diabetestalk.net

What Does Ketones Do To Blood Ph

Ketone Bodies (urine)

Ketone Bodies (urine)

Does this test have other names? Ketone test, urine ketones What is this test? This test is used to check the level of ketones in your urine. Normally, your body burns sugar for energy. But if you have diabetes, you may not have enough insulin for the sugar in your bloodstream to be used for fuel. When this happens, your body burns fat instead and produces substances called ketones. The ketones end up in your blood and urine. It's normal to have a small amount of ketones in your body. But high ketone levels could result in serious illness or death. Checking for ketones keeps this from happening. Why do I need this test? You may need this test if you have a high level of blood sugar. People with high levels of blood sugar often have high ketone levels. If you have high blood sugar levels and type 1 or type 2 diabetes, it's important to check your ketone levels. People without diabetes can also have ketones in the urine if their body is using fat for fuel instead of glucose. This can happen with chronic vomiting, extreme exercise, low-carbohydrate diets, or eating disorders. Checking your ketones is especially important if you have diabetes and: Your blood sugar goes above 300 mg/dL You abuse alcohol You have diarrhea You stop eating carbohydrates like rice and bread You're pregnant You've been fasting You've been vomiting You have an infection Your healthcare provider may order this test, or have you test yourself, if you: Urinate frequently Are often quite thirsty or tired Have muscle aches Have shortness of breath or trouble breathing Have nausea or vomiting Are confused Have a fruity smell to your breath What other tests might I have along with this test? Your healthcare provider may also check for ketones in your blood if you have high levels of ketones in your urine Continue reading >>

The Ketogenic Diet: Does It Live Up To The Hype? The Pros, The Cons, And The Facts About This Not-so-new Diet Craze.

The Ketogenic Diet: Does It Live Up To The Hype? The Pros, The Cons, And The Facts About This Not-so-new Diet Craze.

If you believe the buzz, ketosis — whether via the almost-zero-carb ketogenic diet or via ketone supplements— can curb appetite, enhance performance, and cure nearly any health problem that ails you. Sound too good to be true? It probably is. Want to listen instead of read? Download the audio recording here… ++++ Wouldn’t it be awesome if butter and bacon were “health foods”? Maybe with a side of guacamole and some shredded cheese on top? “I’m doing this for my health,” you could purr virtuously, as you topped your delectably marbled, medium-rare steak with a fried egg. Well, many advocates of the ketogenic diet argue exactly that: By eating a lot of fat and close to zero carbohydrates you too can enjoy enhanced health, quality of life, performance, brain function, and abs you can grate that cheese on. So, in this article, we’ll explore: What are ketones, and what is ketosis? What, exactly, is a ketogenic diet? What evidence and scientific research supports the ketogenic diet? Do ketone supplements work? Is the ketogenic diet or ketone supplementation right for me? How to read this article If you’re just curious about ketogenic diets: Feel free to skim and learn whatever you like. If you want to change your body and/or health: You don’t need to know every detail. Just get the general idea. Check out our advice at the end. If you’re an athlete interested in performance: Pay special attention to the section on athletic performance. Check out our advice for athletes at the end. If you’re a fitness pro, or interested in geeking out with nutritional science: We’ve given you some “extra credit” material in sidebars throughout. Check out our advice for fitness pros at the end. It all started with the brain. If you’ve called Client Care at Pr Continue reading >>

Ketosis

Ketosis

There is a lot of confusion about the term ketosis among medical professionals as well as laypeople. It is important to understand when and why nutritional ketosis occurs, and why it should not be confused with the metabolic disorder we call ketoacidosis. Ketosis is a metabolic state where the liver produces small organic molecules called ketone bodies. Most cells in the body can use ketone bodies as a source of energy. When there is a limited supply of external energy sources, such as during prolonged fasting or carbohydrate restriction, ketone bodies can provide energy for most organs. In this situation, ketosis can be regarded as a reasonable, adaptive physiologic response that is essential for life, enabling us to survive periods of famine. Nutritional ketosis should not be confused with ketoacidosis, a metabolic condition where the blood becomes acidic as a result of the accumulation of ketone bodies. Ketoacidosis can have serious consequences and may need urgent medical treatment. The most common forms are diabetic ketoacidosis and alcoholic ketoacidosis. What Is Ketosis? The human body can be regarded as a biologic machine. Machines need energy to operate. Some use gasoline, others use electricity, and some use other power resources. Glucose is the primary fuel for most cells and organs in the body. To obtain energy, cells must take up glucose from the blood. Once glucose enters the cells, a series of metabolic reactions break it down into carbon dioxide and water, releasing energy in the process. The body has an ability to store excess glucose in the form of glycogen. In this way, energy can be stored for later use. Glycogen consists of long chains of glucose molecules and is primarily found in the liver and skeletal muscle. Liver glycogen stores are used to mai Continue reading >>

Can A Type 1 Or Type 2 Diabetic Take Keto//os?

Can A Type 1 Or Type 2 Diabetic Take Keto//os?

Diabetic patients should only use this product under the care of a physician. In both T1 and T2 diabetes, patients have abnormal insulin signaling. In T1, the pancreas doesn’t make enough insulin, and in T2, the body’s tissues are resistant to insulin. Insulin helps transport glucose from the blood into the cells where it can be used for energy. In severely uncontrolled diabetes (typically someone not being treated for their condition), insulin signaling is wildly impaired, and an acute and life-threatening condition called ketoacidosis can occur. If a person is eating a standard diet wherein carbohydrate is a major portion of their macronutrient intake, their tissues are mostly burning glucose for fuel. Therefore, if insulin signaling is incredibly impaired, this will cause glucose to build up in the blood because it can’t get into the cells. Thus, the cells are basically starving even though there’s plenty of glucose in the blood. (This is sometimes referred to as “starvation in the land of plenty.”) This causes the liver to begin making ketones from stored fats, just as it would if you were starving from not eating anything. Insulin also plays a role in regulating ketone production, and normally it inhibits ketone production if it’s too high to keep ketones at a proper level in the blood. So, if the patient’s diabetes is too severely uncontrolled, it is possible that a situation called “runaway ketogenesis” occurs. The liver makes lots and lots of ketones in a short amount of time. Ketones are acids, and when at extremely high levels (typically >20mM), they can cause blood pH to drop, which can be very dangerous and/or fatal. This is diabetic ketoacidosis. Is being in therapeutic ketosis itself dangerous for a diabetic? No. There is substantial sc Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Patient professional reference Professional Reference articles are written by UK doctors and are based on research evidence, UK and European Guidelines. They are designed for health professionals to use. You may find the Pre-diabetes (Impaired Glucose Tolerance) article more useful, or one of our other health articles. See also the separate Childhood Ketoacidosis article. Diabetic ketoacidosis (DKA) is a medical emergency with a significant morbidity and mortality. It should be diagnosed promptly and managed intensively. DKA is characterised by hyperglycaemia, acidosis and ketonaemia:[1] Ketonaemia (3 mmol/L and over), or significant ketonuria (more than 2+ on standard urine sticks). Blood glucose over 11 mmol/L or known diabetes mellitus (the degree of hyperglycaemia is not a reliable indicator of DKA and the blood glucose may rarely be normal or only slightly elevated in DKA). Bicarbonate below 15 mmol/L and/or venous pH less than 7.3. However, hyperglycaemia may not always be present and low blood ketone levels (<3 mmol/L) do not always exclude DKA.[2] Epidemiology DKA is normally seen in people with type 1 diabetes. Data from the UK National Diabetes Audit show a crude one-year incidence of 3.6% among people with type 1 diabetes. In the UK nearly 4% of people with type 1 diabetes experience DKA each year. About 6% of cases of DKA occur in adults newly presenting with type 1 diabetes. About 8% of episodes occur in hospital patients who did not primarily present with DKA.[2] However, DKA may also occur in people with type 2 diabetes, although people with type 2 diabetes are much more likely to have a hyperosmolar hyperglycaemic state. Ketosis-prone type 2 diabetes tends to be more common in older, overweight, non-white people with type 2 diabetes, and DKA may be their Continue reading >>

Ketosis Vs. Ketoacidosis: Understanding The Differences

Ketosis Vs. Ketoacidosis: Understanding The Differences

Introduction to Ketosis vs Ketoacidosis Historically, ketosis has been one of the most vaguely defined and poorly understood concepts of the last century. There are different scenarios in which are body can be in a state of ketosis (including ketoacidosis). The most basic definition of ketosis is a general increase in blood levels of ketone bodies to 0.5 mmol or above. However, the reasons for the development of ketosis, the resultant levels of blood ketones, and the associated outcomes (health versus possible death) differ drastically between different situations of ketosis. Failure to understand the differences between various incidents of ketosis has led to the common misconceptions we have today that ultimately has made educating the masses on the ketogenic diet difficult. The single most important take home from this article should be that diabetic ketoacidosis is not the same as the ketosis experienced from a ketogenic diet. Diabetic Ketoacidosis Whenever I speak about ketogenic dieting, almost inevitably I am asked the question: “But shouldn’t you be worried about going into a state of ketoacidosis?” Ketoacidosis occurs when the formation ketone bodies are uncontrolled (15-25 mmol) and acidity in the blood increases (1). It is important to understand that our body regulates blood acid concentrations tightly. We typically measure blood acidity vs. alkalinity using the pH scale. If your blood’s pH is less than 7 it is acidic, and if greater it is basic, or alkaline. Our blood is usually slightly alkaline with a pH ranging from 7.35 to 7.45. Any deviation up or down from the norm by even the smallest amount can prove fatal! The most common form of ketoacidosis to occur is known as diabetic ketoacidosis. This usually occurs in type I diabetics but can also oc Continue reading >>

Ketones

Ketones

Excess ketones are dangerous for someone with diabetes... Low insulin, combined with relatively normal glucagon and epinephrine levels, causes fat to be released from fat cells, which then turns into ketones. Excess formation of ketones is dangerous and is a medical emergency In a person without diabetes, ketone production is the body’s normal adaptation to starvation. Blood sugar levels never get too high, because the production is regulated by just the right balance of insulin, glucagon and other hormones. However, in an individual with diabetes, dangerous and life-threatening levels of ketones can develop. What are ketones and why do I need to know about them? Ketones and ketoacids are alternative fuels for the body that are made when glucose is in short supply. They are made in the liver from the breakdown of fats. Ketones are formed when there is not enough sugar or glucose to supply the body’s fuel needs. This occurs overnight, and during dieting or fasting. During these periods, insulin levels are low, but glucagon and epinephrine levels are relatively normal. This combination of low insulin, and relatively normal glucagon and epinephrine levels causes fat to be released from the fat cells. The fats travel through the blood circulation to reach the liver where they are processed into ketone units. The ketone units then circulate back into the blood stream and are picked up by the muscle and other tissues to fuel your body’s metabolism. In a person without diabetes, ketone production is the body’s normal adaptation to starvation. Blood sugar levels never get too high, because the production is regulated by just the right balance of insulin, glucagon and other hormones. However, in an individual with diabetes, dangerous and life-threatening levels of ketone Continue reading >>

Emedicinehealth Medical Reference From Healthwise

Emedicinehealth Medical Reference From Healthwise

A A A Urine Test Test Overview A urine test checks different components of urine, a waste product made by the kidneys. A regular urine test may be done to help find the cause of symptoms. The test can give information about your health and problems you may have. The kidneys take out waste material, minerals, fluids, and other substances from the blood to be passed in the urine. Urine has hundreds of different body wastes. What you eat and drink, how much you exercise, and how well your kidneys work can affect what is in your urine. More than 100 different tests can be done on urine. A regular urinalysis often includes the following tests: Color. Many things affect urine color, including fluid balance, diet, medicines, and diseases. How dark or light the color is tells you how much water is in it. Vitamin B supplements can turn urine bright yellow. Some medicines, blackberries, beets, rhubarb, or blood in the urine can turn urine red-brown. Clarity. Urine is normally clear. Bacteria, blood, sperm, crystals, or mucus can make urine look cloudy. Odor. Urine does not smell very strong, but it has a slightly "nutty" odor. Some diseases cause a change in the odor of urine. For example, an infection with E. coli bacteria can cause a bad odor, while diabetes or starvation can cause a sweet, fruity odor. Specific gravity. This checks the amount of substances in the urine. It also shows how well the kidneys balance the amount of water in urine. The higher the specific gravity, the more solid material is in the urine. When you drink a lot of fluid, your kidneys make urine with a high amount of water in it, which has a low specific gravity. When you do not drink fluids, your kidneys make urine with a small amount of water in it, which has a high specific gravity. pH. The pH is Continue reading >>

Ketone Bodies

Ketone Bodies

Ketone bodies Acetone Acetoacetic acid (R)-beta-Hydroxybutyric acid Ketone bodies are three water-soluble molecules (acetoacetate, beta-hydroxybutyrate, and their spontaneous breakdown product, acetone) that are produced by the liver from fatty acids[1] during periods of low food intake (fasting), carbohydrate restrictive diets, starvation, prolonged intense exercise,[2], alcoholism or in untreated (or inadequately treated) type 1 diabetes mellitus. These ketone bodies are readily picked up by the extra-hepatic tissues, and converted into acetyl-CoA which then enters the citric acid cycle and is oxidized in the mitochondria for energy.[3] In the brain, ketone bodies are also used to make acetyl-CoA into long-chain fatty acids. Ketone bodies are produced by the liver under the circumstances listed above (i.e. fasting, starving, low carbohydrate diets, prolonged exercise and untreated type 1 diabetes mellitus) as a result of intense gluconeogenesis, which is the production of glucose from non-carbohydrate sources (not including fatty acids).[1] They are therefore always released into the blood by the liver together with newly produced glucose, after the liver glycogen stores have been depleted (these glycogen stores are depleted after only 24 hours of fasting)[1]. When two acetyl-CoA molecules lose their -CoAs, (or Co-enzyme A groups) they can form a (covalent) dimer called acetoacetate. Beta-hydroxybutyrate is a reduced form of acetoacetate, in which the ketone group is converted into an alcohol (or hydroxyl) group (see illustration on the right). Both are 4-carbon molecules, that can readily be converted back into acetyl-CoA by most tissues of the body, with the notable exception of the liver. Acetone is the decarboxylated form of acetoacetate which cannot be converted Continue reading >>

5 Ways To Measure Your Ketones

5 Ways To Measure Your Ketones

5 Ways to Measure Your Ketones A ketogenic diet is a very low carbohydrate, moderate protein and high fat based nutrition plan. A ketogenic diet trains the individual’s metabolism to run off of fatty acids or ketone bodies. This is called fat adapted, when the body has adapted to run off of fatty acids/ketones at rest. Research has demonstrated that this nutrition plan improves insulin sensitivity and reduces inflammation throughout the body. This leads to greater fat metabolism and muscle development as well as a reduced risk of chronic disease. (1, 2). I get asked all the time how to measure the state of ketosis. There are several major ways and we will discuss those in this article. Measuring Your Ketones There are three types of ketone bodies: Acetone, Acetoacetate and Beta-Hydroxybutryate (BHB). Each of these three can be tested as acetone is a ketone released through the breath, acetoacetate is a ketone released through urine and BHB is (although not technically a ketone it acts like a ketone) in the blood stream and used by the cells for energy. 1. Blood Ketone Meter This measures BHB and is considered to be the most accurate way to measure ketone bodies. These have the ability to determine the ketone level in your blood precisely but they are also pricey and invasive. Personally, I freak out every time I have to prick my finger!! The Precision Xtra blood glucose and ketone meter is a good buy at $28-$30. The expensive part is the ketone test strips here which can cost $4 each. If you are looking at testing yourself every day it is going to cost you $120 a month and the $30 meter. Here is a starter kit you can get on Amazon Most people will enter into a light nutritional ketosis (between 0.5-1.0 mmol/L on the meter) within two or three days. It typically takes Continue reading >>

How Dka Happens And What To Do About It

How Dka Happens And What To Do About It

Certified Diabetes Educator Gary Scheiner offers an overview of diabetic ketoacidosis. (excerpted from Think Like A Pancreas: A Practical Guide to Managing Diabetes With Insulin by Gary Scheiner MS, CDE, DaCapo Press, 2011) Diabetic Ketoacidosis (DKA) is a condition in which the blood becomes highly acidic as a result of dehydration and excessive ketone (acid) production. When bodily fluids become acidic, some of the body’s systems stop functioning properly. It is a serious condition that will make you violently ill and it can kill you. The primary cause of DKA is a lack of working insulin in the body. Most of the body’s cells burn primarily sugar (glucose) for energy. Many cells also burn fat, but in much smaller amounts. Glucose happens to be a very “clean” form of energy—there are virtually no waste products left over when you burn it up. Fat, on the other hand, is a “dirty” source of energy. When fat is burned, there are waste products produced. These waste products are called “ketones.” Ketones are acid molecules that can pollute the bloodstream and affect the body’s delicate pH balance if produced in large quantities. Luckily, we don’t tend to burn huge amounts of fat at one time, and the ketones that are produced can be broken down during the process of glucose metabolism. Glucose and ketones can “jump into the fire” together. It is important to have an ample supply of glucose in the body’s cells. That requires two things: sugar (glucose) in the bloodstream, and insulin to shuttle the sugar into the cells. A number of things would start to go wrong if you have no insulin in the bloodstream: Without insulin, glucose cannot get into the body’s cells. As a result, the cells begin burning large amounts of fat for energy. This, of course, Continue reading >>

Metabolic Effects Of The Very-low-carbohydrate Diets: Misunderstood

Metabolic Effects Of The Very-low-carbohydrate Diets: Misunderstood "villains" Of Human Metabolism

Go to: The Ketone Bodies are an Important Fuel The hormonal changes associated with a low carbohydrate diet include a reduction in the circulating levels of insulin along with increased levels of glucagon. This activates phosphoenolpyruvate carboxykinase, fructose 1,6-biphosphatase, and glucose 6-phosphatase and also inhibits pyruvate kinase, 6-phosphofructo-1-kinase, and glucokinase. These changes indeed favor gluconeogenesis. However, the body limits glucose utilization to reduce the need for gluconeogenesis. In the liver in the well-fed state, acetyl CoA formed during the β-oxidation of fatty acids is oxidized to CO2 and H2O in the citric acid cycle. However, when the rate of mobilization of fatty acids from adipose tissue is accelerated, as, for example, during very low carbohydrate intake, the liver converts acetyl CoA into ketone bodies: Acetoacetate and 3-hydroxybutyrate. The liver cannot utilize ketone bodies because it lacks the mitochondrial enzyme succinyl CoA:3-ketoacid CoA transferase required for activation of acetoacetate to acetoacetyl CoA [3]. Therefore, ketone bodies flow from the liver to extra-hepatic tissues (e.g., brain) for use as a fuel; this spares glucose metabolism via a mechanism similar to the sparing of glucose by oxidation of fatty acids as an alternative fuel. Indeed, the use of ketone bodies replaces most of the glucose required by the brain. Not all amino acid carbon will yield glucose; on average, 1.6 g of amino acids is required to synthesize 1 g of glucose [4]. Thus, to keep the brain supplied with glucose at rate of 110 to 120 g/day, the breakdown of 160 to 200 g of protein (close to 1 kg of muscle tissue) would be required. This is clearly undesirable, and the body limits glucose utilization to reduce the need for gluconeogenesis Continue reading >>

The Alkaline Diet Vs Acidic Ketones

The Alkaline Diet Vs Acidic Ketones

Whether you think eating alkaline foods is useful or woo woo junk it appears that metabolic acidosis is a thing. Metabolic acidosis seems to be interrelated with insulin resistance, Type 2 Diabetes, and retention of muscle mass. To prevent metabolic acidosis, it appears prudent to ensure that your body has adequate minerals to enable your kidneys to balance pH over the long term. This can be achieved by eating plenty of veggies and/or supplementing with alkaline minerals (e.g. magnesium, sodium, potassium, zinc etc). If you eat plenty of veggies you’re probably getting enough alkalising minerals, however, you can easily test your urine to see if your dietary acid load is high. If you are targeting a high fat therapeutic ketogenic diet, following a zero-carb dietary approach and/or taking exogenous ketones it seems then it may be even more important to be mindful of your acid load and consider mineral supplementation. Recently I had a fascinating, surprising and exciting experience during a fast. The chart below shows my ketones, glucose and ‘total energy’ (i.e. glucose plus ketones) over the seven days. My ketones increased to above 8.0 mmol/L. They even couldn’t be read on my ketone metre! It was the full keto brochure experience. It was like my body fat was effortlessly feeding my brain with delicious, succulent ketones! I felt great. This chart shows my glucose : ketone index (GKI) dropping to below 0.5 after a few days. The orange dots in this chart shows the relationship between glucose and ketones about 18 months ago when I first started trying this keto thing (after I read ‘Jimmy’s Moore’s Keto Clarity’). The blue dots show the relationship between my glucose and ketones during the recent fast. As you can see from the much flatter line, my blood g Continue reading >>

Ketones

Ketones

Ketones are a beneficial product of fat metabolism in the body. When carbohydrate intake is restricted, it lowers blood sugar and insulin levels. As insulin levels fall and energy is needed, fatty acids flow from the fat cells into the bloodstream and are taken up by various cells and metabolized in a process called beta-oxidation. The end result of beta-oxidation is a molecule called acetyl-coA, and as more fatty acids are released and metabolized, acetyl-coA levels in the cells rise. This causes a sort of metabolic “feedback loop” which triggers liver cells to shunt excess acetyl-Coa into ketogenesis, or the making of ketone bodies. Once created, the liver dumps the ketone bodies into the blood stream and they are taken up by skeletal and heart muscle cells at rates of availability. In addition, the brain begins to use ketones as an alternate fuel when blood levels are high enough to cross the blood brain barrier. Testing Laboratory Microbiology - Air Quality - Mold Asbestos - Environmental - Lead emsl.com There are three major types of ketone bodies present in the human blood stream when the metabolic process of ketosis is dominant: Acetoacetate (AcAc) is created first β-hydroxybutyrate (BHB) is created from acetoacetate Acetone is a spontaneously created side product of acetoacetate In times of starvation, or a low carbohydrate intake resulting in low insulin levels, ketone bodies supply up to 50% of the energy requirements for most body tissues, and up to 70% of the energy required by the brain. Glucose is the main source of fuel for neurons when the diet is high in carbohydrates. But when carbs are restricted, ketogenesis becomes the primary fuel process for most cells. During fasting or low carbohydrate intake, levels of ketone bodies in the blood stream can Continue reading >>

Ketosis & Measuring Ketones

Ketosis & Measuring Ketones

Generally, ketone concentrations are lower in the morning and higher in the evening. Whatever time you pick to measure ketone levels, make sure to keep it consistent. Also, do not measure your ketone levels right after exercise. Ketone levels tend to be lower while your glucose levels higher so you won't get representative numbers. Keep in mind there are daily fluctuations caused by changes in hormone levels. Don't get discouraged! Another aspect that affects the level of ketones is the amount of fat in your diet. Some of you may show higher concentration of ketones after a high-fat meal. Coconut oil contains MCTs that will help you boost ketones. To easily increase your fat intake on a ketogenic diet, try fat bombs - snacks with at least 80% fat content. Ketone levels tend to be higher after extensive aerobic exercise as your body depletes glycogen stores. Exercise may help you get into ketosis faster. ketogenic "fruity" breath is not pleasant for most people. To avoid this, drink a lot of water, mint tea and make sure you eat foods rich in electrolytes. Avoid too many chewing gums and mints, as it may put you out of ketosis; there may be hidden carbs affecting your blood sugar. Increase your electrolyte intake, especially potassium. You are likely going to lose some sodium and potassium when switching to the keto diet. Finally, if you find it hard to lose weight on a ketogenic diet, there may be plenty other reasons than the level of ketone bodies: Not Losing Weight on Low-Carb Ketogenic Diet? Don’t Give Up and Read Further. Continue reading >>

More in ketosis