKA), typically seen in type 1 diabetes, and hyperosmolar hyperglycemic state (HHS), occurring primarily in type 2 diabetes. In type 1 diabetes, no insulin is available to suppress fat breakdown, and the ketones resulting from subsequent ketogenesis manifest as DKA. This is in contrast to type 2 diabetes, in which patients can still secrete small amounts of insulin to suppress DKA, instead resulting in a hyperglycemic state predominated simply by glucose. The clinical presentation of both DKA and HHS is one of polyuria, polydipsia, nausea and vomiting, volume depletion (e.g., dry oral mucosa, decreased skin turgor), and eventually mental status changes and coma. In patients with altered mental status, fingerstick glucose should always be checked in order to exclude serum glucose abnormalities. Several clinical findings pertaining only to DKA include a fruity odor to the breath, hyperventilation, and abdominal pain. HHS patients, in contrast to those with DKA, will present with more extreme volume depletion. The treatment of both DKA and HHS is primarily IV electrolyte and fluid replacement. Insulin for hyperglycemia may be given with caution and under vigilant monitoring of serum glucose. Other treatment options depend on the severity of symptoms and include bicarbonate and potassium replacement. Osmotic diuresis and hypovolemia Hypovolemia resulting from DKA can lead to acute Continue reading >>

Hyperglycemic Crises: Diabetic Ketoacidosis (dka), And Hyperglycemic Hyperosmolar State (hhs)

Hyperglycemic Crises: Diabetic Ketoacidosis (dka), And Hyperglycemic Hyperosmolar State (hhs)

Go to: Diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar state (HHS) are acute metabolic complications of diabetes mellitus that can occur in patients with both type 1 and 2 diabetes mellitus. Timely diagnosis, comprehensive clinical and biochemical evaluation, and effective management is key to the successful resolution of DKA and HHS. Critical components of the hyperglycemic crises management include coordinating fluid resuscitation, insulin therapy, and electrolyte replacement along with the continuous patient monitoring using available laboratory tools to predict the resolution of the hyperglycemic crisis. Understanding and prompt awareness of potential of special situations such as DKA or HHS presentation in comatose state, possibility of mixed acid-base disorders obscuring the diagnosis of DKA, and risk of brain edema during the therapy are important to reduce the risks of complications without affecting recovery from hyperglycemic crisis. Identification of factors that precipitated DKA or HHS during the index hospitalization should help prevent subsequent episode of hyperglycemic crisis. For extensive review of all related areas of Endocrinology, visit WWW.ENDOTEXT.ORG. Go to: INTRODUCTION Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS) represent two extremes in the spectrum of decompensated diabetes. DKA and HHS remain important causes of morbidity and mortality among diabetic patients despite well developed diagnostic criteria and treatment protocols (1). The annual incidence of DKA from population-based studies is estimated to range from 4 to 8 episodes per 1,000 patient admissions with diabetes (2). The incidence of DKA continues to increase and it accounts for about 140,000 hospitalizations in the US in 2009 (Figure 1 a) (3). Continue reading >>

More in ketosis