diabetestalk.net

What Happens To Glucose In The Body?

Is Glucose Stored In The Human Body?

Is Glucose Stored In The Human Body?

Glucose is a sugar that serves as a primary energy source for your body. It also provides fuel for optimal brain and nervous system activity, which may help support cognitive functions such as learning and memory. The human body stores glucose in several forms to meet immediate and future energy requirements. Video of the Day Glucose is not present in food sources. Instead, your body converts carbohydrates from foods into glucose with the help of amylase, an enzyme produced by your saliva glands and pancreas. Carbohydrates are found in all plant-based foods -- grains and starchy vegetables such as corn and potatoes are particularly abundant in carbohydrates. Beans, vegetables, seeds, fruits and nuts also supply carbohydrates. Dairy products are the only animal-based foods that contain this nutrient. As you body breaks down carbohydrates into glucose, it delivers it to your bloodstream to supply your body's cells with fuel for energy. Insulin, which is produced by your pancreas, aids in the transfer of glucose through cell walls. Unused glucose is converted to glycogen by a chemical process called glycogenesis, and is stored in muscle tissues and your liver. Glycogen serves as a backup fuel source when blood glucose levels drop. Your liver and muscles can only store a limited amount of glycogen. If your bloodstream contains more glucose than your body can store as glycogen, your body stores excess glucose as fat cells. Like glycogen, fat is stored for future energy; however, glucose storage as fat can contribute to weight gain and obesity. Obesity is a risk factor for diabetes and heart disease, and can increase strain on your bones and joints. Your body must store glucose in your bloodstream before converting and storing it as glycogen or fat. Excess glucose in your blo Continue reading >>

Know What Happens To Carbohydrates Inside Body

Know What Happens To Carbohydrates Inside Body

Know What Happens to Carbohydrates Inside Body When you eat carbohydrates you may know that they can provide your body with quick energy, but do you know what happens to the sugar once it is inside your body? Sugar can be categorized as simple, complex, or as fiber and each type of carbohydrate will provide energy to your body, yet each has different effects in your overall health. Everyone enjoys eating sweets and it is strange to imagine a birthday party or any other celebration without having some type of sugar available as food or beverage. It is no surprise that each year people consume pounds of sugar, yet there are major problems with the continuous overconsumption of sugar to your health. Carbohydrates are one major source of energy for your cells and serve as an essential nutrient for you to stay alive , yet you must be a cautious eater to avoid eating excess refined sugars. Sweets are popular among all age groups and even newborns prefer the taste of sugar. You can consider carbohydrates as irresistible nutrients that your body needs, but remember to consume in moderation. Since you will continue to consume carbohydrates it is important that you know what happens to sugar inside your body. When you eat a bowl of cooked oatmeal with milk digestion of the sugars begins in your mouth. Enzymes in your mouth, like salivary amylase, begin to digest some of the sugars in your mouth. The main site for the digestion and absorption of carbohydrates is in your small intestine. An enzyme released by your pancreas (pancreatic amylase) continues with the digestion of sugars in your small intestine. Generally, large sugar molecules, like starch, need to be broken down to smaller parts in the form of glucose. Once starch is broken down it travels to your intestinal bloodstre Continue reading >>

How The Body Processes Sugar

How The Body Processes Sugar

The natural control of blood sugar is complex. It is important to understand what is supposed to happen in your body, and what is different when you have diabetes. The natural control of blood sugar is very complex and can become unbalanced when you have diabetes. It is important to understand what is supposed to happen in your body, and what is different when you have diabetes. These sections will introduce you to the different parts of your body and to hormones that are important in regulating your blood sugar. In this section, you will learn about: The liver and blood sugar: how the liver regulates blood sugar to keep the levels just right Blood sugar and other hormones: other pancreatic and gut hormones that have a role in glucose control Blood sugar and stress: the hormones that rise with stress and can affect blood sugar control Continue reading >>

Hyperglycemia: When Your Blood Glucose Level Goes Too High

Hyperglycemia: When Your Blood Glucose Level Goes Too High

Hyperglycemia means high (hyper) glucose (gly) in the blood (emia). Your body needs glucose to properly function. Your cells rely on glucose for energy. Hyperglycemia is a defining characteristic of diabetes—when the blood glucose level is too high because the body isn't properly using or doesn't make the hormone insulin. You get glucose from the foods you eat. Carbohydrates, such as fruit, milk, potatoes, bread, and rice, are the biggest source of glucose in a typical diet. Your body breaks down carbohydrates into glucose, and then transports the glucose to the cells via the bloodstream. Body Needs Insulin However, in order to use the glucose, your body needs insulin. This is a hormone produced by the pancreas. Insulin helps transport glucose into the cells, particularly the muscle cells. People with type 1 diabetes no longer make insulin to help their bodies use glucose, so they have to take insulin, which is injected under the skin. People with type 2 diabetes may have enough insulin, but their body doesn't use it well; they're insulin resistant. Some people with type 2 diabetes may not produce enough insulin. People with diabetes may become hyperglycemic if they don't keep their blood glucose level under control (by using insulin, medications, and appropriate meal planning). For example, if someone with type 1 diabetes doesn't take enough insulin before eating, the glucose their body makes from that food can build up in their blood and lead to hyperglycemia. Your endocrinologist will tell you what your target blood glucose levels are. Your levels may be different from what is usually considered as normal because of age, pregnancy, and/or other factors. Fasting hyperglycemia is defined as when you don't eat for at least eight hours. Recommended range without diabet Continue reading >>

How Is Glucose Transported In The Circulatory System?

How Is Glucose Transported In The Circulatory System?

Simple sugars and starches are both carbohydrates, and both contain the molecule glucose, which is also called blood sugar. Glucose is a very important biological molecule, as it is the brain's primary source of energy and a significant source of energy for all body cells. The circulatory system helps move glucose out of the digestive tract and into the body cells. Video of the Day The major function of the biomolecule glucose is to provide energy to cells. Body cells take up glucose from the blood and chemically burn it, yielding energy molecules that they can use to fulfill cellular functions. Some cells, such as those of the liver and muscles, store glucose and release it under fasting conditions. In their book "Biochemistry," Drs. Mary Campbell and Shawn Farrell describe glucose as the most ubiquitous of the carbohydrate molecules. Transport Problems To move glucose from the digestive tract, where it is located after a meal, into the body cells, where it's utilized, the glucose has to cross several cell membranes. Since glucose is water soluble while cell membranes are made of fatty material, glucose can't move across cell membranes on its own. Instead, explains Dr. Lauralee Sherwood in her text, "Human Physiology," transporter molecules must ferry it in and out of cells. Glucose does dissolve readily in the bloodstream, however. Glucose first moves into the bloodstream upon absorption from the intestine. Specialized cellular transporters called sodium-dependent hexose transporters shuttle glucose across the cells that line the intestinal tract, explain Drs. Campbell and Farrell. Once through the intestinal lining, glucose is free to dissolve in the blood, and travels around the body. The intestinal transporters act quickly, such that blood glucose rises rapidly aft Continue reading >>

Hypoglycemia Overview

Hypoglycemia Overview

Hypoglycemia means low (hypo) glucose (gly) in the blood (emia). Your body needs glucose to properly function. Your cells rely on glucose for energy. Glucose comes from the foods you eat. Carbohydrates (e.g., fruit, bread, potatoes, milk, and rice) are the biggest source of glucose in a typical diet, and your body breaks down carbohydrates into glucose. The glucose is then transported in your blood to cells that need it; it gives your body energy. However, in order to use the glucose, your body needs insulin. This is a hormone produced by the pancreas. Insulin helps transport glucose into the cells, particularly the muscle cells. Sometimes, your blood glucose level can drop too low—that's hypoglycemia. It usually happens quite quickly, and it can be handled quite quickly, as well. People with type 1 diabetes do not make insulin to help their bodies use glucose, so they have to take insulin, which is injected under the skin. People with type 2 diabetes fall into two categories when it comes to insulin: either their body doesn't make enough, or their body is unable to use it well (insulin resistance). Normal Blood Glucose The American Diabetes Association published the Standards of Medical Care in Diabetes that provide recommended target blood glucose ranges for people with and without diabetes. The standard for measuring blood glucose is “mg/dL,” which means milligrams per deciliter. People without Diabetes After eating (called postprandial) 70 to 140 mg/dL Goals for People with Diabetes Type 2 diabetes (also called type 2 diabetes mellitus) is more common than type 1 diabetes. Around 90 to 95 percent of people with diabetes have type 2 diabetes. According to the Centers for Disease Control and Prevention’s National 2014 Diabetes Statistics Report, 29.1 million A Continue reading >>

How Is Excess Glucose Stored?

How Is Excess Glucose Stored?

The human body has an efficient and complex system of storing and preserving energy. Glucose is a type of sugar that the body uses for energy. Glucose is the product of breaking down carbohydrates into their simplest form. Carbohydrates should make up approximately 45 to 65 percent of your daily caloric intake, according to MayoClinic.com. Video of the Day Glucose is a simple sugar found in carbohydrates. When more complex carbohydrates such as polysaccharides and disaccharides are broken down in the stomach, they break down into the monosaccharide glucose. Carbohydrates serve as the primary energy source for working muscles, help brain and nervous system functioning and help the body use fat more efficiently. Function of Glucose Once carbohydrates are absorbed from food, they are carried to the liver for processing. In the liver, fructose and galactose, the other forms of sugar, are converted into glucose. Some glucose gets sent to the bloodstream while the rest is stored for later energy use. Once glucose is inside the liver, glucose is phosphorylated into glucose-6-phosphate, or G6P. G6P is further metabolized into triglycerides, fatty acids, glycogen or energy. Glycogen is the form in which the body stores glucose. The liver can only store about 100 g of glucose in the form of glycogen. The muscles also store glycogen. Muscles can store approximately 500 g of glycogen. Because of the limited storage areas, any carbohydrates that are consumed beyond the storage capacity are converted to and stored as fat. There is practically no limit on how many calories the body can store as fat. The glucose stored in the liver serves as a buffer for blood glucose levels. Therefore, if the blood glucose levels start to get low because you have not consumed food for a period of time Continue reading >>

What Happens To Your Body An Hour After Eating Sugar?

What Happens To Your Body An Hour After Eating Sugar?

What happens to your body an hour after eating sugar? Humans are programmed to love sugar - this is what the substance does to our bodies Sugar is an important and popular part of our daily diet. Along with starch, it falls within the carbohydrate group as it consists of carbon, hydrogen and oxygen atoms and acts as fuel for the body. In fact, carbohydrates are our main source of energy, converted by the body to power our cells and keep us alive and growing. However, many of us are overindulging in the white stuff, with the average adult consuming approximately 63 grams (2.2 ounces), nearly 16 teaspoons, of sugar each day. Thats over twice the recommended daily intake. The main attraction to sugar, for both humans and animals, is its sweet taste. In nature, this is a useful indication of which foods are safe to eat, as poisonous fruits and plants tend to be sour or bitter, but in the modern world of processed foods and fizzy drinks, sweetness is mainly associated with pleasure. As a result, sugar is added to many of the foods we consume each day to artificially boost the flavour or texture, or act as a preservative by hindering the growth of bacteria. This may be good news for our taste buds, but its not so good for our health. By eating more sugar than our bodies actually need, we are storing the excess as fat, leading to an increase in obesity and many other health problems throughout the world. Keeping track of how much sugar we eat can be difficult, though, as it goes by many different names and is hidden in some unlikely foods. Plus, not all sugars are bad, but working out which ones are good can be a challenge. Find out below exactly what sugar does to your body. When we digest sugar, enzymes in the small intestine break it down into glucose. This glucose is then Continue reading >>

This Is Exactly What Happens To Your Body When You Eat A Ton Of Sugar

This Is Exactly What Happens To Your Body When You Eat A Ton Of Sugar

As mouth-watering as a sugar-laden sundae or icing-topped cupcake is, we should all know by now that sugar isn't exactly healthy. In fact, it may be one of the worst things you can eat (that is, if you're trying to live a long, healthy life). One study from UC San Francisco actually found that drinking sugary drinks like soda can age your body on a cellular level as quickly as cigarettes. The way the sweet stuff impacts your body is way more complex than just causing weight gain. In fact, when you eat a ton of sugar, almost every part of your body feels the strain—and that's bad news for your health in both the short term and especially the long term. From an initial insulin spike to upping your chances of kidney failure down the road, this is what really happens in your body when you load up on sugar. Your brain responds to sugar the same way it would to cocaine. Eating sugar creates a surge of feel-good brain chemicals dopamine and serotonin. So does using certain drugs, like cocaine. And just like a drug, your body craves more after the initial high. "You then become addicted to that feeling, so every time you eat it you want to eat more," explains Gina Sam, M.D., M.P.H., director of the Gastrointestinal Motility Center at The Mount Sinai Hospital. Your insulin spikes to regulate your blood sugar. "Once you eat glucose, your body releases insulin, a hormone from your pancreas," Dr. Sam explains. The insulin's job is to absorb the excess glucose in the blood and stabilize sugar levels. And a little while later you get that familiar sugar crash. Once the insulin does its job, your blood sugar drops again. Which means you've just experienced a sugar rush, and then a drastic drop, leaving you feeling drained. "That's the feeling you get when you've gone to the buffet a Continue reading >>

How The Body Controls Blood Sugar - Topic Overview

How The Body Controls Blood Sugar - Topic Overview

The bloodstream carries glucose-a type of sugar produced from the digestion of carbohydrates and other foods-to provide energy to cells throughout the body. Unused glucose is stored mainly in the liver as glycogen. Insulin, glucagon, and other hormone levels rise and fall to keep blood sugar in a normal range. Too little or too much of these hormones can cause blood sugar levels to fall too low (hypoglycemia) or rise too high (hyperglycemia). Normally, blood glucose levels increase after you eat a meal. When blood sugar rises, cells in the pancreas release insulin, causing the body to absorb glucose from the blood and lowering the blood sugar level to normal. When blood sugar drops too low, the level of insulin declines and other cells in the pancreas release glucagon, which causes the liver to turn stored glycogen back into glucose and release it into the blood. This brings blood sugar levels back up to normal. Continue reading >>

Blood Sugar Control

Blood Sugar Control

The concentration of glucose in our blood is important and must be carefully regulated. This is done by the pancreas, which releases hormones that regulate the usage and storage of glucose by cells. Type 1 diabetics are unable to make sufficient quantities of one of these hormones – insulin - and must therefore control their blood sugar levels by injecting insulin, as well as by carefully controlling their diet and exercise levels. Controlling rising blood sugar It is important that blood glucose level is kept within a narrow range due to its importance as an energy source for respiration - but also because of the effects it could have in causing the movement of water into and out of cells by osmosis Having eaten a meal containing sugars or starch (eg sweets, potatoes, bread, rice or pasta), the starch and large sugars are digested down into glucose and absorbed across the small intestine wall into the bloodstream. This triggers a rise in blood glucose concentration. The pancreas monitors and controls the concentration of glucose in the blood. In response to an increase in blood glucose level above the normal level, the pancreas produces a hormone called insulin which is released into the bloodstream. Insulin causes glucose to move from the blood into cells, where it is either used for respiration or stored in liver and muscle cells as glycogen. The effect of this is to lower the blood glucose concentration back to normal. The animation below shows how this works. You have an old or no version of Flash - you need to upgrade to view this content! Go to the WebWise Flash install guide Diabetes There are two main types of diabetes: Type 1 which usually develops during childhood Type 2 which is usually develops in later life This syllabus focuses on Type 1 diabetes - whic Continue reading >>

What Happens To Sugar In Your Body?

What Happens To Sugar In Your Body?

Look on virtually any store shelf at your local grocery store, and you’ll see our love affair with sugar. Products you never thought would contain sugar are chock-full of the stuff. You might not even see “sugar” in the ingredient list, but it’s there! Agave nectar, barley malt, blackstrap molasses, brown rice syrup, cane juice, and the list goes on and on… all sugar and much of it high on the glycemic index, which is a measure of a food’s effect on your blood sugar. We crave sugar because it’s a carbohydrate that gives our body energy. Unfortunately, most Americans don’t exercise enough to put those carbohydrates to work fueling our bodies. Almost all scientific data recommends that we lower our average daily intake of sugar, but most of us fail to do so. Perhaps a look into your body and what happens to it when you eat sugar will help you understand why nutritionists recommend you put down that chocolate chip muffin. Dopamine. And It Feels So Good Whenever you eat something sweet, your brain releases a neurotransmitter called dopamine, which makes you feel happy. Eaten too frequently, sugar can desensitize this brain chemical and make it more difficult to feel satisfied after eating a sugary treat. Eventually, you need more and more sugar just to get the same effect. In the last few years, the scientific community has jumped on the idea that sugar is just as addictive as drugs like heroin and cocaine. Although those claims probably feature some hyperbole, those sentiments don’t seem so incredible once you learn what happens to sugar in your body. When You Eat Sugar Your body is designed to process sugar and turn it into energy by breaking it down into glucose or fructose. When you eat sugar in small doses, your pancreas releases insulin that grabs th Continue reading >>

Everything You Need To Know About Glucose

Everything You Need To Know About Glucose

You may know glucose by another name: blood sugar. Glucose is key to keeping the mechanisms of the body in top working order. When our glucose levels are optimal, it often goes unnoticed. But when they stray from recommended boundaries, you’ll notice the unhealthy effect it has on normal functioning. So what is glucose, exactly? It’s the simplest of the carbohydrates, making it a monosaccharide. This means it has one sugar. It’s not alone. Other monosaccharides include fructose, galactose, and ribose. Along with fat, glucose is one of the body’s preferred sources of fuel in the form of carbohydrates. People get glucose from bread, fruits, vegetables, and dairy products. You need food to create the energy that helps keep you alive. While glucose is important, like with so many things, it’s best in moderation. Glucose levels that are unhealthy or out of control can have permanent and serious effects. Our body processes glucose multiple times a day, ideally. When we eat, our body immediately starts working to process glucose. Enzymes start the breakdown process with help from the pancreas. The pancreas, which produces hormones including insulin, is an integral part of how our body deals with glucose. When we eat, our body tips the pancreas off that it needs to release insulin to deal with the rising blood sugar level. Some people, however, can’t rely on their pancreas to jump in and do the work it’s supposed to do. One way diabetes occurs is when the pancreas doesn’t produce insulin in the way it should. In this case, people need outside help (insulin injections) to process and regulate glucose in the body. Another cause of diabetes is insulin resistance, where the liver doesn’t recognize insulin that’s in the body and continues to make inappropriate am Continue reading >>

How Our Bodies Turn Food Into Energy

How Our Bodies Turn Food Into Energy

All parts of the body (muscles, brain, heart, and liver) need energy to work. This energy comes from the food we eat. Our bodies digest the food we eat by mixing it with fluids (acids and enzymes) in the stomach. When the stomach digests food, the carbohydrate (sugars and starches) in the food breaks down into another type of sugar, called glucose. The stomach and small intestines absorb the glucose and then release it into the bloodstream. Once in the bloodstream, glucose can be used immediately for energy or stored in our bodies, to be used later. However, our bodies need insulin in order to use or store glucose for energy. Without insulin, glucose stays in the bloodstream, keeping blood sugar levels high. Insulin is a hormone made by beta cells in the pancreas. Beta cells are very sensitive to the amount of glucose in the bloodstream. Normally beta cells check the blood's glucose level every few seconds and sense when they need to speed up or slow down the amount of insulin they're making and releasing. When someone eats something high in carbohydrates, like a piece of bread, the glucose level in the blood rises and the beta cells trigger the pancreas to release more insulin into the bloodstream. When insulin is released from the pancreas, it travels through the bloodstream to the body's cells and tells the cell doors to open up to let the glucose in. Once inside, the cells convert glucose into energy to use right then or store it to use later. As glucose moves from the bloodstream into the cells, blood sugar levels start to drop. The beta cells in the pancreas can tell this is happening, so they slow down the amount of insulin they're making. At the same time, the pancreas slows down the amount of insulin that it's releasing into the bloodstream. When this happens, Continue reading >>

Blood Glucose Regulation

Blood Glucose Regulation

Glucose is needed by cells for respiration. It is important that the concentration of glucose in the blood is maintained at a constant level. Insulin is a hormone produced by the pancreas that regulates glucose levels in the blood. How glucose is regulated Glucose level Effect on pancreas Effect on liver Effect on glucose level too high insulin secreted into the blood liver converts glucose into glycogen goes down too low insulin not secreted into the blood liver does not convert glucose into glycogen goes up Use the animation to make sure you understand how this works. You have an old or no version of flash - you need to upgrade to view this funky content! Go to the WebWise Flash install guide Glucagon – Higher tier The pancreas releases another hormone, glucagon, when the blood sugar levels fall. This causes the cells in the liver to turn glycogen back into glucose which can then be released into the blood. The blood sugar levels will then rise. Now try a Test Bite- Higher tier. Diabetes is a disorder in which the blood glucose levels remain too high. It can be treated by injecting insulin. The extra insulin allows the glucose to be taken up by the liver and other tissues, so cells get the glucose they need and blood-sugar levels stay normal. There are two types of diabetes. Type 1 diabetes Type 1 diabetes is caused by a lack of insulin. It can be controlled by: monitoring the diet injecting insulin People with type 1 diabetes have to monitor their blood sugar levels throughout the day as the level of physical activity and diet affect the amount of insulin required. Type 2 diabetes Type 2 diabetes is caused by a person becoming resistant to insulin. It can be controlled by diet and exercise. There is a link between rising levels of obesity (chronic overweight) and i Continue reading >>

More in ketosis