diabetestalk.net

What Is Dka Protocol?

952: Evaluation Of A Diabetic Ketoacidosis Treatment Protocol Using Subcutaneous Insulin Aspart

952: Evaluation Of A Diabetic Ketoacidosis Treatment Protocol Using Subcutaneous Insulin Aspart

Introduction:Insulin therapy is one aspect of managing diabetic ketoacidosis (DKA), and the American Diabetes Association recommends regular insulin by continuous IV infusion as the treatment of choice for all but mild cases of DKA. Several studies, each enrolling a small number of patients, have examined rapid-acting subcutaneous insulin analogs for DKA treatment. Patients in these studies who received subcutaneous insulin analogs were treated outside of the ICU. Hypothesis:A DKA treatment protocol that uses subcutaneous insulin aspart, with weight-based doses administered every two hours, is safe and effective. Methods:This study was a retrospective chart review. Adult patients who received insulin aspart for treatment of DKA at Rush University Medical Center between January 2008 and December 2011 were eligible for study inclusion. Efficacy outcomes included time to resolution of DKA-associated laboratory abnormalities, length of stay, time to initiation of basal insulin, and amount of insulin received. The primary safety outcome was hypoglycemic events. Subgroup analyses were conducted for type 1 vs. type 2 diabetes, DKA severity, and whether or not patients received concomitant antibiotics, steroids, or vasopressors. Results:Seventy-six patients treated with RUMCs DKA protocol were included in the study. The average age was 43 years, 46% were male, 64% were classified as having type 2 diabetes, and the most frequently identified precipitating causes of DKA were non-adherence and a new diabetes diagnosis. The average lengths of ICU and hospital stay were 43.36 and 100.48 hours, respectively. Patients received an average of 87 units of insulin aspart prior to initial of basal insulin, which occurred at a mean of 19.85 hours after ED admission. Six patients experience Continue reading >>

Nuances In Resuscitation Part Iii: Diabetic Ketoacidosis

Nuances In Resuscitation Part Iii: Diabetic Ketoacidosis

Thus far we have discussed resuscitation in trauma and sepsis. What distinguishes those two from the resuscitation goals in DKA is timing. In trauma and sepsis, it’s all about early recognition, aggressive and quick optimization, and understanding all the possible treatment options at your disposal. In the management of DKA, it’s quite the opposite. If you remember anything from this discussion, it’s that slow and steady wins the race! In fact, overaggressive resuscitation is what leads to the most significant morbidity and mortality in DKA patients. Patients in DKA don’t die from the disease process – they die because we kill them! DKA is defined as an anion-gap metabolic acidosis, with elevated serum ketones (usually measured as beta-hydroxybutyrate), blood glucose > 250 mg/dL, pH < 7.3, and a serum HCO3 < 18 mEq/L. It is the reason for over 50% of diabetic admissions, and many DKA patients begin their inpatient hospital course in the ICU. The leading causes of DKA are medication non-compliance, underlying infection, new-onset diabetes (i.e. DKA is the first presenting illness), or underlying medical/surgical stress. In general, DKA patients will present to the ED relatively early in their disease process because the ketones produced by the body induce vomiting, prompting the patient to seek treatment. This is in contrast to hyperosmolar non-ketotic coma patients (HONK) that present much later in their illness because there are no ketones in the blood to induce vomiting and alert the patient or his/her family that something is wrong. The mainstays of DKA management are fluid replenishment, glycemic control, correction of any other metabolic anomalies, and treatment of any underlying cause for the glycemic derangement. There are definitely some differences in Continue reading >>

Management Of Adult Diabetic Ketoacidosis

Management Of Adult Diabetic Ketoacidosis

Go to: Abstract Diabetic ketoacidosis (DKA) is a rare yet potentially fatal hyperglycemic crisis that can occur in patients with both type 1 and 2 diabetes mellitus. Due to its increasing incidence and economic impact related to the treatment and associated morbidity, effective management and prevention is key. Elements of management include making the appropriate diagnosis using current laboratory tools and clinical criteria and coordinating fluid resuscitation, insulin therapy, and electrolyte replacement through feedback obtained from timely patient monitoring and knowledge of resolution criteria. In addition, awareness of special populations such as patients with renal disease presenting with DKA is important. During the DKA therapy, complications may arise and appropriate strategies to prevent these complications are required. DKA prevention strategies including patient and provider education are important. This review aims to provide a brief overview of DKA from its pathophysiology to clinical presentation with in depth focus on up-to-date therapeutic management. Keywords: DKA treatment, insulin, prevention, ESKD Go to: Introduction In 2009, there were 140,000 hospitalizations for diabetic ketoacidosis (DKA) with an average length of stay of 3.4 days.1 The direct and indirect annual cost of DKA hospitalizations is 2.4 billion US dollars. Omission of insulin is the most common precipitant of DKA.2,3 Infections, acute medical illnesses involving the cardiovascular system (myocardial infarction, stroke) and gastrointestinal tract (bleeding, pancreatitis), diseases of the endocrine axis (acromegaly, Cushing’s syndrome), and stress of recent surgical procedures can contribute to the development of DKA by causing dehydration, increase in insulin counter-regulatory hor Continue reading >>

Author: Dr Kate Evans, Diabetes & Endocrinology, November 2014; Review October 2017 Page 1

Author: Dr Kate Evans, Diabetes & Endocrinology, November 2014; Review October 2017 Page 1

Guidelines for Managing Insulin Pumps in Hospitalised Patients 1. Diabetic ketoacidosis (DKA) and the unconscious or incapacitated patient: p2 (appendix 1 for summary) 2. Insulin pumps and radiology investigations: p2 3. Pump management for surgery and procedures: p3 (appendix 2 for summary) 4. Pump management for women in labour: p4 (appendix 3 for summary) 5. Hypoglycaemia in patients on CSII: p5 6. Stopping and re-starting CSII: p5 7. Alternative insulin regimens for hospitalised patients unable to continue on CSII: p6 Overview of insulin pumps/Continuous Subcutaneous Insulin Infusion therapy (CSII) CSII is used in people with type 1 diabetes to improve glucose control and/or reduce the risk of hypoglycaemia. CSII involves a continuous “basal†insulin infusion (the rate usually varies over the 24 hour period), in combination with meal-time bolus insulin. Both basal and bolus insulin are delivered by an insulin pump, which infuses short acting insulin (either novorapid or humalog lispro) through a catheter attached to a fine bore subcutaneous cannula (typically sited in the abdomen). The basal infusion rates are pre-programmed by the patient (or their diabetes nurse/doctor) and will continue to run until the insulin cartridge is empty; boluses are delivered under the patient’s direction, to cover food intake and to correct for high blood glucose levels. People on CSII do NOT take any long acting insulin so if there is any interruption to insulin delivery (e.g. if the cannula is blocked or dislodged) hyperglycaemia and then ketoacidosis can develop very quickly, unless the problem is identified and rectified, e.g. by re-siting the cannula, changing the tubing, or starting alternative insulin such as an intravenous infusion. The pump should only by adju Continue reading >>

Fluid Replacement Give Sodium Chloride 0.9% Intravenously As Follows:

Fluid Replacement Give Sodium Chloride 0.9% Intravenously As Follows:

Diabetic emergencies: guidelines for the management of diabetic ketoacidosis and management of hyperosmolar non-ketotic diabetic coma The following guideline is approved only for use at University College London Hospitals NHS Foundation Trust. It is provided as supporting information for the UCLH Injectable Medicines Administration Guide. Neither UCLH nor Wiley accept liability for errors or omissions within the guideline. Wherever possible, users of the Guide should refer to locally produced practice guidelines. UCLH’s guidelines represent the expert opinion of the clinicians within the hospital and may not be applicable to patients outside the Trust. Adapted from UCLH Guidelines for the management of common medical emergencies and for the use of antimicrobial drugs Reviewed by: Dr Stephanie Baldeweg, Consultant Endocrinologist, UCLH and Mrs Sejal Rabone, Pharmacist, MES Directorate, UCLH January 2006 Management of diabetic ketoacidosis and management of hyperosmolar The principal problems are dehydration and acidosis. Diabetic ketoacidosis is a medical emergency. Aim of treatment: Correct acidosis with IV fluids and insulin, and restore electrolyte balance. Criteria for diagnosis: • Blood glucose > 10 mmol/L and • Positive urine ketones test and • Acidosis (pH ≤ 7.3 or bicarbonate ≤ 15 mmol/L) Also look for thirst and polyuria, hyperventilation (Kussmaul), abdominal pain, vomiting. Immediate admission to critical care must take priority over all except lifesaving interventions. Refer the patient to the DMR immediately whilst continuing management in A&E. Contact a member of the diabetic team (registrar bleep MX109); it is better to seek advice early than late. Urgent Investigations • Blood glucose. This is accurate up to abou Continue reading >>

Original Article A Unified Hyperglycemia And Diabetic Ketoacidosis (dka) Insulin Infusion Protocol Based On An Excel Algorithm And Implemented Via Electronic Medical Record (emr) In Intensive Care Units

Original Article A Unified Hyperglycemia And Diabetic Ketoacidosis (dka) Insulin Infusion Protocol Based On An Excel Algorithm And Implemented Via Electronic Medical Record (emr) In Intensive Care Units

Abstract To assess the efficacy of a unified hyperglycemia and diabetic ketoacidosis (DKA) insulin infusion protocol (IIP), based on an Excel algorithm and implemented as an electronic order set, in achieving glycemic targets and minimizing hypoglycemia. An IIP was instituted in medical and surgical intensive care units for post-cardiac surgery (PCS) and other stress hyperglycemia (SH), diabetes hyperglycemia (DH), and DKA. The IIP initiated therapeutic insulin rates at elevated blood glucose (BG), and decreased insulin when target range was achieved. A convenience sample (n = 62) was studied; 20 PCS, 15 with DH, 9 with SH, 8 with diabetes on vasopressors, 7 with diabetes on glucocorticoids and 3 with DKA were assessed. The protocol maintained BG at 144 ± 24.7 mg/dL for PCS and 167 ± 36 mg/dL for patients with diabetes mellitus. It maintained acceptable target range (ATR) (100 mg/dL–180 mg/dL) 89% of the time for PCS and 67% of the time for patients with diabetes mellitus. There were no measurements of BG < 70 mg/dL. The protocol lowered the BG at a similar rate and time period in those with diabetes, DKA and those with or without vasopressors or glucocorticoids. To determine long-term efficacy, a retrospective review of Point of Care (POC) RALS (Remote Automated Data System) BG data 2 years post implementation demonstrated fewer episodes of hypoglycemia < 70 mg/dL and hyperglycemia > 240 mg/dL and more BG values within ATR. This IIP maintained ATR without hypoglycemia for patients in the ICU setting without requiring complex nursing calculations. Continue reading >>

Diagnosis And Treatment Of Diabetic Ketoacidosis

Diagnosis And Treatment Of Diabetic Ketoacidosis

85 Abstract Diabetic ketoacidosis (DKA) is the most frequent hyperglycaemic acute diabetic complication. Furthermore it carries a significant risk of death, which can be prevented by early and effective management. All physicians, irrespective of the discipline they are working in and whether in primary, secondary or tertiary care institutions, should be able to recognise DKA early and initiate management immediately. 86 Introduction Diabetic ketoacidosis (DKA) is a common complication of diabetes with an annual occurrence rate of 46 to 50 per 10 000 diabetic patients. The severity of this acute diabetic complication can be appreciated from the high death-to-case ratio of 5 to 10%.1 In Africa the mortality of DKA is unacceptably high with a reported death rate of 26 to 29% in studies from Kenya, Tanzania and Ghana.2 It is a complication of both type 1 and type 2 diabetes mellitus, although more commonly seen in type 1 diabetic patients. Of known diabetic patients presenting with DKA about one-quarter will be patients with type 2 diabetes. In patients presenting with a DKA as first manifestation of diabetes about 15% will be type 2.3 This correlates well with data from South Africa suggesting that one- quarter of patients with DKA will be type 2 with adequate C-peptide levels and the absence of anti-GAD antibodies.4 This review will focus on the principles of diagnosis, monitoring and treatment of DKA, with special mention of new developments and controversial issues. Clinical features DKA evolves over hours to days in both type 1 and type 2 diabetic patients, but the symptoms of poor control of blood glucose are usually present for several days before the onset or presentation of ketoacidosis.5 The clinical features of DKA are non-specific and patients may present with Continue reading >>

Diabetic Ketoacidosis Treatment & Management

Diabetic Ketoacidosis Treatment & Management

Approach Considerations Managing diabetic ketoacidosis (DKA) in an intensive care unit during the first 24-48 hours always is advisable. When treating patients with DKA, the following points must be considered and closely monitored: It is essential to maintain extreme vigilance for any concomitant process, such as infection, cerebrovascular accident, myocardial infarction, sepsis, or deep venous thrombosis. It is important to pay close attention to the correction of fluid and electrolyte loss during the first hour of treatment. This always should be followed by gradual correction of hyperglycemia and acidosis. Correction of fluid loss makes the clinical picture clearer and may be sufficient to correct acidosis. The presence of even mild signs of dehydration indicates that at least 3 L of fluid has already been lost. Patients usually are not discharged from the hospital unless they have been able to switch back to their daily insulin regimen without a recurrence of ketosis. When the condition is stable, pH exceeds 7.3, and bicarbonate is greater than 18 mEq/L, the patient is allowed to eat a meal preceded by a subcutaneous (SC) dose of regular insulin. Insulin infusion can be discontinued 30 minutes later. If the patient is still nauseated and cannot eat, dextrose infusion should be continued and regular or ultra–short-acting insulin should be administered SC every 4 hours, according to blood glucose level, while trying to maintain blood glucose values at 100-180 mg/dL. The 2011 JBDS guideline recommends the intravenous infusion of insulin at a weight-based fixed rate until ketosis has subsided. Should blood glucose fall below 14 mmol/L (250 mg/dL), 10% glucose should be added to allow for the continuation of fixed-rate insulin infusion. [19, 20] In established patient Continue reading >>

Management Of Diabetic Ketoacidosis (dka)

Management Of Diabetic Ketoacidosis (dka)

Management of Acute Diabetic Ketoacidosis (DKA) Below is the link to the care pathway for the management of diabetic ketoacidosis in adults. Specific guidelines exist for the management of DKA in children. In patients aged 13-16 years presenting with DKA, the management of DKA should be discussed with relevant paediatric staff. Diagnosis Severe uncontrolled diabetes with: Hyperglycaemia (blood glucose >14mmol/L, usually but not exclusively) Metabolic acidosis (H+ >45mEq/L or HCO3- <18mmol/L or pH <7.3 on venous gases) Ketonaemia (>3mmol/L) / ketonuria (>++) Severity criteria One or more of the following may indicate severe DKA and should be considered for level 2 care (MHDU if available). It may also be necessary to consider a surgical cause for the deterioration. Blood ketones >6mmol/L Bicarbonate level <5mmol/L Venous / artierial pH <7.1 Hypokalaemia on admission (<3.5mmol/L) GCS <12 or abnormal AVPU scale Oxygen saturation <92% on air (assuming normal baseline respiratory function) Systolic BP <90mmHg, pulse >100bpm or <60bpm Anion gap >16 [anion gap = (Na+ + K+) – (Cl- + HCO3-)] Cerebral oedema The care pathways for the emergency management of DKA should be used for all eligible patients. Complete pathways for 0–4 hours and 4 hours–discharge for each DKA episode. These provide instruction on fluid balance, insulin and potassium replacement. Please note there are DKA order sets on TrakCare (DKA baseline and DKA continuing care). The care pathways are available within relevant departments or online at NHSGGC Managed Clinical Networks / Diabetes MCN / Clinical Guidelines and Protocols / DKA Care Pathway. Supplementary notes as per care pathway 0–4 hours Continue background SC insulin (glargine, levemir, degludec, isophane insulin) while on fixed rate intravenou Continue reading >>

Understanding And Treating Diabetic Ketoacidosis

Understanding And Treating Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a serious metabolic disorder that can occur in animals with diabetes mellitus (DM).1,2 Veterinary technicians play an integral role in managing and treating patients with this life-threatening condition. In addition to recognizing the clinical signs of this disorder and evaluating the patient's response to therapy, technicians should understand how this disorder occurs. DM is caused by a relative or absolute lack of insulin production by the pancreatic b-cells or by inactivity or loss of insulin receptors, which are usually found on membranes of skeletal muscle, fat, and liver cells.1,3 In dogs and cats, DM is classified as either insulin-dependent (the body is unable to produce sufficient insulin) or non-insulin-dependent (the body produces insulin, but the tissues in the body are resistant to the insulin).4 Most dogs and cats that develop DKA have an insulin deficiency. Insulin has many functions, including the enhancement of glucose uptake by the cells for energy.1 Without insulin, the cells cannot access glucose, thereby causing them to undergo starvation.2 The unused glucose remains in the circulation, resulting in hyperglycemia. To provide cells with an alternative energy source, the body breaks down adipocytes, releasing free fatty acids (FFAs) into the bloodstream. The liver subsequently converts FFAs to triglycerides and ketone bodies. These ketone bodies (i.e., acetone, acetoacetic acid, b-hydroxybutyric acid) can be used as energy by the tissues when there is a lack of glucose or nutritional intake.1,2 The breakdown of fat, combined with the body's inability to use glucose, causes many pets with diabetes to present with weight loss, despite having a ravenous appetite. If diabetes is undiagnosed or uncontrolled, a series of metab Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Treatment Approach The main goals of treatment are: Restoration of volume deficits Resolution of hyperglycemia and ketosis/acidosis Correction of electrolyte abnormalities (potassium level should be >3.3 mEq/L before initiation of insulin therapy; use of insulin in a patient with hypokalemia may lead to respiratory paralysis, cardiac arrhythmias, and death) Treatment of the precipitating events and prevention of complications. It must be emphasized that successful treatment requires frequent monitoring of clinical and laboratory parameters to achieve resolution criteria. A treatment protocol and a flow sheet for recording the treatment stages and laboratory data should be maintained. [1] [38] [39] [40] Initial and supportive treatment The majority of patients present to the emergency department, where treatment should be initiated. There are several important steps that should be followed in early management: Fluid therapy should be started immediately after initial laboratory evaluations. Infusion of isotonic solution of 0.9% sodium chloride at a rate of 1 to 1.5 L/hour should be used for the first hour of fluid therapy. Indications for admission to the intensive care unit (ICU) are hemodynamic instability or cardiogenic shock, altered mental status, respiratory insufficiency, severe acidosis, and hyperosmolar state with coma. The diagnosis of hemodynamic instability should made by observing for hypotension and clinical signs of poor tissue perfusion, including oliguria, cyanosis, cool extremities, and altered mental state. After admission to ICU, central venous and arterial lines are required, with continuous percutaneous oximetry. Oxygenation and airway protection are critical. Intubation and mechanical ventilation are commonly required, with constant monitoring of r Continue reading >>

Treatment Of Diabetic Ketoacidosis With Subcutaneous Insulin Aspart

Treatment Of Diabetic Ketoacidosis With Subcutaneous Insulin Aspart

Abstract OBJECTIVE—In this prospective, randomized, open trial, we compared the efficacy and safety of aspart insulin given subcutaneously at different time intervals to a standard low-dose intravenous (IV) infusion protocol of regular insulin in patients with uncomplicated diabetic ketoacidosis (DKA). RESEARCH DESIGN AND METHODS—A total of 45 consecutive patients admitted with DKA were randomly assigned to receive subcutaneous (SC) aspart insulin every hour (SC-1h, n = 15) or every 2 h (SC-2h, n = 15) or to receive IV infusion of regular insulin (n = 15). Response to medical therapy was evaluated by assessing the duration of treatment until resolution of hyperglycemia and ketoacidosis. Additional end points included total length of hospitalization, amount of insulin administration until resolution of hyperglycemia and ketoacidosis, and number of hypoglycemic events. RESULTS—Admission biochemical parameters in patients treated with SC-1h (glucose: 44 ± 21 mmol/l [means ± SD], bicarbonate: 7.1 ± 3 mmol/l, pH: 7.14 ± 0.09) were similar to those treated with SC-2h (glucose: 42 ± 21 mmol/l, bicarbonate: 7.6 ± 4 mmol/l, pH: 7.15 ± 0.12) and IV regular insulin (glucose: 40 ± 13 mmol/l, bicarbonate 7.1 ± 4 mmol/l, pH: 7.11 ± 0.17). There were no statistical differences in the mean duration of treatment until correction of hyperglycemia (6.9 ± 4, 6.1 ± 4, and 7.1 ± 5 h) or until resolution of ketoacidosis (10 ± 3, 10.7 ± 3, and 11 ± 3 h) among patients treated with SC-1h and SC-2h or with IV insulin, respectively (NS). There was no mortality and no differences in the length of hospital stay, total amount of insulin administration until resolution of hyperglycemia or ketoacidosis, or the number of hypoglycemic events among treatment groups. CONCLUSIONS—Ou Continue reading >>

Diabetic Ketoacidosis In Children And Adolescents: An Update And Revised Treatment Protocol

Diabetic Ketoacidosis In Children And Adolescents: An Update And Revised Treatment Protocol

Standardized pediatric-specific treatment is required to ensure safe correction of metabolic derangements associated with DKA. ABSTRACT: British Columbia has an estimated 150 to 200 new cases of type 1 diabetes in children annually. In these cases, 10% to 20% of patients will present in diabetic ketoacidosis (DKA). DKA is associated with significant fluid and biochemical derangements, necessitating a thoughtful, structured approach to its management. Recent gains have been made in knowledge about the pathophysiology and medical care of DKA and its most significant complication, cerebral edema. In response, BC Children’s Hospital has devised an updated medical protocol for managing DKA in infants, children, and adolescents that conforms to new international consensus guidelines. The protocol assists the medical practitioner in calculating fluid and electrolyte replacement needs for individual patients and outlines a plan for initial assessment and ongoing monitoring. Accompanying resources have also been developed to aid nursing, laboratory, and pharmacy colleagues to ensure that all children presenting with DKA in this province are managed following scientifically established guidelines. Canada has one of the highest rates of type 1 diabetes (T1D) in the world. The estimated incidence of T1D in Canadian children aged 0 to 14 years is 21.7 per 100000 per year.[1] Using 2008 census data,[2] prevalence in this age group in British Columbia is estimated to be about 1029 established cases of T1D or about 150 new cases per year. Much publicity has been given to the rising incidence of type 2 diabetes (T2D) in youth and young adults in North America, a phenomenon that we are also observing in our province, but the fact that there has also been a 2% to 3% annual increase in t Continue reading >>

Management Of Diabetic Ketoacidosis In Adults

Management Of Diabetic Ketoacidosis In Adults

Diabetic ketoacidosis is a potentially life-threatening complication of diabetes, making it a medical emergency. Nurses need to know how to identify and manage it and how to maintain electrolyte balance Continue reading >>

Diabetic Ketoacidosis (dka)

Diabetic Ketoacidosis (dka)

Tweet Diabetic ketoacidosis (DKA) is a dangerous complication faced by people with diabetes which happens when the body starts running out of insulin. DKA is most commonly associated with type 1 diabetes, however, people with type 2 diabetes that produce very little of their own insulin may also be affected. Ketoacidosis is a serious short term complication which can result in coma or even death if it is not treated quickly. Read about Diabetes and Ketones What is diabetic ketoacidosis? DKA occurs when the body has insufficient insulin to allow enough glucose to enter cells, and so the body switches to burning fatty acids and producing acidic ketone bodies. A high level of ketone bodies in the blood can cause particularly severe illness. Symptoms of DKA Diabetic ketoacidosis may itself be the symptom of undiagnosed type 1 diabetes. Typical symptoms of diabetic ketoacidosis include: Vomiting Dehydration An unusual smell on the breath –sometimes compared to the smell of pear drops Deep laboured breathing (called kussmaul breathing) or hyperventilation Rapid heartbeat Confusion and disorientation Symptoms of diabetic ketoacidosis usually evolve over a 24 hour period if blood glucose levels become and remain too high (hyperglycemia). Causes and risk factors for diabetic ketoacidosis As noted above, DKA is caused by the body having too little insulin to allow cells to take in glucose for energy. This may happen for a number of reasons including: Having blood glucose levels consistently over 15 mmol/l Missing insulin injections If a fault has developed in your insulin pen or insulin pump As a result of illness or infections High or prolonged levels of stress Excessive alcohol consumption DKA may also occur prior to a diagnosis of type 1 diabetes. Ketoacidosis can occasional Continue reading >>

More in ketosis