diabetestalk.net

What Are The Two Main Areas In The Human Body Where Excess Glucose Is Stored As Glycogen?

How Insulin And Glucagon Work

How Insulin And Glucagon Work

Insulin and glucagon are hormones that help regulate the levels of blood glucose, or sugar, in your body. Glucose, which comes from the food you eat, moves through your bloodstream to help fuel your body. Insulin and glucagon work together to balance your blood sugar levels, keeping them in the narrow range that your body requires. These hormones are like the yin and yang of blood glucose maintenance. Read on to learn more about how they function and what can happen when they don’t work well. Insulin and glucagon work in what’s called a negative feedback loop. During this process, one event triggers another, which triggers another, and so on, to keep your blood sugar levels balanced. How insulin works During digestion, foods that contain carbohydrates are converted into glucose. Most of this glucose is sent into your bloodstream, causing a rise in blood glucose levels. This increase in blood glucose signals your pancreas to produce insulin. The insulin tells cells throughout your body to take in glucose from your bloodstream. As the glucose moves into your cells, your blood glucose levels go down. Some cells use the glucose as energy. Other cells, such as in your liver and muscles, store any excess glucose as a substance called glycogen. Your body uses glycogen for fuel between meals. Read more: Simple vs. complex carbs » How glucagon works Glucagon works to counterbalance the actions of insulin. About four to six hours after you eat, the glucose levels in your blood decrease, triggering your pancreas to produce glucagon. This hormone signals your liver and muscle cells to change the stored glycogen back into glucose. These cells then release the glucose into your bloodstream so your other cells can use it for energy. This whole feedback loop with insulin and gluca Continue reading >>

Fasting Physiology – Part Ii

Fasting Physiology – Part Ii

There are many misconceptions about fasting. It is useful to review the physiology of what happens to our body when we eat nothing. Physiology Glucose and fat are the body’s main sources of energy. If glucose is not available, then the body will adjust by using fat, without any detrimental health effects. This is simply a natural part of life. Periods of low food availability have always been a part of human history. Mechanisms have evolved to adapt to this fact of Paleolithic life. The transition from the fed state to the fasted state occurs in several stages. Feeding – During meals, insulin levels are raised. This allows uptake of glucose into tissues such as the muscle or brain to be used directly for energy. Excess glucose is stored as glycogen in the liver. The post-absorptive phase – 6-24 hours after beginning fasting. Insulin levels start to fall. Breakdown of glycogen releases glucose for energy. Glycogen stores last for roughly 24 hours. Gluconeogenesis – 24 hours to 2 days – The liver manufactures new glucose from amino acids in a process called “gluconeogenesis”. Literally, this is translated as “making new glucose”. In non-diabetic persons, glucose levels fall but stay within the normal range. Ketosis – 2-3 days after beginning fasting – The low levels of insulin reached during fasting stimulate lipolysis, the breakdown of fat for energy. The storage form of fat, known as triglycerides, is broken into the glycerol backbone and three fatty acid chains. Glycerol is used for gluconeogenesis. Fatty acids may be used for directly for energy by many tissues in the body, but not the brain. Ketone bodies, capable of crossing the blood-brain barrier, are produced from fatty acids for use by the brain. After four days of fasting, approximately 75 Continue reading >>

Fundamentals Of Human Nutrition/storage

Fundamentals Of Human Nutrition/storage

Pre-Storage Background: Once dietary carbohydrates are broken down into monosaccharides, they are absorbed by the cells of the small intestine. Glucose and galactose are absorbed via active transport, while fructose is absorbed via facilitated diffusion. These monosaccharides then enter the capillaries and travel to the liver via the hepatic portal vein where hepatocytes metabolize fructose and galactose. Glucose molecules continue on through the liver and re-enter vascular circulation via the hepatic vein, contributing to blood sugar levels and nourish the body’s cells. Carbohydrates are the body’s preferred source of energy since they get digested quickly compared to proteins and fats. Important dietary carbohydrates consist of monosaccharides, disaccharides, and polysaccharides. Some polysaccharides, such as cellulose, are resistant to chemical breakdown so they pass through the intestinal tract undigested. On the other hand, when other carbohydrates are consumed they get broken down into their most elementary form called monosaccharides, which are smaller units of sugar like glucose, fructose, and galactose. About five percent of this process occurs in the mouth and stomach with the help of mastication and salivary α-amylase. The rest of the process takes place in the upper part of the small intestine where pancreatic juice that contains the enzyme pancreatic-amylase can further assist in breaking down dextrins into shorter carbohydrate chains (“Introduction to Nutrition”, 2012). As soon as the carbohydrates are chemically broken down into single sugar units, they are quickly absorbed by the small intestine where they then enter the bloodstream and eventually ends up in the liver. The liver converts fructose and galactose to glucose. Glucose gets transferre Continue reading >>

Nutrition: Ch 4

Nutrition: Ch 4

Sort - Enhances flavor - Supplies texture and color to baked goods - Provides fuel for fermentation, causing break to rise of producing alcohol - Acts as a bulking agent in ice cream and baked goods - Balances the acidity of tomato- and vinegar- based products As an additive, sugar: Table sugar = 2 monosaccharides bonded together as a disaccharide, sucrose whereas in honey some of them are free Both contain glucose and fructose and both end up as glucose and fructose in the body Similarities / differences honey vs table sugar - Limit between-meal juices and snacks containing sugars and starches - Brush with fluoride - Floss - Rinse with water if brushing and flossing are not possible - Routine dental checkups To prevent dental caries: Continue reading >>

How Is Excess Glucose Stored?

How Is Excess Glucose Stored?

The human body has an efficient and complex system of storing and preserving energy. Glucose is a type of sugar that the body uses for energy. Glucose is the product of breaking down carbohydrates into their simplest form. Carbohydrates should make up approximately 45 to 65 percent of your daily caloric intake, according to MayoClinic.com. Video of the Day Glucose is a simple sugar found in carbohydrates. When more complex carbohydrates such as polysaccharides and disaccharides are broken down in the stomach, they break down into the monosaccharide glucose. Carbohydrates serve as the primary energy source for working muscles, help brain and nervous system functioning and help the body use fat more efficiently. Function of Glucose Once carbohydrates are absorbed from food, they are carried to the liver for processing. In the liver, fructose and galactose, the other forms of sugar, are converted into glucose. Some glucose gets sent to the bloodstream while the rest is stored for later energy use. Once glucose is inside the liver, glucose is phosphorylated into glucose-6-phosphate, or G6P. G6P is further metabolized into triglycerides, fatty acids, glycogen or energy. Glycogen is the form in which the body stores glucose. The liver can only store about 100 g of glucose in the form of glycogen. The muscles also store glycogen. Muscles can store approximately 500 g of glycogen. Because of the limited storage areas, any carbohydrates that are consumed beyond the storage capacity are converted to and stored as fat. There is practically no limit on how many calories the body can store as fat. The glucose stored in the liver serves as a buffer for blood glucose levels. Therefore, if the blood glucose levels start to get low because you have not consumed food for a period of time Continue reading >>

Storage Forms Of Glucose In Organisms

Storage Forms Of Glucose In Organisms

When carbohydrates from the foods you consume are digested, glucose is the smallest molecule into which a carbohydrate is broken down. Glucose molecules are absorbed from intestinal cells into the bloodstream. The bloodstream then carries the glucose molecules throughout the body. Glucose enters each cell of the body and is used by the cell’s mitochondrion as fuel. Carbohydrates are in nearly every food, not just bread and pasta, which are known for “carbo loading.” Fruits, vegetables, and meats also contain carbohydrates. Any food that contains sugar has carbohydrates. And, most foods are converted to sugars when they are digested. Once an organism has taken in food, the food is digested, and needed nutrients are sent through the bloodstream. When the organism has used all the nutrients it needs to maintain proper functioning, the remaining nutrients are excreted or stored. You store it: Glycogen Animals (including humans) store some glucose in the cells so that it is available for quick shots of energy. Excess glucose is stored in the liver as the large compound called glycogen. Glycogen is a polysaccharide of glucose, but its structure allows it to pack compactly, so more of it can be stored in cells for later use. If you consume so many extra carbohydrates that your body stores more and more glucose, all your glycogen may be compactly structured, but you no longer will be. Starch it, please: Storing glucose in plants The storage form of glucose in plants is starch. Starch is a polysaccharide. The leaves of a plant make sugar during the process of photosynthesis. Photosynthesis occurs in light (photo = light), such as when the sun is shining. The energy from the sunlight is used to make energy for the plant. So, when plants are making sugar (for fuel, energy) o Continue reading >>

What Happens To Carbohydrates That The Body Does Not Use For Energy?

What Happens To Carbohydrates That The Body Does Not Use For Energy?

There are three types of carbohydrates: starch, sugar and fiber. Starches are broken down into sugars, including the glucose that provides your body with energy and is the preferred source of energy for your brain. However, not all carbohydrates are immediately used for energy. Some glucose is stored for later use, and fiber is not used for energy at all. Your body cannot digest fiber, but it provides health benefits, including lowering your risk for high cholesterol, heart disease, diabetes and constipation. While a small amount of fiber is fermented by bacteria in your colon and turned into short-chain fatty acids, which are easily absorbed by your body, most fiber passes through your body undigested and is excreted in your feces. Storage as Glycogen After carbohydrates are broken down in your body, some of the glucose that isn't needed immediately for energy is stored as glycogen in your liver and muscles for later use. Athletes sometimes consume high amounts of carbohydrates prior to major events in an effort to increase their glycogen stores, since glycogen is one of the main types of fuel for exercise. Storage as Fat Once your glycogen stores are filled, excess glucose may be stored as fat. However, storage of extra carbohydrate as fat is not very efficient, according to the Food and Agriculture Organization. Diets high in carbohydrates, especially complex carbohydrates, are less likely to result in fat accumulation than diets high in fat. Considerations The Food and Agriculture Organization recommends getting at least 55 percent of your calories from carbohydrates, and the 2010 Dietary Guidelines for Americans recommends consuming between 45 and 65 percent of your calories as carbohydrates, with most of these carbohydrates coming from nutrient-dense carbohydrate Continue reading >>

The Role Of Skeletal Muscle Glycogen Breakdown For Regulation Of Insulin Sensitivity By Exercise

The Role Of Skeletal Muscle Glycogen Breakdown For Regulation Of Insulin Sensitivity By Exercise

The Role of Skeletal Muscle Glycogen Breakdown for Regulation of Insulin Sensitivity by Exercise 1Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway 2Third Faculty of Medicine, Department of Medicine, Charles University, Prague, Czech Republic 3Protein Phosphorylation Research Group, de Duve Institute, Universit Catholique de Louvain, Brussels, Belgium Edited by: Heikki Veli Huikuri, Univeristy of Oulu, Finland Reviewed by: Francesco Giorgino, Universit degli Studi di Bari Aldo Moro, Italy; Niels Jessen, Aarhus University Hospital, Denmark *Correspondence: Jrgen Jensen, Department of Physical Performance, Norwegian School of Sport Sciences, P.O. Box 4014, Ullevl Stadion, 0806 Oslo, Norway. e-mail: [email protected] Received 2011 Jul 26; Accepted 2011 Dec 9. Copyright 2011 Jensen, Rustad, Kolnes and Lai. This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License , which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited. This article has been cited by other articles in PMC. Glycogen is the storage form of carbohydrates in mammals. In humans the majority of glycogen is stored in skeletal muscles (500 g) and the liver (100 g). Food is supplied in larger meals, but the blood glucose concentration has to be kept within narrow limits to survive and stay healthy. Therefore, the body has to cope with periods of excess carbohydrates and periods without supplementation. Healthy persons remove blood glucose rapidly when glucose is in excess, but insulin-stimulated glucose disposal is reduced in insulin resistant and type 2 diabetic subjects. During a hyperinsulinemic euglycemic clamp, 7090% of glucose dispos Continue reading >>

Does Carbohydrate Become Body Fat?

Does Carbohydrate Become Body Fat?

Dear Reader, Ah, poor carbohydrates, maligned by diets such as Atkins’ and the ketogenic diet. However, carbohydrates are your body’s main source of energy — in fact your muscles and brain cells prefer carbs more than other sources of energy (triglycerides and fat, for example). To answer your question: research completed over the last several decades suggests that if you are eating a diet that is appropriate for your levels of daily activity, little to no carbohydrate is converted to fat in your body. For most people (unless you have a metabolic disorder) when you eat carbs they are digested, broken down to glucose, and then transported to all the cells in your body. They are then metabolized and used to support cellular processes. If you’re active and eating appropriately for your activity level, most of the carbs you consume are more or less burned immediately. There are two caveats here: first, if you’re eating a lot more calories per day than you are burning, then yes, your liver will convert excess calories from carbohydrate into fats; second, not all carbs are created equal. If you consume too many calories from simple sugars like sucrose and fructose (think sugary sodas sweetened by sugar and high fructose corn syrup) then your body will more readily take some of those sugars and turn them into triglycerides (fat) in your liver. What happens to excess calories that come from carbs? The answer depends on several things: what kind of carbs you consumed, your genetics, as well as how many extra calories we’re talking about. For those who eat a well-balanced diet and have no metabolic disorders, excess dietary carbohydrates are converted by the liver into complex chains of glucose called glycogen. Glycogen is stored in liver and muscle cells and is a sec Continue reading >>

What Are The Key Functions Of Carbohydrates?

What Are The Key Functions Of Carbohydrates?

Biologically speaking, carbohydrates are molecules that contain carbon, hydrogen and oxygen atoms in specific ratios. But in the nutrition world, they’re one of the most controversial topics. Some believe eating fewer carbohydrates is the way to optimal health, while others prefer higher-carb diets. Still, others insist moderation is the way to go. No matter where you fall in this debate, it’s hard to deny that carbohydrates play an important role in the human body. This article highlights their key functions. One of the primary functions of carbohydrates is to provide your body with energy. Most of the carbohydrates in the foods you eat are digested and broken down into glucose before entering the bloodstream. Glucose in the blood is taken up into your body’s cells and used to produce a fuel molecule called adenosine triphosphate (ATP) through a series of complex processes known as cellular respiration. Cells can then use ATP to power a variety of metabolic tasks. Most cells in the body can produce ATP from several sources, including dietary carbohydrates and fats. But if you are consuming a diet with a mix of these nutrients, most of your body’s cells will prefer to use carbs as their primary energy source (1). One of the primary functions of carbohydrates is to provide your body with energy. Your cells convert carbohydrates into the fuel molecule ATP through a process called cellular respiration. If your body has enough glucose to fulfill its current needs, excess glucose can be stored for later use. This stored form of glucose is called glycogen and is primarily found in the liver and muscle. The liver contains approximately 100 grams of glycogen. These stored glucose molecules can be released into the blood to provide energy throughout the body and help mai Continue reading >>

The Body’s Fuel Sources

The Body’s Fuel Sources

The Body’s Fuel Sources Our ability to run, bicycle, ski, swim, and row hinges on the capacity of the body to extract energy from ingested food. As potential fuel sources, the carbohydrate, fat, and protein in the foods that you eat follow different metabolic paths in the body, but they all ultimately yield water, carbon dioxide, and a chemical energy called adenosine triphosphate (ATP). Think of ATP molecules as high-energy compounds or batteries that store energy. Anytime you need energy—to breathe, to tie your shoes, or to cycle 100 miles (160 km)—your body uses ATP molecules. ATP, in fact, is the only molecule able to provide energy to muscle fibers to power muscle contractions. Creatine phosphate (CP), like ATP, is also stored in small amounts within cells. It’s another high-energy compound that can be rapidly mobilized to help fuel short, explosive efforts. To sustain physical activity, however, cells must constantly replenish both CP and ATP. Our daily food choices resupply the potential energy, or fuel, that the body requires to continue to function normally. This energy takes three forms: carbohydrate, fat, and protein. (See table 2.1, Estimated Energy Stores in Humans.) The body can store some of these fuels in a form that offers muscles an immediate source of energy. Carbohydrates, such as sugar and starch, for example, are readily broken down into glucose, the body’s principal energy source. Glucose can be used immediately as fuel, or can be sent to the liver and muscles and stored as glycogen. During exercise, muscle glycogen is converted back into glucose, which only the muscle fibers can use as fuel. The liver converts its glycogen back into glucose, too; however, it’s released directly into the bloodstream to maintain your blood sugar (blood Continue reading >>

Is Glucose Stored In The Human Body?

Is Glucose Stored In The Human Body?

Glucose is a sugar that serves as a primary energy source for your body. It also provides fuel for optimal brain and nervous system activity, which may help support cognitive functions such as learning and memory. The human body stores glucose in several forms to meet immediate and future energy requirements. Video of the Day Glucose is not present in food sources. Instead, your body converts carbohydrates from foods into glucose with the help of amylase, an enzyme produced by your saliva glands and pancreas. Carbohydrates are found in all plant-based foods -- grains and starchy vegetables such as corn and potatoes are particularly abundant in carbohydrates. Beans, vegetables, seeds, fruits and nuts also supply carbohydrates. Dairy products are the only animal-based foods that contain this nutrient. As you body breaks down carbohydrates into glucose, it delivers it to your bloodstream to supply your body's cells with fuel for energy. Insulin, which is produced by your pancreas, aids in the transfer of glucose through cell walls. Unused glucose is converted to glycogen by a chemical process called glycogenesis, and is stored in muscle tissues and your liver. Glycogen serves as a backup fuel source when blood glucose levels drop. Your liver and muscles can only store a limited amount of glycogen. If your bloodstream contains more glucose than your body can store as glycogen, your body stores excess glucose as fat cells. Like glycogen, fat is stored for future energy; however, glucose storage as fat can contribute to weight gain and obesity. Obesity is a risk factor for diabetes and heart disease, and can increase strain on your bones and joints. Your body must store glucose in your bloodstream before converting and storing it as glycogen or fat. Excess glucose in your blo Continue reading >>

Glycogen

Glycogen

Schematic two-dimensional cross-sectional view of glycogen: A core protein of glycogenin is surrounded by branches of glucose units. The entire globular granule may contain around 30,000 glucose units.[1] A view of the atomic structure of a single branched strand of glucose units in a glycogen molecule. Glycogen (black granules) in spermatozoa of a flatworm; transmission electron microscopy, scale: 0.3 µm Glycogen is a multibranched polysaccharide of glucose that serves as a form of energy storage in humans,[2] animals,[3] fungi, and bacteria. The polysaccharide structure represents the main storage form of glucose in the body. Glycogen functions as one of two forms of long-term energy reserves, with the other form being triglyceride stores in adipose tissue (i.e., body fat). In humans, glycogen is made and stored primarily in the cells of the liver and skeletal muscle.[2][4] In the liver, glycogen can make up from 5–6% of the organ's fresh weight and the liver of an adult weighing 70 kg can store roughly 100–120 grams of glycogen.[2][5] In skeletal muscle, Glycogen is found in a low concentration (1–2% of the muscle mass) and the skeletal muscle of an adult weighing 70 kg can store roughly 400 grams of glycogen.[2] The amount of glycogen stored in the body—particularly within the muscles and liver—mostly depends on physical training, basal metabolic rate, and eating habits. Small amounts of glycogen are also found in other tissues and cells, including the kidneys, red blood cells,[6][7][8] white blood cells,[medical citation needed] and glial cells in the brain.[9] The uterus also stores glycogen during pregnancy to nourish the embryo.[10] Approximately 4 grams of glucose are present in the blood of humans at all times;[2] in fasted individuals, blood glucos Continue reading >>

4.4: The Functions Of Carbohydrates In The Body

4.4: The Functions Of Carbohydrates In The Body

4.4: The Functions of Carbohydrates in the Body List four primary functions of carbohydrates in the human body There are five primary functions of carbohydrates in the human body. They are energy production, energy storage, building macromolecules, sparing protein, and assisting in lipid metabolism. The primary role of carbohydrates is to supply energy to all cells in the body. Many cells prefer glucose as a source of energy versus other compounds like fatty acids. Some cells, such as red blood cells, are only able to produce cellular energy from glucose. The brain is also highly sensitive to low blood-glucose levels because it uses only glucose to produce energy and function (unless under extreme starvation conditions). About 70 percent of the glucose entering the body from digestion is redistributed (by the liver) back into the blood for use by other tissues. Cells that require energy remove the glucose from the blood with a transport protein in their membranes. The energy from glucose comes from the chemical bonds between the carbon atoms. Sunlight energy was required to produce these high-energy bonds in the process of photosynthesis. Cells in our bodies break these bonds and capture the energy to perform cellular respiration. Cellular respiration is basically a controlled burning of glucose versus an uncontrolled burning. A cell uses many chemical reactions in multiple enzymatic steps to slow the release of energy (no explosion) and more efficiently capture the energy held within the chemical bonds in glucose. The first stage in the breakdown of glucose is called glycolysis , whichoccurs in an intricate series of ten enzymatic-reaction steps. The second stage of glucose breakdown occurs in the energy factory organelles, called mitochondria. One carbon atom and two Continue reading >>

Glycogen: Definition, Storage & Breakdown

Glycogen: Definition, Storage & Breakdown

Glycogen: Definition, Storage & Breakdown Watch short & fun videos Start Your Free Trial Today An error occurred trying to load this video. Try refreshing the page, or contact customer support. You must create an account to continue watching Start Your Free Trial To Continue Watching As a member, you'll also get unlimited access to over 70,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed. Coming up next: Lipid Bilayer: Definition, Structure & Function Log in or sign up to add this lesson to a Custom Course. Custom Courses are courses that you create from Study.com lessons. Use them just like other courses to track progress, access quizzes and exams, and share content. Organize and share selected lessons with your class. Make planning easier by creating your own custom course. Create a new course from any lesson page or your dashboard. Click "Add to" located below the video player and follow the prompts to name your course and save your lesson. Click on the "Custom Courses" tab, then click "Create course". Next, go to any lesson page and begin adding lessons. Edit your Custom Course directly from your dashboard. Name your Custom Course and add an optional description or learning objective. Create chapters to group lesson within your course. Remove and reorder chapters and lessons at any time. Share your Custom Course or assign lessons and chapters. Share or assign lessons and chapters by clicking the "Teacher" tab on the lesson or chapter page you want to assign. Students' quiz scores and video views will be trackable in your "Teacher" tab. You can share your Custom Course by copying and pasting the course URL. Only Study.com members will be able to access the entire course. Create Continue reading >>

More in ketosis