diabetestalk.net

What Is Dka Medical Term?

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Diabetic acidosis is a life-threatening condition that can occur in people with type 1 diabetes. Less commonly, it can also occur with type 2 diabetes. Term watch Ketones: breakdown products from the use of fat stores for energy. Ketoacidosis: another name for diabetic acidosis. It happens when a lack of insulin leads to: Diabetic acidosis requires immediate hospitalisation for urgent treatment with fluids and intravenous insulin. It can usually be avoided through proper treatment of Type 1 diabetes. However, ketoacidosis can also occur with well-controlled diabetes if you get a severe infection or other serious illness, such as a heart attack or stroke, which can cause vomiting and resistance to the normal dose of injected insulin. What causes diabetic acidosis? The condition is caused by a lack of insulin, most commonly when doses are missed. While insulin's main function is to lower the blood sugar level, it also reduces the burning of body fat. If the insulin level drops significantly, the body will start burning fat uncontrollably while blood sugar levels rise. Glucose will then begin to show up in your urine, along with ketone bodies from fat breakdown that turn the body acidic. The body attempts to reduce the level of acid by increasing the rate and depth of breathing. This blows off carbon dioxide in the breath, which tends to correct the acidosis temporarily (known as acidotic breathing). At the same time, the high secretion of glucose into the urine causes large quantities of water and salts to be lost, putting the body at serious risk of dehydration. Eventually, over-breathing becomes inadequate to control the acidosis. What are the symptoms? Since diabetic acidosis is most often linked with high blood sugar levels, symptoms are the same as those for diabetes Continue reading >>

Diabetes Glossary

Diabetes Glossary

The following is a list of diabetes-related terms and their definitions. These words, listed in alphabetical order, are the most common ones you will hear when you are discussing diabetes. *Please note many of these definitions are product specific. A A1C (HbA1c) - Glycosylated hemoglobin. A1C (HbA1c) test - A 2-3 month average of blood glucose values expressed in percent. The normal range varies with different labs and is expressed in percent (such as 4 - 6%). AACE - American Association of Clinical Endocrinologists. A professional organization devoted to the field of clinical endocrinology. ACE - American College of Endocrinology. *Accept - Pressing the ACT button to approve the selection or setting. *Active insulin - Bolus insulin that has been delivered to your body, but has not yet been used. ADA - American Diabetes Association®. Adult-onset diabetes - Former term for Type 2 diabetes. Adverse reaction - An unexpected, unpleasant or dangerous reaction to a sensor when it is inserted into the body. An adverse reaction may be sudden or may develop over time. *Alarm - Audible or vibrating (silent) notice that indicates the pump is in Attention mode and immediate attention is required. Alarms are prefixed in the alarm history with the letter A. *Alarm clock - Feature you can set to go off at specified times of the day. *Alarm history - Screen that displays the last 36 alarms/errors that have occurred on your pump. *Alarm icon - A solid circle that shows at the top of the screen and the pump beeps or vibrates periodically until the condition is cleared (see Attention mode). *Alert - Audible or vibrating (silent) indicator that notifies you the pump needs attention soon or that you should be reminded of something. Insulin delivery continues as programmed. *Alert icon - A Continue reading >>

Hyperglycaemic Crises And Lactic Acidosis In Diabetes Mellitus

Hyperglycaemic Crises And Lactic Acidosis In Diabetes Mellitus

Hyperglycaemic crises are discussed together followed by a separate section on lactic acidosis. DIABETIC KETOACIDOSIS (DKA) AND HYPERGLYCAEMIC HYPEROSMOLAR STATE (HHS) Definitions DKA has no universally agreed definition. Alberti proposed the working definition of “severe uncontrolled diabetes requiring emergency treatment with insulin and intravenous fluids and with a blood ketone body concentration of >5 mmol/l”.1 Given the limited availability of blood ketone body assays, a more pragmatic definition comprising a metabolic acidosis (pH <7.3), plasma bicarbonate <15 mmol/l, plasma glucose >13.9 mmol/l, and urine ketostix reaction ++ or plasma ketostix ⩾ + may be more workable in clinical practice.2 Classifying the severity of diabetic ketoacidosis is desirable, since it may assist in determining the management and monitoring of the patient. Such a classification is based on the severity of acidosis (table 1). A caveat to this approach is that the presence of an intercurrent illness, that may not necessarily affect the level of acidosis, may markedly affect outcome: a recent study showed that the two most important factors predicting mortality in DKA were severe intercurrent illness and pH <7.0.3 HHS replaces the older terms, “hyperglycaemic hyperosmolar non-ketotic coma” and “hyperglycaemic hyperosmolar non-ketotic state”, because alterations of sensoria may be present without coma, and mild to moderate ketosis is commonly present in this state.4,5 Definitions vary according to the degree of hyperglycaemia and elevation of osmolality required. Table 1 summarises the definition of Kitabchi et al.5 Epidemiology The annual incidence of DKA among subjects with type 1 diabetes is between 1% and 5% in European and American series6–10 and this incidence appear Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Professor of Pediatric Endocrinology University of Khartoum, Sudan Introduction DKA is a serious acute complications of Diabetes Mellitus. It carries significant risk of death and/or morbidity especially with delayed treatment. The prognosis of DKA is worse in the extremes of age, with a mortality rates of 5-10%. With the new advances of therapy, DKA mortality decreases to > 2%. Before discovery and use of Insulin (1922) the mortality was 100%. Epidemiology DKA is reported in 2-5% of known type 1 diabetic patients in industrialized countries, while it occurs in 35-40% of such patients in Africa. DKA at the time of first diagnosis of diabetes mellitus is reported in only 2-3% in western Europe, but is seen in 95% of diabetic children in Sudan. Similar results were reported from other African countries . Consequences The latter observation is annoying because it implies the following: The late diagnosis of type 1 diabetes in many developing countries particularly in Africa. The late presentation of DKA, which is associated with risk of morbidity & mortality Death of young children with DKA undiagnosed or wrongly diagnosed as malaria or meningitis. Pathophysiology Secondary to insulin deficiency, and the action of counter-regulatory hormones, blood glucose increases leading to hyperglycemia and glucosuria. Glucosuria causes an osmotic diuresis, leading to water & Na loss. In the absence of insulin activity the body fails to utilize glucose as fuel and uses fats instead. This leads to ketosis. Pathophysiology/2 The excess of ketone bodies will cause metabolic acidosis, the later is also aggravated by Lactic acidosis caused by dehydration & poor tissue perfusion. Vomiting due to an ileus, plus increased insensible water losses due to tachypnea will worsen the state of dehydr Continue reading >>

Diabetic Ketoacidosis In Dogs

Diabetic Ketoacidosis In Dogs

My dog is diabetic. He has been doing pretty well overall, but recently he became really ill. He stopped eating well, started drinking lots of water, and got really weak. His veterinarian said that he had a condition called “ketoacidosis,” and he had to spend several days in the hospital. I’m not sure I understand this disorder. Diabetic ketoacidosis is a medical emergency that occurs when there is not enough insulin in the body to control blood sugar (glucose) levels. The body can’t use glucose properly without insulin, so blood glucose levels get very high, and the body creates ketone bodies as an emergency fuel source. When these are broken down, it creates byproducts that cause the body’s acid/base balance to shift, and the body becomes more acidic (acidosis), and it can’t maintain appropriate fluid balance. The electrolyte (mineral) balance becomes disrupted which can lead to abnormal heart rhythms and abnormal muscle function. If left untreated, diabetic ketoacidosis is fatal. How could this disorder have happened? If a diabetic dog undergoes a stress event of some kind, the body secretes stress hormones that interfere with appropriate insulin activity. Examples of stress events that can lead to diabetic ketoacidosis include infection, inflammation, and heart disease. What are the signs of diabetic ketoacidosis? The signs of diabetic ketoacidosis include: Excessive thirst/drinking Increased urination Lethargy Weakness Vomiting Increased respiratory rate Decreased appetite Weight loss (unplanned) with muscle wasting Dehydration Unkempt haircoat These same clinical signs can occur with other medical conditions, so it is important for your veterinarian to perform appropriate diagnostic tests to determine if diabetic ketoacidosis in truly the issue at hand Continue reading >>

Diabetes Mellitus

Diabetes Mellitus

Diabetes mellitus, disorder of carbohydrate metabolism characterized by impaired ability of the body to produce or respond to insulin and thereby maintain proper levels of sugar (glucose) in the blood. Diabetes is a major cause of morbidity and mortality, though these outcomes are not due to the immediate effects of the disorder. They are instead related to the diseases that develop as a result of chronic diabetes mellitus. These include diseases of large blood vessels (macrovascular disease, including coronary heart disease and peripheral arterial disease) and small blood vessels (microvascular disease, including retinal and renal vascular disease), as well as diseases of the nerves. Causes and types Insulin is a hormone secreted by beta cells, which are located within clusters of cells in the pancreas called the islets of Langerhans. Insulin’s role in the body is to trigger cells to take up glucose so that the cells can use this energy-yielding sugar. Patients with diabetes may have dysfunctional beta cells, resulting in decreased insulin secretion, or their muscle and adipose cells may be resistant to the effects of insulin, resulting in a decreased ability of these cells to take up and metabolize glucose. In both cases, the levels of glucose in the blood increase, causing hyperglycemia (high blood sugar). As glucose accumulates in the blood, excess levels of this sugar are excreted in the urine. Because of greater amounts of glucose in the urine, more water is excreted with it, causing an increase in urinary volume and frequency of urination as well as thirst. (The name diabetes mellitus refers to these symptoms: diabetes, from the Greek diabainein, meaning “to pass through,” describes the copious urination, and mellitus, from the Latin meaning “sweetened wi Continue reading >>

How Dka Happens And What To Do About It

How Dka Happens And What To Do About It

Certified Diabetes Educator Gary Scheiner offers an overview of diabetic ketoacidosis. (excerpted from Think Like A Pancreas: A Practical Guide to Managing Diabetes With Insulin by Gary Scheiner MS, CDE, DaCapo Press, 2011) Diabetic Ketoacidosis (DKA) is a condition in which the blood becomes highly acidic as a result of dehydration and excessive ketone (acid) production. When bodily fluids become acidic, some of the body’s systems stop functioning properly. It is a serious condition that will make you violently ill and it can kill you. The primary cause of DKA is a lack of working insulin in the body. Most of the body’s cells burn primarily sugar (glucose) for energy. Many cells also burn fat, but in much smaller amounts. Glucose happens to be a very “clean” form of energy—there are virtually no waste products left over when you burn it up. Fat, on the other hand, is a “dirty” source of energy. When fat is burned, there are waste products produced. These waste products are called “ketones.” Ketones are acid molecules that can pollute the bloodstream and affect the body’s delicate pH balance if produced in large quantities. Luckily, we don’t tend to burn huge amounts of fat at one time, and the ketones that are produced can be broken down during the process of glucose metabolism. Glucose and ketones can “jump into the fire” together. It is important to have an ample supply of glucose in the body’s cells. That requires two things: sugar (glucose) in the bloodstream, and insulin to shuttle the sugar into the cells. A number of things would start to go wrong if you have no insulin in the bloodstream: Without insulin, glucose cannot get into the body’s cells. As a result, the cells begin burning large amounts of fat for energy. This, of course, Continue reading >>

Ketoacidosis: A Diabetes Complication

Ketoacidosis: A Diabetes Complication

Ketoacidosis can affect both type 1 diabetes and type 2 diabetes patients. It's a possible short-term complication of diabetes, one caused by hyperglycemia—and one that can be avoided. Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS) are two of the most serious complications of diabetes. These hyperglycemic emergencies continue to be important causes of mortality among persons with diabetes in spite of all of the advances in understanding diabetes. The annual incidence rate of DKA estimated from population-based studies ranges from 4.8 to 8 episodes per 1,000 patients with diabetes. Unfortunately, in the US, incidents of hospitalization due to DKA have increased. Currently, 4% to 9% of all hospital discharge summaries among patients with diabetes include DKA. The incidence of HHS is more difficult to determine because of lack of population studies but it is still high at around 15%. The prognosis of both conditions is substantially worsened at the extremes of age, and in the presence of coma and hypertension. Why and How Does Ketoacidosis Occur? The pathogenesis of DKA is more understood than HHS but both relate to the basic underlying reduction in the net effective action of circulating insulin coupled with a concomitant elevation of counter regulatory hormones such as glucagons, catecholamines, cortisol, and growth hormone. These hormonal alterations in both DKA and HHS lead to increased hepatic and renal glucose production and impaired use of glucose in peripheral tissues, which results in hyperglycemia and parallel changes in osmolality in extracellular space. This same combination also leads to release of free fatty acids into the circulation from adipose tissue and to unrestrained hepatic fatty acid oxidation to ketone bodies. Some drugs ca Continue reading >>

Diabetes: Short Term Problems

Diabetes: Short Term Problems

Complications Diabetes can cause other health problems. Sometimes these problems are referred to as complications (COM-pli-KAY-shuns). Short-term problems can happen at any time when you have diabetes. Long-term problems may develop when you have diabetes for a long time. In case of emergency, you should always wear a form of medical identification (ID). Examples are ID bracelets and necklaces. To reduce your risk of getting other health problems from diabetes, you need good control of your blood glucose (sugar). Good control means keeping blood glucose at certain levels. To learn more about good control and healthy blood glucose numbers, see the UPMC patient education page Diabetes: Your Management Plan. This patient education sheet tells you about short-term problems, what to do for them, and how to prevent them: Low blood glucose High blood glucose with ketones High blood glucose without ketones Low Blood Glucose Low blood glucose is also called hypoglycemia (HI-po-glice-EE-me-uh). Blood glucose numbers under 70 mean you have low blood glucose. Several things can cause low blood glucose: Too much insulin Too much sulfonylurea (SULL-fon-ilyour-EE-uh) medicine Not enough food Too much exercise Symptoms of low blood glucose include: Hunger Feeling nervous Heavy sweating Weakness Shaking (tremors) Confusion Seizures Coma If you get low blood glucose If you get low blood glucose and you are awake and able to swallow, eat or drink something with sugar. Here is a list of some suggested foods: 4 ounces of fruit juice 4 to 6 ounces of sugary (non-diet) soft drink 3 to 4 glucose tablets (or 1 tube of glucose gel) 1 cup of skim milk 6 to 7 hard candies (not sugar-free), such as Lifesavers Wait for 10 to 15 minutes. Test your blood glucose again. If your blood glucose is above 7 Continue reading >>

Understanding And Treating Diabetic Ketoacidosis

Understanding And Treating Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a serious metabolic disorder that can occur in animals with diabetes mellitus (DM).1,2 Veterinary technicians play an integral role in managing and treating patients with this life-threatening condition. In addition to recognizing the clinical signs of this disorder and evaluating the patient's response to therapy, technicians should understand how this disorder occurs. DM is caused by a relative or absolute lack of insulin production by the pancreatic b-cells or by inactivity or loss of insulin receptors, which are usually found on membranes of skeletal muscle, fat, and liver cells.1,3 In dogs and cats, DM is classified as either insulin-dependent (the body is unable to produce sufficient insulin) or non-insulin-dependent (the body produces insulin, but the tissues in the body are resistant to the insulin).4 Most dogs and cats that develop DKA have an insulin deficiency. Insulin has many functions, including the enhancement of glucose uptake by the cells for energy.1 Without insulin, the cells cannot access glucose, thereby causing them to undergo starvation.2 The unused glucose remains in the circulation, resulting in hyperglycemia. To provide cells with an alternative energy source, the body breaks down adipocytes, releasing free fatty acids (FFAs) into the bloodstream. The liver subsequently converts FFAs to triglycerides and ketone bodies. These ketone bodies (i.e., acetone, acetoacetic acid, b-hydroxybutyric acid) can be used as energy by the tissues when there is a lack of glucose or nutritional intake.1,2 The breakdown of fat, combined with the body's inability to use glucose, causes many pets with diabetes to present with weight loss, despite having a ravenous appetite. If diabetes is undiagnosed or uncontrolled, a series of metab Continue reading >>

Feline Diabetic Ketoacidosis

Feline Diabetic Ketoacidosis

Fall 2008 Ketoacidosis is a metabolic imbalance that is most commonly seen as a sequel to unmanaged or poorly regulated diabetes mellitus. It is caused by the breakdown of fat and protein in a compensatory effort for the need of more metabolic energy. The excessive breakdown of these stored reserves creates a toxic by-product in the form of ketones. As ketones build up in the blood stream, pH and electrolyte imbalances proceed. This condition is a potentially life-threatening emergency that requires immediate medical attention. Diabetes mellitus is a common endocrine disease in geriatric felines. It is caused by a dysfunction in the beta cells of the exocrine pancreas resulting in an absolute or relative deficiency of insulin. Insulin has been called the cells' gatekeeper. It attaches to the surface of cells and permits glucose, the cells' primary energy source, to enter from the blood. A lack of insulin results in a build up of glucose in the blood, physiologically causing a state of cellular starvation. In response to this condition the body begins to increase the mobilization of protein and fat storage. Fatty acids are released from adipose tissue, which are then oxidized by the liver. Normally, these fatty acids are formed into triglycerides. However, without insulin, these fatty acids are converted into ketone bodies, which cannot be utilized by the body. Together with the increased production and decreased utilization an abnormally high concentration of ketone bodies develop. These fixed acids are buffered by bicarbonate; however, the excessive amounts overwhelm and deplete the bicarbonate leading to an increase in arterial hydrogen ion concentration and a decrease in serum bicarbonate. This increase in hydrogen ions lowers the body's pH, leading to a metabolic ac Continue reading >>

Diabetes Mellitus And Diabetic Retinopathy

Diabetes Mellitus And Diabetic Retinopathy

What is Diabetes Mellitus? Diabetes mellitus, or simply diabetes, is a group of metabolic diseases in which a person has high blood glucose (sugar) levels, either because the pancreas does not produce enough insulin, or because cells do not respond to the insulin that is produced. There are three main types of Diabetes Mellitus (DM): Type 1: This results from not making insulin. Type 1 diabetics need insulin, either by self-injection or using an insulin pump. Type 2: This results from insulin resistance, where cells fail to use insulin properly. This is sometimes accompanied by reduced insulin secretion. Patients are treated with diet, exercise, oral medication, or a combination. Type 3: Gestational Diabetes: Diabetes occurring during pregnancy. How is Diabetes Mellitus diagnosed? Diabetes may have symptoms in some people, and no symptoms in others. Generally, Type 1 diabetes presents with increased thirst (polydipsia), frequent urination (polyuria), and increased hunger (polyphagia). Symptoms may develop over weeks to months. Untreated, this condition may cause a person to lose consciousness and become very ill (diabetic ketoacidosis). Left untreated, glucose can absorb into the lens of the eye, leading to temporary changes in lens shape and vision changes, including blurred vision. Types 2 and 3 diabetes may have minimal symptoms. A single, elevated blood glucose measurement can make a diagnosis, or it may require either single or multiple measurements of blood glucose to determine the degree of impairment of glucose metabolism. Your doctor is the person to help you determine if you might have diabetes. How is Diabetes Mellitus treated? Diabetes mellitus is a chronic disease for which there is treatment but no known cure. Treatment is aimed at keeping blood glucose le Continue reading >>

Chapter 344. Diabetes Mellitus

Chapter 344. Diabetes Mellitus

Diabetes mellitus (DM) refers to a group of common metabolic disorders that share the phenotype of hyperglycemia. Several distinct types of DM are caused by a complex interaction of genetics and environmental factors. Depending on the etiology of the DM, factors contributing to hyperglycemia include reduced insulin secretion, decreased glucose utilization, and increased glucose production. The metabolic dysregulation associated with DM causes secondary pathophysiologic changes in multiple organ systems that impose a tremendous burden on the individual with diabetes and on the health care system. In the United States, DM is the leading cause of end-stage renal disease (ESRD), nontraumatic lower extremity amputations, and adult blindness. It also predisposes to cardiovascular diseases. With an increasing incidence worldwide, DM will be a leading cause of morbidity and mortality for the foreseeable future. DM is classified on the basis of the pathogenic process that leads to hyperglycemia, as opposed to earlier criteria such as age of onset or type of therapy (Fig. 344-1). The two broad categories of DM are designated type 1 and type 2 (Table 344-1). Both types of diabetes are preceded by a phase of abnormal glucose homeostasis as the pathogenic processes progress. Type 1 DM is the result of complete or near-total insulin deficiency. Type 2 DM is a heterogeneous group of disorders characterized by variable degrees of insulin resistance, impaired insulin secretion, and increased glucose production. Distinct genetic and metabolic defects in insulin action and/or secretion give rise to the common phenotype of hyperglycemia in type 2 DM and have important potential therapeutic implications now that pharmacologic agents are available to target specific metabolic derangements. T Continue reading >>

Type 1 Diabetes Complications

Type 1 Diabetes Complications

Type 1 diabetes is complicated—and if you don’t manage it properly, there are complications, both short-term and long-term. “If you don’t manage it properly” is an important if statement: by carefully managing your blood glucose levels, you can stave off or prevent the short- and long-term complications. And if you’ve already developed diabetes complications, controlling your blood glucose levels can help you manage the symptoms and prevent further damage. Diabetes complications are all related to poor blood glucose control, so you must work carefully with your doctor and diabetes team to correctly manage your blood sugar (or your child’s blood sugar). Short-term Diabetes Complications Hypoglycemia: Hypoglycemia is low blood glucose (blood sugar). It develops when there’s too much insulin—meaning that you’ve taken (or given your child) too much insulin or that you haven’t properly planned insulin around meals or exercise. Other possible causes of hypoglycemia include certain medications (aspirin, for example, lowers the blood glucose level if you take a dose of more than 81mg) and alcohol (alcohol keeps the liver from releasing glucose). There are three levels of hypoglycemia, depending on how low the blood glucose level has dropped: mild, moderate, and severe. If you treat hypoglycemia when it’s in the mild or moderate stages, then you can prevent far more serious problems; severe hypoglycemia can cause a coma and even death (although very, very rarely). The signs and symptoms of low blood glucose are usually easy to recognize: Rapid heartbeat Sweating Paleness of skin Anxiety Numbness in fingers, toes, and lips Sleepiness Confusion Headache Slurred speech For more information about hypoglycemia and how to treat it, please read our article on hy Continue reading >>

Diabetic Ketoacidosis And Hyperglycaemic Hyperosmolar State

Diabetic Ketoacidosis And Hyperglycaemic Hyperosmolar State

The hallmark of diabetes is a raised plasma glucose resulting from an absolute or relative lack of insulin action. Untreated, this can lead to two distinct yet overlapping life-threatening emergencies. Near-complete lack of insulin will result in diabetic ketoacidosis, which is therefore more characteristic of type 1 diabetes, whereas partial insulin deficiency will suppress hepatic ketogenesis but not hepatic glucose output, resulting in hyperglycaemia and dehydration, and culminating in the hyperglycaemic hyperosmolar state. Hyperglycaemia is characteristic of diabetic ketoacidosis, particularly in the previously undiagnosed, but it is the acidosis and the associated electrolyte disorders that make this a life-threatening condition. Hyperglycaemia is the dominant feature of the hyperglycaemic hyperosmolar state, causing severe polyuria and fluid loss and leading to cellular dehydration. Progression from uncontrolled diabetes to a metabolic emergency may result from unrecognised diabetes, sometimes aggravated by glucose containing drinks, or metabolic stress due to infection or intercurrent illness and associated with increased levels of counter-regulatory hormones. Since diabetic ketoacidosis and the hyperglycaemic hyperosmolar state have a similar underlying pathophysiology the principles of treatment are similar (but not identical), and the conditions may be considered two extremes of a spectrum of disease, with individual patients often showing aspects of both. Pathogenesis of DKA and HHS Insulin is a powerful anabolic hormone which helps nutrients to enter the cells, where these nutrients can be used either as fuel or as building blocks for cell growth and expansion. The complementary action of insulin is to antagonise the breakdown of fuel stores. Thus, the relea Continue reading >>

More in ketosis