diabetestalk.net

What Is Dka Protocol?

Diabetic Ketoacidosis In Children And Adolescents: An Update And Revised Treatment Protocol

Diabetic Ketoacidosis In Children And Adolescents: An Update And Revised Treatment Protocol

Standardized pediatric-specific treatment is required to ensure safe correction of metabolic derangements associated with DKA. ABSTRACT: British Columbia has an estimated 150 to 200 new cases of type 1 diabetes in children annually. In these cases, 10% to 20% of patients will present in diabetic ketoacidosis (DKA). DKA is associated with significant fluid and biochemical derangements, necessitating a thoughtful, structured approach to its management. Recent gains have been made in knowledge about the pathophysiology and medical care of DKA and its most significant complication, cerebral edema. In response, BC Children’s Hospital has devised an updated medical protocol for managing DKA in infants, children, and adolescents that conforms to new international consensus guidelines. The protocol assists the medical practitioner in calculating fluid and electrolyte replacement needs for individual patients and outlines a plan for initial assessment and ongoing monitoring. Accompanying resources have also been developed to aid nursing, laboratory, and pharmacy colleagues to ensure that all children presenting with DKA in this province are managed following scientifically established guidelines. Canada has one of the highest rates of type 1 diabetes (T1D) in the world. The estimated incidence of T1D in Canadian children aged 0 to 14 years is 21.7 per 100000 per year.[1] Using 2008 census data,[2] prevalence in this age group in British Columbia is estimated to be about 1029 established cases of T1D or about 150 new cases per year. Much publicity has been given to the rising incidence of type 2 diabetes (T2D) in youth and young adults in North America, a phenomenon that we are also observing in our province, but the fact that there has also been a 2% to 3% annual increase in t Continue reading >>

Diabetic Ketoacidosis And Hyperosmolar Hyperglycemic State In Adults: Treatment

Diabetic Ketoacidosis And Hyperosmolar Hyperglycemic State In Adults: Treatment

INTRODUCTION Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS, also known as hyperosmotic hyperglycemic nonketotic state [HHNK]) are two of the most serious acute complications of diabetes. They are part of the spectrum of hyperglycemia, and each represents an extreme in the spectrum. The treatment of DKA and HHS in adults will be reviewed here. The epidemiology, pathogenesis, clinical features, evaluation, and diagnosis of these disorders are discussed separately. DKA in children is also reviewed separately. (See "Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Epidemiology and pathogenesis".) (See "Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Clinical features, evaluation, and diagnosis".) Continue reading >>

The Management Of Diabetic Ketoacidosis In Adults

The Management Of Diabetic Ketoacidosis In Adults

Action 1: Commence 0.9% sodium chloride solution (use large bore cannula) via infusion pump. See Box 2 for rate of fluid replacement Action 2: Commence a fixed rate intravenous insulin infusion (IVII). (0.1unit/kg/hr based on estimate of weight) 50 units human soluble insulin (Actrapid® or Humulin S®) made up to 50ml with 0.9% sodium chloride solution. If patient normally takes long acting insulin analogue (Lantus®, Levemir®) continue at usual dose and time Action 3: Assess patient o Respiratory rate; temperature; blood pressure; pulse; oxygen saturation o Glasgow Coma Scale o Full clinical examination Action 4: Further investigations • Capillary and laboratory glucose • Venous BG • U & E • FBC • Blood cultures • ECG • CXR • MSU Action 5: Establish monitoring regimen • Hourly capillary blood glucose • Hourly capillary ketone measurement if available • Venous bicarbonate and potassium at 60 minutes, 2 hours and 2 hourly thereafter • 4 hourly plasma electrolytes • Continuous cardiac monitoring if required • Continuous pulse oximetry if required Action 6: Consider and precipitating causes and treat appropriately BOX 1: Immediate management: time 0 to 60 minutes (T=0 at time intravenous fluids are commenced) If intravenous access cannot be obtained request critical care support immediately Systolic BP (SBP) below 90mmHg Likely to be due to low circulating volume, but consider other causes such as heart failure, sepsis, etc. • Give 500ml of 0.9% sodium chloride solution over 10-15 minutes. If SBP remains below 90mmHg repeat whilst requesting senior input. Most patients require between 500 to 1000ml given rapidly. • Consider involving the ITU/critical care team. • Continue reading >>

Management Of Feline Diabetic Ketoacidosis - Wsava2013 - Vin

Management Of Feline Diabetic Ketoacidosis - Wsava2013 - Vin

Management of Feline Diabetic Ketoacidosis World Small Animal Veterinary Association World Congress Proceedings, 2013 Pru Galloway, BVSc(Distinction), MANZCVS, FANZCVS, Registered Specialist in Feline Medicine Massey University, Catmed, Lower Hutt, New Zealand Diabetic ketoacidosis (DKA) is a complication of diabetes mellitus with concurrent and often severe metabolic derangements associated with hyperglycaemia, glucosuria, metabolic acidosis, ketonaemia +/- ketonuria. Patients with ketonaemia/ketosis are usually still bright, eating and maintaining their hydration. Those with ketoacidosis are dehydrated, clinically unwell (e.g., anorexia, vomiting, lethargy) and typically require hospitalisation and intensive management. DKA is distinguished from uncomplicated diabetes mellitus (DM) by a relative insulin lack and increased counter-regulatory hormones. The latter are thought to occur secondary to intercurrent disease. Concurrent disease has been documented in approximately 90% of cats with DKA, with the most common being hepatic lipidosis, chronic kidney disease, acute pancreatitis, bacterial or viral infections and neoplasia (Bruskiewicz et al. 1997). Heinz bodies, neutrophilia with a left shift, increased ALT and azotaemia is common. Most cats presenting with DKA are newly diagnosed diabetics or recently diagnosed but poorly controlled diabetics. Hyperglycaemia, Glucosuria, Metabolic Acidosis Plus Ketones in Plasma and/or Urine Traditionally DKA has been diagnosed using urinary ketone dipsticks, which detect acetoacetate but not beta-hydroxybutyrate. However as the latter is the principle ketone body in DKA, measuring serum beta-hydroxybutyrate is a more sensitive indicator of DKA. In humans portable meters that measure beta-hydroxybutyrate in whole blood have largel Continue reading >>

Review Of Evidence For Adult Diabetic Ketoacidosis Management Protocols

Review Of Evidence For Adult Diabetic Ketoacidosis Management Protocols

1Department of Endocrinology, Austin Health, Melbourne, VIC, Australia 2Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia 3Department of Intensive Care, Austin Health, Melbourne, VIC, Australia 4Menzies School of Health Research, Darwin, NT, Australia Background: Diabetic ketoacidosis (DKA) is an endocrine emergency with associated risk of morbidity and mortality. Despite this, DKA management lacks strong evidence due to the absence of large randomised controlled trials (RCTs). Objective: To review existing studies investigating inpatient DKA management in adults, focusing on intravenous (IV) fluids; insulin administration; potassium, bicarbonate, and phosphate replacement; and DKA management protocols and impact of DKA resolution rates on outcomes. Methods: Ovid Medline searches were conducted with limits “all adult” and published between “1973 to current” applied. National consensus statements were also reviewed. Eligibility was determined by two reviewers’ assessment of title, abstract, and availability. Results: A total of 85 eligible articles published between 1973 and 2016 were reviewed. The salient findings were (i) Crystalloids are favoured over colloids though evidence is lacking. The preferred crystalloid and hydration rates remain contentious. (ii) IV infusion of regular human insulin is preferred over the subcutaneous route or rapid acting insulin analogues. Administering an initial IV insulin bolus before low-dose insulin infusions obviates the need for supplemental insulin. Consensus-statements recommend fixed weight-based over “sliding scale” insulin infusions although evidence is weak. (iii) Potassium replacement is imperative although no trials compare replacement rates. (iv) Bicarbonate replacement Continue reading >>

University Of Zagreb

University Of Zagreb

SCHOOL OF MEDICINE Mohammad Imran Khan Malik A review of the efficacy of the Milwaukee protocol in the treatment of ketoacidosis in pediatric Intensive Care Unit patients at Rebro hospital between 2009-2014. GRADUATE THESIS Zagreb, 2014 UNIVERSITY OF ZAGREB SCHOOL OF MEDICINE Mohammad Imran Khan Malik A review of the efficacy of the Milwaukee protocol in the treatment of ketoacidosis in pediatric Intensive Care Unit patients at Rebro hospital between 2009-2014. GRADUATE THESIS Zagreb, 2014 This graduation paper has been completed at the Department of Paediatrics at the University Hospital Centre Zagreb (Rebro hospital) under the supervision of Dr. sc. Mario Ćuk and was submitted for evaluation during the academic year 2013 /2014. LIST OF TABLES Table 1: DKA laboratory diagnosis criteria Table 2: Classification of DKA. Modified from Kliegman et al. Nelson Textbook of Pediatrics, 2011. Table 3: Table 3: Summary of key data of patients admitted to pediatric ICU at Rebro hospital. LIST OF FIGURES Figure 1: DKA pathogenesis. Figure 2: Ketone bodies: showing formation of negatively charged conjugate bases of the ketoacids. The conjugate bases cause the increased anion gap in DKA metabolic acidosis. Figure 3: Algorithm of key steps in DKA pathophysiology. Colour coded to highlight the two areas that treatment should target: metabolic acidosis and hyperglycemia. Figure 4: True sodium level calculations for glucose levels above 100mg/dL (5.6mmol/L). Figure 5: Goals of DKA management Figure 6: Diabetic ketoacidosis treatment: Milwaukee protocol. Modified from Kliegman et al. Nelson Textbook of Paediatrics. 2011 p.1979 Figure 7: DKA incidence between 1 st January 2009 – 30 th June 2014. LIST OF ABBREVIATIONS DKA ..............Diabetic Ketoacidosis CE...................C Continue reading >>

Nuances In Resuscitation Part Iii: Diabetic Ketoacidosis

Nuances In Resuscitation Part Iii: Diabetic Ketoacidosis

Thus far we have discussed resuscitation in trauma and sepsis. What distinguishes those two from the resuscitation goals in DKA is timing. In trauma and sepsis, it’s all about early recognition, aggressive and quick optimization, and understanding all the possible treatment options at your disposal. In the management of DKA, it’s quite the opposite. If you remember anything from this discussion, it’s that slow and steady wins the race! In fact, overaggressive resuscitation is what leads to the most significant morbidity and mortality in DKA patients. Patients in DKA don’t die from the disease process – they die because we kill them! DKA is defined as an anion-gap metabolic acidosis, with elevated serum ketones (usually measured as beta-hydroxybutyrate), blood glucose > 250 mg/dL, pH < 7.3, and a serum HCO3 < 18 mEq/L. It is the reason for over 50% of diabetic admissions, and many DKA patients begin their inpatient hospital course in the ICU. The leading causes of DKA are medication non-compliance, underlying infection, new-onset diabetes (i.e. DKA is the first presenting illness), or underlying medical/surgical stress. In general, DKA patients will present to the ED relatively early in their disease process because the ketones produced by the body induce vomiting, prompting the patient to seek treatment. This is in contrast to hyperosmolar non-ketotic coma patients (HONK) that present much later in their illness because there are no ketones in the blood to induce vomiting and alert the patient or his/her family that something is wrong. The mainstays of DKA management are fluid replenishment, glycemic control, correction of any other metabolic anomalies, and treatment of any underlying cause for the glycemic derangement. There are definitely some differences in Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Also known as: DKA Severe diabetic ketoacidosis is a medical emergency and requires prompt treatment to correct dehydration, electrolyte disturbances and acidosis. It is a complication of insulin dependent Diabetes Mellitus. DKA is the result of marked insulin deficiency, and ketonaemia and ketoacidosis occur approximately 15 days after insulin concentrations are suppressed to fasting levels. Marked insulin suppression occurs on average 4 days after fasting glucose levels reach 30mmol/L. Many cats with DKA have other intercurrent conditions which may precipitate the condition including: infection, pancreatitis or renal insufficiency. Pathophysiology Insulin deficiency leads to increased breakdown of fat that releases fatty acids into the circulation. Free fatty acids are oxidised in the liver to ketones that are used by many tissues as an energy source instead of glucose. This occurs when intracellular levels of glucose are insufficient for energy metabolism as a result of severe insulin deficiency. In the liver, instead of being converted to triglycerides, free fatty acids are oxidised to acetoacetate, which is converted to hydroxybutyrate or acetone. Ketones are acids that cause central nervous system depression and act in the chemoreceptor trigger zone to cause nausea, vomiting and anorexia. They also accelerate osmotic water loss in the urine. Dehydration results from inadequate fluid intake in the face of accelerated water loss due to glucosuria and ketonuria. Dehydration and subsequent reduced tissue perfusion compounds the acidosis through lactic acid production. There is whole body loss of electrolytes including sodium, potassium, magnesium and phosphate and there is also intracellular redistribution of electrolytes following insulin therapy which may compound p Continue reading >>

Management Of Diabetic Ketoacidosis In Adults

Management Of Diabetic Ketoacidosis In Adults

Diabetic ketoacidosis is a potentially life-threatening complication of diabetes, making it a medical emergency. Nurses need to know how to identify and manage it and how to maintain electrolyte balance Continue reading >>

Diabetic Ketoacidosis (dka)

Diabetic Ketoacidosis (dka)

Tweet Diabetic ketoacidosis (DKA) is a dangerous complication faced by people with diabetes which happens when the body starts running out of insulin. DKA is most commonly associated with type 1 diabetes, however, people with type 2 diabetes that produce very little of their own insulin may also be affected. Ketoacidosis is a serious short term complication which can result in coma or even death if it is not treated quickly. Read about Diabetes and Ketones What is diabetic ketoacidosis? DKA occurs when the body has insufficient insulin to allow enough glucose to enter cells, and so the body switches to burning fatty acids and producing acidic ketone bodies. A high level of ketone bodies in the blood can cause particularly severe illness. Symptoms of DKA Diabetic ketoacidosis may itself be the symptom of undiagnosed type 1 diabetes. Typical symptoms of diabetic ketoacidosis include: Vomiting Dehydration An unusual smell on the breath –sometimes compared to the smell of pear drops Deep laboured breathing (called kussmaul breathing) or hyperventilation Rapid heartbeat Confusion and disorientation Symptoms of diabetic ketoacidosis usually evolve over a 24 hour period if blood glucose levels become and remain too high (hyperglycemia). Causes and risk factors for diabetic ketoacidosis As noted above, DKA is caused by the body having too little insulin to allow cells to take in glucose for energy. This may happen for a number of reasons including: Having blood glucose levels consistently over 15 mmol/l Missing insulin injections If a fault has developed in your insulin pen or insulin pump As a result of illness or infections High or prolonged levels of stress Excessive alcohol consumption DKA may also occur prior to a diagnosis of type 1 diabetes. Ketoacidosis can occasional Continue reading >>

Fluid Replacement Give Sodium Chloride 0.9% Intravenously As Follows:

Fluid Replacement Give Sodium Chloride 0.9% Intravenously As Follows:

Diabetic emergencies: guidelines for the management of diabetic ketoacidosis and management of hyperosmolar non-ketotic diabetic coma The following guideline is approved only for use at University College London Hospitals NHS Foundation Trust. It is provided as supporting information for the UCLH Injectable Medicines Administration Guide. Neither UCLH nor Wiley accept liability for errors or omissions within the guideline. Wherever possible, users of the Guide should refer to locally produced practice guidelines. UCLH’s guidelines represent the expert opinion of the clinicians within the hospital and may not be applicable to patients outside the Trust. Adapted from UCLH Guidelines for the management of common medical emergencies and for the use of antimicrobial drugs Reviewed by: Dr Stephanie Baldeweg, Consultant Endocrinologist, UCLH and Mrs Sejal Rabone, Pharmacist, MES Directorate, UCLH January 2006 Management of diabetic ketoacidosis and management of hyperosmolar The principal problems are dehydration and acidosis. Diabetic ketoacidosis is a medical emergency. Aim of treatment: Correct acidosis with IV fluids and insulin, and restore electrolyte balance. Criteria for diagnosis: • Blood glucose > 10 mmol/L and • Positive urine ketones test and • Acidosis (pH ≤ 7.3 or bicarbonate ≤ 15 mmol/L) Also look for thirst and polyuria, hyperventilation (Kussmaul), abdominal pain, vomiting. Immediate admission to critical care must take priority over all except lifesaving interventions. Refer the patient to the DMR immediately whilst continuing management in A&E. Contact a member of the diabetic team (registrar bleep MX109); it is better to seek advice early than late. Urgent Investigations • Blood glucose. This is accurate up to abou Continue reading >>

How The Treatment Of Diabetic Ketoacidosis Has Improved

How The Treatment Of Diabetic Ketoacidosis Has Improved

For patients with type 1 diabetes, one of the most serious medical emergencies is diabetic ketoacidosis (DKA). It can be life-threatening and, in most cases, is caused by a shortage of insulin. Glucose is the “fuel” which feeds human cells. Without it, these cells are forced to “burn” fatty acids in order to survive. This process leads to the production of acidic ketone bodies which can cause serious symptoms and complications such as passing out, confusion, vomiting, dehydration, coma, and, if not corrected in a timely manner, even death. High levels of ketones poison the body. DKA can be diagnosed with blood and urine tests and is distinguished from other ketoacidosis by the presence of high blood sugar levels. Typical treatment for DKA consists of using intravenous fluids to correct the dehydration, insulin dosing to suppress the production of ketones, and treatment for any underlying causes such as infections. Medical history notes that DKA was first diagnosed and described in 1886 and until insulin therapy was introduced in the 1920’s, this condition was almost universally fatal. However, with availability and advances in insulin therapy, the mortality rate is less than one percent when timely treatment is applied. A Clinical Pharmacist Examines DKA Ron Fila (RPh) is a clinical pharmacist at McLaren Northern Michigan in Petoskey, MI. He has first-hand experience in treating patients with DKA and, as one of the early adaptors of EndoTool he has seen how this algorithmically-based glucose management software can help physicians save lives and improve patient outcomes. “We started using EndoTool in 2013, for treating patients in the ICU,” he noted in a recent interview. “Later, we expanded our use of this software for DKA and pediatrics. “Since DKA i Continue reading >>

Diagnosis And Treatment Of Diabetic Ketoacidosis

Diagnosis And Treatment Of Diabetic Ketoacidosis

85 Abstract Diabetic ketoacidosis (DKA) is the most frequent hyperglycaemic acute diabetic complication. Furthermore it carries a significant risk of death, which can be prevented by early and effective management. All physicians, irrespective of the discipline they are working in and whether in primary, secondary or tertiary care institutions, should be able to recognise DKA early and initiate management immediately. 86 Introduction Diabetic ketoacidosis (DKA) is a common complication of diabetes with an annual occurrence rate of 46 to 50 per 10 000 diabetic patients. The severity of this acute diabetic complication can be appreciated from the high death-to-case ratio of 5 to 10%.1 In Africa the mortality of DKA is unacceptably high with a reported death rate of 26 to 29% in studies from Kenya, Tanzania and Ghana.2 It is a complication of both type 1 and type 2 diabetes mellitus, although more commonly seen in type 1 diabetic patients. Of known diabetic patients presenting with DKA about one-quarter will be patients with type 2 diabetes. In patients presenting with a DKA as first manifestation of diabetes about 15% will be type 2.3 This correlates well with data from South Africa suggesting that one- quarter of patients with DKA will be type 2 with adequate C-peptide levels and the absence of anti-GAD antibodies.4 This review will focus on the principles of diagnosis, monitoring and treatment of DKA, with special mention of new developments and controversial issues. Clinical features DKA evolves over hours to days in both type 1 and type 2 diabetic patients, but the symptoms of poor control of blood glucose are usually present for several days before the onset or presentation of ketoacidosis.5 The clinical features of DKA are non-specific and patients may present with Continue reading >>

Diabetic Ketoacidosis Nclex Questions

Diabetic Ketoacidosis Nclex Questions

This quiz on DKA (Diabetic Ketoacidosis NCLEX Questions) will test you on how to care for the diabetic patient who is experiencing this condition. As the nurse, you must know typical signs and symptoms of DKA, patient teaching, and expected medical treatments. 1 Relapsed Multiple Myeloma - Get The Facts Learn More About Relapsed Multiple Myeloma at the Official Physician Site. Prescription treatment website 2 Login to Your Account Sign In To Your Email! emailloginnow.com Diabetic Ketoacidosis and Hyperglycemic Hyperosmolar Nonketotic Syndrome (HHNS) are both complication of diabetes mellitus, but there are differences between the two complications that you must know as a nurse. This endocrine teaching series will test your knowledge on how to differentiate between the two conditions, along with a video lecture. This DKA quiz will test you on the following for the NCLEX exam: Signs and Symptoms of Diabetic Ketoacidosis Causes of Diabetic Ketoacidosis Patient education for DKA Treatments of Diabetic Ketoacidosis NCLEX Review Nursing Lecture on DKA (NOTE: When you hit submit, it will refresh this same page. Scroll down to see your results.) 1. Which of the following is not a sign or symptom of Diabetic Ketoacidosis? A. Positive Ketones in the urine B. Oliguria C. Polydipsia D. Abdominal Pain 2. A patient is admitted with Diabetic Ketoacidosis. The physician orders intravenous fluids of 0.9% Normal Saline and 10 units of intravenous regular insulin IV bolus and then to start an insulin drip per protocol. The patient’s labs are the following: pH 7.25, Glucose 455, potassium 2.5. Which of the following is the most appropriate nursing intervention to perform next? A. Start the IV fluids and administer the insulin bolus and drip as ordered B. Hold the insulin and notify the d Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a potentially life-threatening complication of diabetes mellitus.[1] Signs and symptoms may include vomiting, abdominal pain, deep gasping breathing, increased urination, weakness, confusion, and occasionally loss of consciousness.[1] A person's breath may develop a specific smell.[1] Onset of symptoms is usually rapid.[1] In some cases people may not realize they previously had diabetes.[1] DKA happens most often in those with type 1 diabetes, but can also occur in those with other types of diabetes under certain circumstances.[1] Triggers may include infection, not taking insulin correctly, stroke, and certain medications such as steroids.[1] DKA results from a shortage of insulin; in response the body switches to burning fatty acids which produces acidic ketone bodies.[3] DKA is typically diagnosed when testing finds high blood sugar, low blood pH, and ketoacids in either the blood or urine.[1] The primary treatment of DKA is with intravenous fluids and insulin.[1] Depending on the severity, insulin may be given intravenously or by injection under the skin.[3] Usually potassium is also needed to prevent the development of low blood potassium.[1] Throughout treatment blood sugar and potassium levels should be regularly checked.[1] Antibiotics may be required in those with an underlying infection.[6] In those with severely low blood pH, sodium bicarbonate may be given; however, its use is of unclear benefit and typically not recommended.[1][6] Rates of DKA vary around the world.[5] In the United Kingdom, about 4% of people with type 1 diabetes develop DKA each year, while in Malaysia the condition affects about 25% a year.[1][5] DKA was first described in 1886 and, until the introduction of insulin therapy in the 1920s, it was almost univ Continue reading >>

More in ketosis