diabetestalk.net

What Are Ketone Bodies And When Are They Produced?

Is Ketosis Dangerous?

Is Ketosis Dangerous?

Duck Dodgers October 14, 2014 Peter, An article by Per Wikholm was published in this month’s LCHF Magasinet, where Per demonstrates that the Inuit could not have been in ketosis given that the scientific literature is abundantly clear, over and over again, that the Inuit consumed too much protein, and more importantly, Per debunks Stefansson’s claims for high fat with writing from his own books—Stef admitted in the pemmican recipes that Arctic caribou was too lean to make pemmican that supported ketosis. The most popular LCHF bloggers in Sweden, Andreas Eenfeldt/Diet Doctor and Annika Dahlquist have reluctantly agreed with Per’s findings—admitting that the Inuit were likely not ketogenic from their diet. I’ve put together a comprehensive review of the scientific literature regarding the Inuit, encompassing over two dozen studies, spanning 150 years, with references from explorers, including Stefansson. In the comments section of that post, Per gives a brief overview of how he was able to prove Stefansson’s observations on high fat intake were flawed. The post is a review of all the available literature that I could find (over two dozen studies). But, the literature certainly does not in any way support ketosis from the Inuit diet due to such high protein consumption. As Per (and Stefansson) points out, the caribou is too lean and as the many quotes show, the Inuit were saving their blubber and fat for the long dark Winter to power their oil lamps and heat their igloos. Again and again, we see that in the literature, as even Stefansson admits this. As far as glycogen is concerned, their glycogen intake is probably not worth scrutinizing given the well-documented high protein consumption in every published study. It really is besides the point. But, interest Continue reading >>

Metabolism And Ketosis

Metabolism And Ketosis

Dr. Eades, If the body tends to resort to gluconeogenesis for glucose during a short-term carbohydrate deficit, are those who inconsistently reduce carb intake only messing things up by not effecting full blown ketosis? If the body will still prefer glucose as main energy source unless forced otherwise for at least a few days, is it absolutely necessary to completely transform metabolism for minimal muscle loss? Also, if alcohol is broken down into ketones and acetaldehyde, technically couldn’t you continue to drink during your diet or would the resulting gluconeogenesis inhibition from alcohol lead to blood glucose problems on top of the ketotic metabolism? Would your liver ever just be overwhelmed by all that action? I’m still in high school so hypothetical, of course haha… Sorry, lots of questions but I’m always so curious. Thank you so much for taking the time to inform the public. You’re my hero! P.S. Random question…what’s the difference between beta and gamma hydroxybutyric acids? It’s crazy how simple orientation can be the difference between a ketone and date rape drug…biochem is so cool! P.P.S. You should definitely post the details of that inner mitochondrial membrane transport. I’m curious how much energy expenditure we’re talkin there.. Keep doin your thing! Your Fan, Trey No, I don’t think people are messing up if they don’t get into full-blown ketosis. For short term low-carb dieting, the body turns to glycogen. Gluconeogenesis kicks in fairly quickly, though, and uses dietary protein – assuming there is plenty – before turning to muscle tissue for glucose substrate. And you have the Cori cycle kicking in and all sorts of things to spare muscle, so I wouldn’t worry about it. And you can continue to drink while low-carbing. Continue reading >>

Regulation Of Ketone Body And Coenzyme A

Regulation Of Ketone Body And Coenzyme A

METABOLISM IN LIVER by SHUANG DENG Submitted in partial fulfillment of the requirements For the Degree of Doctor of Philosophy Dissertation Adviser: Henri Brunengraber, M.D., Ph.D. Department of Nutrition CASE WESTERN RESERVE UNIVERSITY August, 2011 SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of __________________ ____________ _ _ candidate for the ________________________________degree *. (signed) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Shuang Deng (chair of the committee) Edith Lerner, PhD Colleen Croniger, PhD Henri Brunengraber, MD, PhD Doctor of Philosophy Janos Kerner, PhD Michelle Puchowicz, PhD Paul Ernsberger, PhD I dedicate this work to my parents, my son and my husband iv TABLE OF CONTENTS Table of Contents…………………………………………………………………. iv List of Tables………………………………………………………………………. viii List of Figures……………………………………………………………………… ix Acknowledgements………………â Continue reading >>

Is There A Dark Side Of Ketosis?

Is There A Dark Side Of Ketosis?

I can’t remember what appetizer she pointed to, but the woman sitting to the left of me said this so casually, and several folks at the table knew exactly what she meant, confirming what I’d long suspected: Ketogenic diets have officially gone mainstream – or recognizable at a party mainstream at least – in 2017. Let’s back up and demystify ketosis, which simply means you’re utilizing ketone bodies – more commonly called ketones – rather than glucose as your body’s primary fuel. Just like your car uses gasoline, your body needs fuel. That usually means glucose. But let’s say you’re on a very-low carbohydrate, higher-fat diet. Your body doesn’t get a lot of glucose, which primarily comes from carbohydrate and to a lesser degree protein. That means your liver’s backup glucose (glycogen) also becomes in short supply. Unlike your car, your body doesn’t just shut down. Thankfully, you have an alternative fuel source called ketones. Ketones are organic compounds your liver always makes. You’re cranking out ketones right now as you read this. During starvation or (more likely) when you restrict carbohydrate and increase fat intake, your body uses ketones as its primary fuel. In other words, when your body doesn’t receive or can’t make enough glucose, it shifts to this alternative fuel. Almost every organ can utilize ketones except for your red blood cells (which don’t have ketone-metabolizing mitochondria) and liver. Your liver, in fact, does the heavy lifting. This hardworking organ metabolizes fat into three ketone bodies: acetoacetate (ACA), beta-hydroxybutyrate (BHB), and acetone.(1) BHB is the first substrate that kicks ketosis into action. Among its benefits, BHB reduces chronic inflammation and restores healthy inflammation levels. In Continue reading >>

What Is Ketosis?

What Is Ketosis?

Ketosis represents a state of the organism characterized by the controlled and regulated production of ketone bodies in the blood via various metabolic processes. During very low carbohydrate intake, reduced insulin levels leads to a reduction in lipogenesis and fat accumulation. After several days of fasting, glucose reserves become insufficient both for normal fat oxidation and for the proper functioning of the brain. As the central nervous system is not able to use fatty acids for its energy because they cannot cross the blood-brain barrier, it normally utilizes glucose. Low carbohydrate intake forces the brain to find alternative energy source derived from the overproduction of acetyl coenzyme A (CoA). The production of ketone bodies in a process called ketogenesis ensues. Ketosis is a completely physiological mechanism and it needs to be differentiated from the pathological ketoacidosis seen in type 1 diabetes. Physiological ketosis that arises as a result of ketogenic diets is characterized by ketone bodies in blood reaching a maximum level of 8 mmol/l with no change in pH, compared to uncontrolled diabetic ketoacidosis where their level can exceed 20 mmol/l and result in a lower blood pH. Ketone body metabolism The term “ketone bodies” refers to three specific compounds: acetone, acetoacetate and beta-hydroxybutyrate (or beta-hydroxybutyric acid). The circulating levels of ketone bodies depend both on their rate of production (i.e. ketogenesis) and their rate of utilization (i.e. ketolysis). They are of vital importance to the brain, which is unable to derive energy from other sources when blood glucose levels are low. In healthy adults, the liver is able to produce 185 grams of ketone bodies each day. The main ketone body produced is acetoacetate, but the pr Continue reading >>

Understanding Ketosis

Understanding Ketosis

To gain a better understanding of ketosis and the ketogenic diet, it is important to take a look at the physiology behind the diet. If you recall from the article What is a Ketogenic Diet? the goal of a ketogenic diet is to induce ketosis by increasing ketone body production. A key step in understanding the diet is to learn what ketosis is, what are ketones and what do they do. “Normal” Metabolism Learning the basics of the various metabolic processes of the body will better your ability to understand ketosis. Under the normal physiological conditions that are common today, glucose is our body’s primary source of energy. Following ingestion, carbohydrates are broken down into glucose and released into the blood stream. This results in the release of insulin from the pancreas. Insulin not only inhibits fat oxidation but also acts as a key holder for cells by allowing glucose from the blood to be shuttled into cells via glucose transporters (GLUT). The amount of insulin required for this action varies between individuals depending on their insulin sensitivity. Once inside the cell, glucose undergoes glycolysis, a metabolic process that produces pyruvate and energy in the form of adenosine triphosphate (ATP). Once pyruvate is formed as an end product of glycolysis, it is shuttled into the mitochondria, where it is converted to acetyl-CoA by pyruvate dehydrogenase. Acetyl-CoA then enters the TCA cycle to produce additional energy with the aid of the electron transport chain. Since glucose is so rapidly metabolized for energy production and has a limited storage capacity, other energy substrates, such as fat, get stored as triglycerides due to our body’s virtually infinite fat storage capacity. When a sufficient source of carbohydrates is not available, the body adap Continue reading >>

Everything You Need To Know About Ketones

Everything You Need To Know About Ketones

Ketone is an organic compound that the body produces when fats are broken down for energy. People with diabetes may not be able to regulate the level of ketones in their blood, so ketone testing is an essential part of managing their condition. There are three types of ketone, which are collectively known as ketone bodies, or ketones. In this article, we explain when to check for ketones, the types of tests available, and how to understand the results. Contents of this article: What are ketones? The body uses a range of nutrients for energy, including carbohydrates, fats, and proteins. It will use carbohydrates first, but if none are available, the body will burn fat for energy. When this happens, ketones are produced. Ketones have gained attention in recent years due to the popularity of ketogenic diets, in which people eat a low carbohydrate diet so that their body will burn fat instead of carbohydrates. There is currently a lack of clear evidence on the benefits of this diet, and there may be some risks, such as high acidity in the blood and loss of muscle. Typically, carbohydrates are broken down into different nutrients, including blood sugar (glucose), by an enzyme called amylase that occurs naturally in the body. Insulin then transports the sugar to cells to be used for energy. A person with diabetes does not produce enough insulin to transport the blood sugar, or the cells in their body may not accept it properly, which stops the body from using the blood sugar for energy. When sugar can't be used by the cells for energy, the body will start to break down fats for energy instead. Types of ketone and DKA Three types of ketones are always present in the blood: acetoacetate (AcAc) 3-β-hydroxybutyrate (3HB) acetone The levels of each of these ketone bodies will var Continue reading >>

What Are Ketone Bodies And How Are They Related To Diabetes?

What Are Ketone Bodies And How Are They Related To Diabetes?

What are ketones? The human body normally runs on glucose that’s produced when the body breaks down carbohydrates. But when your body doesn’t have enough glucose or insulin to use the glucose, your body starts breaking down fats for energy. Ketones are byproducts of this breakdown. Those with type 1 diabetes are especially at risk for making ketones. Ketones can make your blood acidic. Acidic blood can cause a serious condition known as diabetic ketoacidosis (DKA). Because the presence of ketones is often one of the signs that a person needs medical help, those with diabetes are often encouraged to check ketones in urine or blood regularly. Ketone levels can range from negative or none at all to very high levels. While individual testing may vary, some general results for ketone levels can be: negative: less than 0.6 millimoles per liter (mmol/L) low to moderate: between 0.6 to 1.5 mmol/L high: 1.6 to 3.0 mmol/L very high: greater than 3.0 mmol/L Call your doctor if your ketones are low to moderate, and seek emergency medical attention if your ketone levels are high to very high. What are the symptoms of ketone buildup? If you have diabetes, you need to be especially aware of the symptoms that having too many ketones in your body can cause. Examples of early symptoms of ketone buildup include: a dry mouth blood sugar levels greater than 240 milligrams per deciliter strong thirst frequent urination If you don’t get treatment, the symptoms can progress. The symptoms that occur later can include: confusion extreme fatigue flushed skin a fruity breath odor nausea vomiting stomach pain trouble breathing You should always seek immediate medical attention if your ketone levels are high. What causes ketones to build up? Ketones are the body’s alternate way of fueling. T Continue reading >>

Ketone Bodies Metabolic Pathway (pw:0000069)

Ketone Bodies Metabolic Pathway (pw:0000069)

Description The ketone bodies metabolic pathway is used to convert acetyl-CoA formed in the liver into "ketone bodies": acetone, and more importantly acetoacetate and 3-hydroxybutyrate, which are transported in the blood to extrahepatic tissues where they are converted to acetyl-CoA and oxidized via the citrate cycle pathway for energy. The brain, which usually uses glucose for energy, can utilize ketone bodies under starvation conditions, when glucose is not available. When acetyl-CoA is not being metaboli...(more) Description: ENCODES a protein that exhibits 3-hydroxybutyrate dehydrogenase activity (ortholog); NAD binding (ortholog); oxidoreductase activity, acting on the CH-CH group of donors, NAD or NADP as acceptor (ortholog); INVOLVED IN epithelial cell differentiation (ortholog); fatty acid beta-oxidation (ortholog); heme metabolic process (ortholog); PARTICIPATES IN butanoate metabolic pathway; ketone bodies metabolic pathway; FOUND IN cytoplasm (ortholog); cytosol (ortholog); extracellular exosome (ortholog); INTERACTS WITH 2,3,7,8-tetrachlorodibenzodioxine; 2,4-dinitrotoluene; 2,6-dinitrotoluene Continue reading >>

Blood Ketones

Blood Ketones

On This Site Tests: Urine Ketones (see Urinalysis - The Chemical Exam); Blood Gases; Glucose Tests Elsewhere On The Web Ask a Laboratory Scientist Your questions will be answered by a laboratory scientist as part of a voluntary service provided by one of our partners, the American Society for Clinical Laboratory Science (ASCLS). Click on the Contact a Scientist button below to be re-directed to the ASCLS site to complete a request form. If your question relates to this web site and not to a specific lab test, please submit it via our Contact Us page instead. Thank you. Continue reading >>

What Are Ketone Bodies And Why Are They In The Body?

What Are Ketone Bodies And Why Are They In The Body?

If you eat a calorie-restricted diet for several days, you will increase the breakdown of your fat stores. However, many of your tissues cannot convert these fatty acid products directly into ATP, or cellular energy. In addition, glucose is in limited supply and must be reserved for red blood cells -- which can only use glucose for energy -- and brain tissues, which prefer to use glucose. Therefore, your liver converts many of these fatty acids into ketone bodies, which circulate in the blood and provide a fuel source for your muscles, kidneys and brain. Video of the Day Low fuel levels in your body, such as during an overnight fast or while you are dieting, cause hormones to increase the breakdown of fatty acids from your stored fat tissue. These fatty acids travel to the liver, where enzymes break the fatty acids into ketone bodies. The ketone bodies are released into the bloodstream, where they travel to tissues that have the enzymes to metabolize ketone bodies, such as your muscle, brain, kidney and intestinal cells. The breakdown product of ketone bodies goes through a series of steps to form ATP. Conditions of Ketone Body Utilization Your liver will synthesize more ketone bodies for fuel whenever your blood fatty acid levels are elevated. This will happen in response to situations that promote low blood glucose, such as an overnight fast, prolonged calorie deficit, a high-fat and low-carbohydrate diet, or during prolonged low-intensity exercise. If you eat regular meals and do not typically engage in extremely long exercise sessions, the level of ketone bodies in your blood will be highest after an overnight fast. This level will drop when you eat breakfast and will remain low as long as you eat regular meals with moderate to high carbohydrate content. Ketone Bodi Continue reading >>

Ketone Bodies Metabolism

Ketone Bodies Metabolism

1. Metabolism of ketone bodies Gandham.Rajeev Email:[email protected] 2. • Carbohydrates are essential for the metabolism of fat or FAT is burned under the fire of carbohydrates. • Acetyl CoA formed from fatty acids can enter & get oxidized in TCA cycle only when carbohydrates are available. • During starvation & diabetes mellitus, acetyl CoA takes the alternate route of formation of ketone bodies. 3. • Acetone, acetoacetate & β-hydroxybutyrate (or 3-hydroxybutyrate) are known as ketone bodies • β-hydroxybutyrate does not possess a keto (C=O) group. • Acetone & acetoacetate are true ketone bodies. • Ketone bodies are water-soluble & energy yielding. • Acetone, it cannot be metabolized 4. CH3 – C – CH3 O Acetone CH3 – C – CH2 – COO- O Acetoacetate CH3 – CH – CH2 – COO- OH I β-Hydroxybutyrate 5. • Acetoacetate is the primary ketone body. • β-hydroxybutyrate & acetone are secondary ketone bodies. • Site: • Synthesized exclusively by the liver mitochondria. • The enzymes are located in mitochondrial matrix. • Precursor: • Acetyl CoA, formed by oxidation of fatty acids, pyruvate or some amino acids 6. • Ketone body biosynthesis occurs in 5 steps as follows. 1. Condensation: • Two molecules of acetyl CoA are condensed to form acetoacetyl CoA. • This reaction is catalyzed by thiolase, an enzyme involved in the final step of β- oxidation. 7. • Acetoacetate synthesis is appropriately regarded as the reversal of thiolase reaction of fatty acid oxidation. 2. Production of HMG CoA: • Acetoacetyl CoA combines with another molecule of acetyl CoA to produce β-hydroxy β-methyl glutaryl CoA (HMC CoA). • This reaction is catalyzed by the enzyme HMG CoA synthase. 8. • Mitochondrial HMG CoA is used for ketogenesis. Continue reading >>

Ketone Body Metabolism

Ketone Body Metabolism

Ketone body metabolism includes ketone body synthesis (ketogenesis) and breakdown (ketolysis). When the body goes from the fed to the fasted state the liver switches from an organ of carbohydrate utilization and fatty acid synthesis to one of fatty acid oxidation and ketone body production. This metabolic switch is amplified in uncontrolled diabetes. In these states the fat-derived energy (ketone bodies) generated in the liver enter the blood stream and are used by other organs, such as the brain, heart, kidney cortex and skeletal muscle. Ketone bodies are particularly important for the brain which has no other substantial non-glucose-derived energy source. The two main ketone bodies are acetoacetate (AcAc) and 3-hydroxybutyrate (3HB) also referred to as β-hydroxybutyrate, with acetone the third, and least abundant. Ketone bodies are always present in the blood and their levels increase during fasting and prolonged exercise. After an over-night fast, ketone bodies supply 2–6% of the body's energy requirements, while they supply 30–40% of the energy needs after a 3-day fast. When they build up in the blood they spill over into the urine. The presence of elevated ketone bodies in the blood is termed ketosis and the presence of ketone bodies in the urine is called ketonuria. The body can also rid itself of acetone through the lungs which gives the breath a fruity odour. Diabetes is the most common pathological cause of elevated blood ketones. In diabetic ketoacidosis, high levels of ketone bodies are produced in response to low insulin levels and high levels of counter-regulatory hormones. Ketone bodies The term ‘ketone bodies’ refers to three molecules, acetoacetate (AcAc), 3-hydroxybutyrate (3HB) and acetone (Figure 1). 3HB is formed from the reduction of AcAc i Continue reading >>

Keto Diet Science: How Your Body Burns Fat

Keto Diet Science: How Your Body Burns Fat

By now, you’ve probably heard about the keto diet. You've probably heard that it all but bans carbs and sugars, or that it's been clinically shown to reduce epileptic seizures in kids, or even that it helps people condition their bodies to burn fat. As we detailed in our recent feature on the keto diet, all of those things are true. But as any bodybuilder knows, you don't need to be on the keto diet to burn fat. Heck, you can do it with a focused meal and exercise plan. So we've been wondering: When your body "burns fat" for energy, what's really going on there? How exactly does the keto diet work? And why the hell is it called the "keto" diet, anyway? Play Video Play Loaded: 0% Progress: 0% Remaining Time -0:00 This is a modal window. Foreground --- White Black Red Green Blue Yellow Magenta Cyan --- Opaque Semi-Opaque Background --- White Black Red Green Blue Yellow Magenta Cyan --- Opaque Semi-Transparent Transparent Window --- White Black Red Green Blue Yellow Magenta Cyan --- Opaque Semi-Transparent Transparent Font Size 50% 75% 100% 125% 150% 175% 200% 300% 400% Text Edge Style None Raised Depressed Uniform Dropshadow Font Family Default Monospace Serif Proportional Serif Monospace Sans-Serif Proportional Sans-Serif Casual Script Small Caps Defaults Done Well strap some protective boxing headgear over those thinking caps, bros, because we’re about to roundhouse kick you in the brain with some KNOWLEDGE. (For a detailed breakdown of the chemistry at work, be sure to check out our references: this explainer on ketone bodies from the University of Waterloo, and this ketosis explainer from Rose-Hulman Institute of Technology [PDF], plus our feature on the keto diet from the July/August issue of Men's Fitness.) Why does the body go into fat-burning mode? For most pe Continue reading >>

Ketone Body

Ketone Body

ketone body n. Any of three compounds, acetoacetic acid, acetone, and beta-hydroxybutyric acid, that are ketones or derivatives of ketones and are intermediate products of fatty acid metabolism. Ketone bodies accumulate in the blood and urine when fats are being used for energy instead of carbohydrates, as in individuals affected by starvation or uncontrolled diabetes mellitus. Also called acetone body. American Heritage® Dictionary of the English Language, Fifth Edition. Copyright © 2016 by Houghton Mifflin Harcourt Publishing Company. Published by Houghton Mifflin Harcourt Publishing Company. All rights reserved. ketone body n (Biochemistry) biochem any of three compounds (acetoacetic acid, 3-hydroxybutanoic acid, and acetone) produced when fatty acids are broken down in the liver to provide a source of energy. Excess ketone bodies are present in the blood and urine of people unable to use glucose as an energy source, as in diabetes and starvation. Also called: acetone body Collins English Dictionary – Complete and Unabridged, 12th Edition 2014 © HarperCollins Publishers 1991, 1994, 1998, 2000, 2003, 2006, 2007, 2009, 2011, 2014 ke′tone bod′y n. any of several compounds, as acetoacetic acid, acetone, and hydroxybutyric acid, that are intermediate in the metabolism of fatty acids and are produced in excessive amounts under certain abnormal conditions, as in diabetes mellitus. Random House Kernerman Webster's College Dictionary, © 2010 K Dictionaries Ltd. Copyright 2005, 1997, 1991 by Random House, Inc. All rights reserved. Noun 1. ketone body - a ketone that is an intermediate product of the breakdown of fats in the body; any of three compounds (acetoacetic acid, acetone, and/or beta-hydroxybutyric acid) found in excess in blood and urine of persons with meta Continue reading >>

More in ketosis