diabetestalk.net

What Amino Acids Can Be Converted To Glucose?

Share on facebook

What is GLUCONEOGENESIS? What does GLUCONEOGENESIS mean? GLUCONEOGENESIS meaning - GLUCONEOGENESIS definition - GLUCONEOGENESIS explanation. Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/... license. SUBSCRIBE to our Google Earth flights channel - https://www.youtube.com/channel/UC6Uu... Gluconeogenesis (GNG) is a metabolic pathway that results in the generation of glucose from certain non-carbohydrate carbon substrates. From breakdown of proteins, these substrates include glucogenic amino acids (although not ketogenic amino acids); from breakdown of lipids (such as triglycerides), they include glycerol (although not fatty acids); and from other steps in metabolism they include pyruvate and lactate. Gluconeogenesis is one of several main mechanisms used by humans and many other animals to maintain blood glucose levels, avoiding low levels (hypoglycemia). Other means include the degradation of glycogen (glycogenolysis) and fatty acid catabolism. Gluconeogenesis is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In vertebrates, gluconeogenesis takes place mainly in the liver and, to a lesser extent, in the cortex of the kidneys. In ruminants, this tends to be a continuous process. In many other animals, the process occurs during periods of fasting, starvation, low-carbohydrate diets, or intense exercise. The process is highly endergonic until it is coupled to the hydrolysis of ATP or GTP, effectively making the process exergonic. For example, the pathway leading from pyruvate to glucose-6-phosphate requires 4 molecules of ATP and 2 molecules of GTP to proceed spontaneously. Gluconeogenesis is often associated with ketosis. Gluconeogenesis is also a target of therapy for type 2 diabetes, such as the antidiabetic drug, metformin, which inhibits glucose formation and stimulates glucose uptake by cells. In ruminants, because dietary carbohydrates tend to be metabolized by rumen organisms, gluconeogenesis occurs regardless of fasting, low-carbohydrate diets, exercise, etc.

Principles Of Biochemistry/gluconeogenesis And Glycogenesis

Gluconeogenesis (abbreviated GNG) is a metabolic pathway that results in the generation of glucose from non-carbohydrate carbon substrates such as lactate, glycerol, and glucogenic amino acids. It is one of the two main mechanisms humans and many other animals use to keep blood glucose levels from dropping too low (hypoglycemia). The other means of maintaining blood glucose levels is through the degradation of glycogen (glycogenolysis). Gluconeogenesis is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In animals, gluconeogenesis takes place mainly in the liver and, to a lesser extent, in the cortex of kidneys. This process occurs during periods of fasting, starvation, low-carbohydrate diets, or intense exercise and is highly endergonic. For example, the pathway leading from phosphoenolpyruvate to glucose-6-phosphate requires 6 molecules of ATP. Gluconeogenesis is often associated with ketosis. Gluconeogenesis is also a target of therapy for type II diabetes, such as metformin, which inhibits glucose formation and stimulates glucose uptake by cells. Lactate is transported back to the liver where it is converted into pyruvate by the Cori Continue reading >>

Share on facebook

Popular Questions

  1. manohman

    Why can't fat be converted into Glucose?

    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?

  2. Czarcasm

    manohman said: ↑
    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?
    Click to expand... Both glucose and fatty acids can be stored in the body as either glycogen for glucose (stored mainly in the liver or skeletal cells) or for FA's, as triacylglycerides (stored in adipose cells). We cannot store excess protein. It's either used to make other proteins, or flushed out of the body if in excess; that's generally the case but we try to make use of some of that energy instead of throwing it all away.
    When a person is deprived of nutrition for a period of time and glycogen stores are depleted, the body will immediately seek out alternative energy sources. Fats (stored for use) are the first priority over protein (which requires the breakdown of tissues such as muscle). We can mobilize these FA's to the liver and convert them to Acetyl-CoA to be used in the TCA cycle and generate much needed energy. On the contrary, when a person eats in excess (a fatty meal high in protein), it's more efficient to store fatty acids as TAG's over glycogen simply because glycogen is extremely hydrophilic and attracts excess water weight; fatty acids are largely stored anhydrously and so you essentially get more bang for your buck. This is evolutionary significant and why birds are able to stay light weight but fly for periods at a time, or why bears are able to hibernate for months at a time. Proteins on the other hand may be used anabolically to build up active tissues (such as when your working out those muscles), unless you live a sedentary lifestyle (less anabolism and therefore, less use of the proteins). As part of the excretion process, protein must be broken down to urea to avoid toxic ammonia and in doing so, the Liver can extract some of that usable energy for storage as glycogen.
    Also, it is worth noting that it is indeed possible to convert FA's to glucose but the pathway can be a little complex and so in terms of energy storage, is not very efficient. The process involves converting Acetyl-CoA to Acetone (transported out of mitochondria to cytosol) where it's converted to Pyruvate which can then be used in the Gluconeogenesis pathway to make Glucose and eventually stored as Glycogen. Have a look for yourself if your interested: http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002116.g003/originalimage (and this excludes the whole glycogenesis pathway, which hasn't even begun yet).
    TLDR: it's because proteins have no ability to be stored in the body, but we can convert them to glycogen for storage during the breakdown process for excretion. Also, in terms of energy, it's a more efficient process than converting FA's to glycogen for storage.

  3. soccerman93

    This is where biochem comes in handy. Czarcasm gives a really good in depth answer, but a simpler approach is to count carbons. The first step of gluconeogenesis(formation of glucose) requires pyruvate, a 3 carbon molecule. Acetyl Co-A is a 2 carbon molecule, and most animals lack the enzymes (malate synthase and isocitrate lyase) required to convert acetyl co-A into a 3 carbon molecule suitable for the gluconeogenesis pathway. The ketogenic pathway is not efficient, as czarcasm pointed out. While acetyl co-A can indeed be used to form citric acid intermediates, these intermediates will be used in forming ATP, not glucose. Fatty acid oxidation does not yield suitable amounts of pyruvate, which is required for gluconeogenesis. This is part of why losing weight is fairly difficult for those that are overweight, we can't efficiently directly convert fat to glucose, which we need a fairly constant supply of. Sorry, that got a little long-winded

  4. -> Continue reading
read more
Share on facebook

In this video I discuss what are amino acids, what are amino acids made of, and what do amino acids do in the body. I also cover what are peptide bonds, polypeptide chains, how amino acids form proteins, some functions of amino acids, and what are amino acids used to build. Transcript We are going to start by looking at the molecular structure of a typical amino acid, dont worry, I am going to make it easy to understand. The basic structure of amino acids is that they consist of a carboxyl group, a lone hydrogen atom, an amino group, and a side chain, which is often referred to as an R-group. The formation of the side chain is what makes amino acids different from one another. As you can see in this diagram, these 4 are all connected to a carbon atom, which is referred to as the alpha carbon. Not every amino acid follows this exact structure, but, most do. On the screen I have 3 different amino acids, lysine, tryptophan, and leucine. You can see that each has a carboxyl group, an alpha carbon, a amino group, and an R-group that is different from each other. There are 23 total amino acids that are proteinogenic. Proteinogenic amino acids are precursors to proteins, which means they are compounds that participate in a chemical reaction to produce another compound. Of these 23 amino acids, 20 of them are called standard amino acids, and the other 3 are non-standard amino acids. These are listed on the screen. In this video we are going to focus on the standard amino acids, as they are what make up proteins. These amino acids can be classified many different ways, we are going to classify them in a basic nutritional way. Essential and nonessential. Essential amino acids cannot be made by the body, so, they must come from foods we eat. Nonessential amino acids are amino acids that our bodies can produce even if we dont get them from the food we eat. There is a subgroup of nonessential amino acids that are considered to be conditional amino acids. The list of conditional amino acids is not definitive. For instance, in times of illness or stress, there are certain amino acids the body cant produce sufficiently, and children's bodys havent developed the ability to produce certain amino acids yet. There are 9 essential and 11 nonessential amino acids, ive listed them on the screen. So, how do amino acids form proteins? Proteins are built from the 20 standard amino acids. Well, the first thing that happens is that 2 amino acids come together to form a peptide bond. A peptide bond is when the carboxyl group of one amino acid bonds with the amino group of another amino acid, as you can see here. If you notice 2 hydrogen atoms and one oxygen atom have been removed from the peptide bonding process. So, the peptide bonding results in the release of a water moleculeh20. But, we are not finished. More amino acids can link in, and form what is called a polypeptide chain. Some proteins are single polypeptide chains, and other proteins have polypeptide chains linked together. Not all protein contains all 20 of the standard amino acids. Not all protein contains all 20 of the standard amino acids. Proteins are often labeled as complete or incomplete protein. A Complete protein is a protein source that contains a sufficient quantity of all 9 of the essential amino acids that we discussed earlier. An incomplete protein does not contain a sufficient quantity of all 9 of the essential amino acids. Complete protein foods includeanimal foods such as red meat, poultry, pork and fish. Eggs and dairy products such as cows milk, yogurt, and cheese. Plant foods such as soy products, black beans, kidney beans, pumpkin seeds, quinoa, pistachios, just to name a few. You can also combine incomplete protein foods to create a complete protein meal. Amino acids also make up most enzymes. These Enzymes are proteins, so they are made by linking amino acids together in a specific and unique order. This chain of amino acids then forms a unique shape that allows the enzyme created to serve a single specific purpose. Enzymes function as catalysts, which means that they speed up the rate at which metabolic processed and reactions occur. Amino acids can also be metabolized for energy. Some hormones like epinephrine, also known as adrenaline, are amino acid derived. Some neurotransmitters like serotonin are derived from amino acids. The amino acid arginine is a precursor of nitric oxide, which helps regulate blood pressure, improves sleep quality and increases endurance and strength. Glutathione, which is a powerful antioxidant is formed from amino acids. Other sources... https://en.wikipedia.org/wiki/Amino_acid http://www.fitday.com/fitness-article... http://www.ivyroses.com/HumanBiology/...

Amino Acid Metabolism!

Our current examination of proteins and amino acids will cover the metabolism of the protein we eat, dietary protein, and catabolic situations in the body. Amino acids are the "building-blocks" of proteins. Proteins, from the Greek word meaning "of prime importance," constitute an array of structures. Examples of these structures include hormones, enzymes, and muscle tissue. The primary function of protein is growth and repair of body tissue (anabolism). Proteins can also be used as energy through catabolic (breakdown of tissues) reactions, such as gluconeogenesis-the process of making glucose from amino acids, lactate, glycerol, or pyruvate in the liver or kidneys. Our current examination of proteins and amino acids will cover the metabolism of the protein we eat, dietary protein, and catabolic situations in the body. A general understanding of the molecular structure of proteins and amino acids is needed to understand their metabolism. Protein is comprised of carbon, hydrogen, oxygen and, most importantly, nitrogen. Protein may also contain sulfur, cobalt, iron, and phosphorus. These elements form the "building blocks" of protein, amino acids . A protein molecule is made up of l Continue reading >>

Share on facebook

Popular Questions

  1. manohman

    Why can't fat be converted into Glucose?

    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?

  2. Czarcasm

    manohman said: ↑
    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?
    Click to expand... Both glucose and fatty acids can be stored in the body as either glycogen for glucose (stored mainly in the liver or skeletal cells) or for FA's, as triacylglycerides (stored in adipose cells). We cannot store excess protein. It's either used to make other proteins, or flushed out of the body if in excess; that's generally the case but we try to make use of some of that energy instead of throwing it all away.
    When a person is deprived of nutrition for a period of time and glycogen stores are depleted, the body will immediately seek out alternative energy sources. Fats (stored for use) are the first priority over protein (which requires the breakdown of tissues such as muscle). We can mobilize these FA's to the liver and convert them to Acetyl-CoA to be used in the TCA cycle and generate much needed energy. On the contrary, when a person eats in excess (a fatty meal high in protein), it's more efficient to store fatty acids as TAG's over glycogen simply because glycogen is extremely hydrophilic and attracts excess water weight; fatty acids are largely stored anhydrously and so you essentially get more bang for your buck. This is evolutionary significant and why birds are able to stay light weight but fly for periods at a time, or why bears are able to hibernate for months at a time. Proteins on the other hand may be used anabolically to build up active tissues (such as when your working out those muscles), unless you live a sedentary lifestyle (less anabolism and therefore, less use of the proteins). As part of the excretion process, protein must be broken down to urea to avoid toxic ammonia and in doing so, the Liver can extract some of that usable energy for storage as glycogen.
    Also, it is worth noting that it is indeed possible to convert FA's to glucose but the pathway can be a little complex and so in terms of energy storage, is not very efficient. The process involves converting Acetyl-CoA to Acetone (transported out of mitochondria to cytosol) where it's converted to Pyruvate which can then be used in the Gluconeogenesis pathway to make Glucose and eventually stored as Glycogen. Have a look for yourself if your interested: http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002116.g003/originalimage (and this excludes the whole glycogenesis pathway, which hasn't even begun yet).
    TLDR: it's because proteins have no ability to be stored in the body, but we can convert them to glycogen for storage during the breakdown process for excretion. Also, in terms of energy, it's a more efficient process than converting FA's to glycogen for storage.

  3. soccerman93

    This is where biochem comes in handy. Czarcasm gives a really good in depth answer, but a simpler approach is to count carbons. The first step of gluconeogenesis(formation of glucose) requires pyruvate, a 3 carbon molecule. Acetyl Co-A is a 2 carbon molecule, and most animals lack the enzymes (malate synthase and isocitrate lyase) required to convert acetyl co-A into a 3 carbon molecule suitable for the gluconeogenesis pathway. The ketogenic pathway is not efficient, as czarcasm pointed out. While acetyl co-A can indeed be used to form citric acid intermediates, these intermediates will be used in forming ATP, not glucose. Fatty acid oxidation does not yield suitable amounts of pyruvate, which is required for gluconeogenesis. This is part of why losing weight is fairly difficult for those that are overweight, we can't efficiently directly convert fat to glucose, which we need a fairly constant supply of. Sorry, that got a little long-winded

  4. -> Continue reading
read more
Share on facebook

Ninja Nerds, In this video we discuss transamination, and oxidative deamination along with the enzymes they're associated with. We also go into great detail on their input into gluconeogenesis as well as ATP production. ***PLEASE SUPPORT US*** PATREON | https://www.patreon.com/NinjaNerdScience ***EVERY DOLLAR HELPS US GROW & IMPROVE OUR QUALITY*** FACEBOOK | https://www.facebook.com/NinjaNerdSci... INSTAGRAM | https://www.instagram.com/ninjanerdsc... For general inquiries email us at: [email protected]

Amino Acid Metabolism

What is anabolism? Does it require or release energy? Synthesis of biological compounds. Require energy. What is catabolism? Does it require or release energy? The breakdown of compounds. Releases energy. What is the main dietary source of amino acids? Which dietary source is the most efficient in catabolism but yields the lowest amount of energy? What is the downfall of using protein catabolism to yield an intermediate amount of energy? Nitrogen containing byproduct must be eliminated. 1. Synthesis of nonessential amino acids. 2. Removal and breaking down of excess amino acids. 3. Removal of ammonia from the blood and converting it to urea. 4. Making other nitrogen-containing compounds What are three ways amino acids feed into other pathways? Pyruvate, acetyl CoA, and TCA intermediates. Because amino acids can by converted to pyruvate, they can also be further converted to? Are fatty acids able to be converted to glucose? Nope, they are converted to AcetylCoA which can not be used to make glucose. When the liver converts lactic acid back to glucose. What are the options for pyruvate conversion in anaerobic and aerobic situations? Anaerobic - Quick energy needs. Pyruvate is conver Continue reading >>

Share on facebook

Popular Questions

  1. manohman

    Why can't fat be converted into Glucose?

    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?

  2. Czarcasm

    manohman said: ↑
    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?
    Click to expand... Both glucose and fatty acids can be stored in the body as either glycogen for glucose (stored mainly in the liver or skeletal cells) or for FA's, as triacylglycerides (stored in adipose cells). We cannot store excess protein. It's either used to make other proteins, or flushed out of the body if in excess; that's generally the case but we try to make use of some of that energy instead of throwing it all away.
    When a person is deprived of nutrition for a period of time and glycogen stores are depleted, the body will immediately seek out alternative energy sources. Fats (stored for use) are the first priority over protein (which requires the breakdown of tissues such as muscle). We can mobilize these FA's to the liver and convert them to Acetyl-CoA to be used in the TCA cycle and generate much needed energy. On the contrary, when a person eats in excess (a fatty meal high in protein), it's more efficient to store fatty acids as TAG's over glycogen simply because glycogen is extremely hydrophilic and attracts excess water weight; fatty acids are largely stored anhydrously and so you essentially get more bang for your buck. This is evolutionary significant and why birds are able to stay light weight but fly for periods at a time, or why bears are able to hibernate for months at a time. Proteins on the other hand may be used anabolically to build up active tissues (such as when your working out those muscles), unless you live a sedentary lifestyle (less anabolism and therefore, less use of the proteins). As part of the excretion process, protein must be broken down to urea to avoid toxic ammonia and in doing so, the Liver can extract some of that usable energy for storage as glycogen.
    Also, it is worth noting that it is indeed possible to convert FA's to glucose but the pathway can be a little complex and so in terms of energy storage, is not very efficient. The process involves converting Acetyl-CoA to Acetone (transported out of mitochondria to cytosol) where it's converted to Pyruvate which can then be used in the Gluconeogenesis pathway to make Glucose and eventually stored as Glycogen. Have a look for yourself if your interested: http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002116.g003/originalimage (and this excludes the whole glycogenesis pathway, which hasn't even begun yet).
    TLDR: it's because proteins have no ability to be stored in the body, but we can convert them to glycogen for storage during the breakdown process for excretion. Also, in terms of energy, it's a more efficient process than converting FA's to glycogen for storage.

  3. soccerman93

    This is where biochem comes in handy. Czarcasm gives a really good in depth answer, but a simpler approach is to count carbons. The first step of gluconeogenesis(formation of glucose) requires pyruvate, a 3 carbon molecule. Acetyl Co-A is a 2 carbon molecule, and most animals lack the enzymes (malate synthase and isocitrate lyase) required to convert acetyl co-A into a 3 carbon molecule suitable for the gluconeogenesis pathway. The ketogenic pathway is not efficient, as czarcasm pointed out. While acetyl co-A can indeed be used to form citric acid intermediates, these intermediates will be used in forming ATP, not glucose. Fatty acid oxidation does not yield suitable amounts of pyruvate, which is required for gluconeogenesis. This is part of why losing weight is fairly difficult for those that are overweight, we can't efficiently directly convert fat to glucose, which we need a fairly constant supply of. Sorry, that got a little long-winded

  4. -> Continue reading
read more

No more pages to load

Related Articles

  • Amino Acids Can Be Used By The Body To Make Glucose And Fatty Acids True Or False

    Metabolism is the sum of all the chemical and physical processes by which the body breaks down and builds up molecules. All forms of life maintain a balance between anabolic and catabolic reactions, which determines if the body achieves growth and repair or if it persists in a state of loss. Metabolic pathways are clusters of chemical reactions that occur sequentially and achieve a particular goal, such as the breakdown of glucose for energy. The ...

    ketosis Apr 1, 2018
  • How Can Amino Acids Be Converted To Glucose?

    Glucose is formed by hydrolysis of glucose 6-phosphate in a reaction catalyzed by glucose 6-phosphatase. We will examine each of these steps in turn. 16.3.2. The Conversion of Pyruvate into Phosphoenolpyruvate Begins with the Formation of Oxaloacetate The first step in gluconeogenesis is the carboxylation of pyruvate to form oxaloacetate at the expense of a molecule of ATP . Then, oxaloacetate is decarboxylated and phosphorylated to yield phosph ...

    ketosis Apr 21, 2018
  • Can Amino Acids Be Converted To Glucose

    Amino acids assimilated by your body cells face two possible fates. One of them is protein synthesis, either directly, in the form in which they have been assimilated into the cell, or after being restructured by transamination to specific other (non-essential) amino acids , needed by the cell to assemble particular proteins. The other fate is amino acid degradation, i.e. splitting amino group from the carbon skeleton, with the amino group eithe ...

    ketosis Apr 24, 2018
  • Amino Acids Can Be Used By The Body To Make Glucose And Fatty Acids Quizlet

    After absorption, enzymes and coenzymes can In metabolism they are broken down further into Metabolic reactions take place inside of cells, especially Anabolism is the building up of body compounds and Catabolism is the breakdown of body compounds A high-energy compound called adenosine triphosphate (ATP) is made in protein catalysts that cause chemical reactions. (Facilitators of metabolic reactions) organic molecules that function as enzyme he ...

    ketosis Apr 2, 2018
  • What Amino Acids Can Be Converted To Glucose?

    Amino acids can be classified as being “glucogenic” or “ketogenic” based on the type of intermediates that are formed during their breakdown or catabolism. The catabolism of glucogenic amino acids produces either pyruvate or one of the intermediates in the Krebs Cycle. The catabolism of ketogenic amino acids produces acetyl CoA or acetoacetyl CoA (see Figure 1). There is a rare medical condition in which a person is deficient in the pyruv ...

    ketosis Mar 31, 2018
  • Amino Acids Can Be Used By The Body To Make Glucose And Fatty Acids.

    Front Back .Wirisformula{ margin:0 !important; padding:0 !important; vertical-align:top !important;} Metabolism The sum total of all the chemcial reactions that go on in living cells. Energy metabolism includes all the reactions by which the body obtains and spends energy from food. Example: Nutrients provide the body with FUEL and follows them through a series of reactions that release energy from their chemical bonds. As the bonds break, they r ...

    ketosis Apr 1, 2018

More in ketosis