diabetestalk.net

Treatment For Dka And Hhs

Diabetic Ketoacidosis And Hyperosmolar Hyperglycemic State In Adults: Treatment

Diabetic Ketoacidosis And Hyperosmolar Hyperglycemic State In Adults: Treatment

INTRODUCTION Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS, also known as hyperosmotic hyperglycemic nonketotic state [HHNK]) are two of the most serious acute complications of diabetes. They are part of the spectrum of hyperglycemia, and each represents an extreme in the spectrum. The treatment of DKA and HHS in adults will be reviewed here. The epidemiology, pathogenesis, clinical features, evaluation, and diagnosis of these disorders are discussed separately. DKA in children is also reviewed separately. (See "Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Epidemiology and pathogenesis".) (See "Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Clinical features, evaluation, and diagnosis".) Continue reading >>

Diabetic Ketoacidosis And Hyperosmolar Hyperglycemic State In Adults: Clinical Features, Evaluation, And Diagnosis

Diabetic Ketoacidosis And Hyperosmolar Hyperglycemic State In Adults: Clinical Features, Evaluation, And Diagnosis

INTRODUCTION Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS, also known as hyperosmotic hyperglycemic nonketotic state [HHNK]) are two of the most serious acute complications of diabetes. DKA is characterized by ketoacidosis and hyperglycemia, while HHS usually has more severe hyperglycemia but no ketoacidosis (table 1). Each represents an extreme in the spectrum of hyperglycemia. The precipitating factors, clinical features, evaluation, and diagnosis of DKA and HHS in adults will be reviewed here. The epidemiology, pathogenesis, and treatment of these disorders are discussed separately. DKA in children is also reviewed separately. (See "Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Epidemiology and pathogenesis".) Continue reading >>

Hyperosmolar Hyperglycemic State (hhs)

Hyperosmolar Hyperglycemic State (hhs)

By Erika F. Brutsaert, MD, Assistant Professor, Albert Einstein College of Medicine; Attending Physician, Montefiore Medical Center Hyperosmolar hyperglycemic state is a metabolic complication of diabetes mellitus (DM) characterized by severe hyperglycemia, extreme dehydration, hyperosmolar plasma, and altered consciousness. It most often occurs in type 2 DM, often in the setting of physiologic stress. HHS is diagnosed by severe hyperglycemia and plasma hyperosmolality and absence of significant ketosis. Treatment is IV saline solution and insulin. Complications include coma, seizures, and death. Hyperosmolar hyperglycemic state (HHSpreviously referred to as hyperglycemic hyperosmolar nonketotic coma [HHNK] and nonketotic hyperosmolar syndrome) is a complication of type 2 diabetes mellitus and has an estimated mortality rate of up to20%, which is significantly higher than the mortality for diabetic ketoacidosis (currently < 1%). It usually develops after a period of symptomatic hyperglycemia in which fluid intake is inadequate to prevent extreme dehydration due to the hyperglycemia-induced osmotic diuresis. Acute infections and other medical conditions Drugs that impair glucose tolerance (glucocorticoids) or increase fluid loss (diuretics) Serum ketones are not present because the amounts of insulin present in most patients with type 2 DM are adequate to suppress ketogenesis. Because symptoms of acidosis are not present, most patients endure a significantly longer period of osmotic dehydration before presentation, and thus plasma glucose (> 600 mg/dL [> 33.3 mmol/L]) and osmolality (> 320 mOsm/L) are typically much higher than in diabetic ketoacidosis (DKA). The primary symptom of HHS is altered consciousness varying from confusion or disorientation to coma, usually as Continue reading >>

Hyperosmolar Hyperglycemic State

Hyperosmolar Hyperglycemic State

Background Hyperosmolar hyperglycemic state (HHS) is one of two serious metabolic derangements that occurs in patients with diabetes mellitus (DM). [1] It is a life-threatening emergency that, although less common than its counterpart, diabetic ketoacidosis (DKA), has a much higher mortality rate, reaching up to 5-10%. (See Epidemiology.) HHS was previously termed hyperosmolar hyperglycemic nonketotic coma (HHNC); however, the terminology was changed because coma is found in fewer than 20% of patients with HHS. [2] HHS is most commonly seen in patients with type 2 DM who have some concomitant illness that leads to reduced fluid intake, as seen, for example, in elderly institutionalized persons with decreased thirst perception and reduced ability to drink water. [3] Infection is the most common preceding illness, but many other conditions, such as stroke or myocardial infarction, can cause this state. [3] Once HHS has developed, it may be difficult to identify or differentiate it from the antecedent illness. (See Etiology.) HHS is characterized by hyperglycemia, hyperosmolarity, and dehydration without significant ketoacidosis. Most patients present with severe dehydration and focal or global neurologic deficits. [2, 4, 5] The clinical features of HHS and DKA overlap and are observed simultaneously (overlap cases) in up to one third of cases. According to the consensus statement published by the American Diabetes Association, diagnostic features of HHS may include the following (see Workup) [4, 6] : Effective serum osmolality of 320 mOsm/kg or greater Profound dehydration, up to an average of 9L Detection and treatment of an underlying illness are critical. Standard care for dehydration and altered mental status is appropriate, including airway management, intravenous (I Continue reading >>

Hyperglycemic Crises: Diabetic Ketoacidosis (dka), And Hyperglycemic Hyperosmolar State (hhs)

Hyperglycemic Crises: Diabetic Ketoacidosis (dka), And Hyperglycemic Hyperosmolar State (hhs)

Go to: Diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar state (HHS) are acute metabolic complications of diabetes mellitus that can occur in patients with both type 1 and 2 diabetes mellitus. Timely diagnosis, comprehensive clinical and biochemical evaluation, and effective management is key to the successful resolution of DKA and HHS. Critical components of the hyperglycemic crises management include coordinating fluid resuscitation, insulin therapy, and electrolyte replacement along with the continuous patient monitoring using available laboratory tools to predict the resolution of the hyperglycemic crisis. Understanding and prompt awareness of potential of special situations such as DKA or HHS presentation in comatose state, possibility of mixed acid-base disorders obscuring the diagnosis of DKA, and risk of brain edema during the therapy are important to reduce the risks of complications without affecting recovery from hyperglycemic crisis. Identification of factors that precipitated DKA or HHS during the index hospitalization should help prevent subsequent episode of hyperglycemic crisis. For extensive review of all related areas of Endocrinology, visit WWW.ENDOTEXT.ORG. Go to: INTRODUCTION Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS) represent two extremes in the spectrum of decompensated diabetes. DKA and HHS remain important causes of morbidity and mortality among diabetic patients despite well developed diagnostic criteria and treatment protocols (1). The annual incidence of DKA from population-based studies is estimated to range from 4 to 8 episodes per 1,000 patient admissions with diabetes (2). The incidence of DKA continues to increase and it accounts for about 140,000 hospitalizations in the US in 2009 (Figure 1 a) (3). Continue reading >>

66: Diabetic Ketoacidosis (dka) And Hyperosmolar Hyperglycemic State (hhs)

66: Diabetic Ketoacidosis (dka) And Hyperosmolar Hyperglycemic State (hhs)

In this episode I’ll discuss diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS). Subscribe on iTunes, Android, or Stitcher Definition Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS) are the most serious acute complications of diabetes. These diabetic crises cause thousands of deaths annually in the US. DKA and HHS differ clinically according to the presence of ketoacidosis and the degree of hyperglycemia. In DKA metabolic acidosis is often the major finding. The serum glucose is below 800 mg/dL and usually in the 350-500 mg/dL range. DKA usually evolves rapidly. In HHS, there is little or no ketoacidosis and the serum glucose concentration frequently exceeds 1000 mg/dL. HHS usually evolves over a period of several days. Overlap between DKA and HHS occurs in more than one-third of patients. Pathogenesis Insulin deficiency/resistance and glucagon excess are responsible for the development of DKA and HHS. The deficiency in insulin (either absolute or relative deficiency) is more severe in DKA compared with HHS. In HHS the residual insulin secretion and its systemic activity minimizes the development of ketoacidosis but is not adequate to control hyperglycemia. In patients with absolute or relative insulin deficiency, DKA and HHS are usually precipitated by a stressor such as infection or discontinuation of / inadequate insulin therapy. Treatment The treatment of DKA and HHS involves the correction of fluid and electrolyte abnormalities, followed by the administration of insulin. Specific treatment protocols include: ADA guidelines, Joslin protocol, and Yale New Haven. The order of treatment is essential. A patient in DKA or HHS is already volume-depleted. Insulin forces glucose as well as potassium and water into cells. Therefor Continue reading >>

Hyperosmolar Hyperglycemic State

Hyperosmolar Hyperglycemic State

Author: Dipa Avichal, DO; Chief Editor: George T Griffing, MD more... Hyperosmolar hyperglycemic state (HHS) isone of two serious metabolic derangements that occurs in patients with diabetes mellitus (DM). [ 1 ] It is alife-threatening emergency that, although less common than its counterpart, diabetic ketoacidosis (DKA), has a much higher mortality rate, reaching up to 5-10%. (See Epidemiology.) HHS was previously termed hyperosmolar hyperglycemic nonketotic coma (HHNC); however, the terminology was changed because coma is found in fewer than 20% of patients with HHS. [ 2 ] HHS is most commonly seen in patients with type 2DM who have some concomitant illness that leads to reduced fluid intake, as seen, for example, in elderly institutionalizedpersons with decreased thirst perception andreduced ability to drink water. [ 3 ] Infection is the most common preceding illness, but many other conditions, such as stroke or myocardial infarction, can cause this state. [ 3 ] Once HHS has developed, it may be difficult to identify or differentiate it from the antecedent illness. (See Etiology.) HHS is characterized by hyperglycemia, hyperosmolarity, and dehydration without significant ketoacidosis. Most patients present with severe dehydration and focal or global neurologic deficits. [ 2 , 4 , 5 ] The clinical features of HHS and DKA overlap and are observed simultaneously (overlap cases) in up toone thirdof cases. According to the consensus statement published by the American Diabetes Association, diagnostic features of HHS may include the following (see Workup) [ 4 , 6 ] : Plasma glucose level of 600 mg/dL or greater Effective serum osmolality of 320 mOsm/kg or greater Profound dehydration, up to an average of 9L Bicarbonate concentration greater than 15 mEq/L Small ketonuria a Continue reading >>

Treatment Of Diabetic Ketoacidosis (dka)/hyperglycemic Hyperosmolar State (hhs): Novel Advances In The Management Of Hyperglycemic Crises (uk Versus Usa)

Treatment Of Diabetic Ketoacidosis (dka)/hyperglycemic Hyperosmolar State (hhs): Novel Advances In The Management Of Hyperglycemic Crises (uk Versus Usa)

Go to: Diabetic Ketoacidosis Prior to the discovery and isolation of insulin in 1922 by Banting and Best, type 1 diabetes was universally fatal within a few months of initial diagnosis. Once mass production was started, the challenge to those early pioneers of insulin treatment was learning how to use this new wonder drug, e.g., how much to give and how often to give it, in order to treat the hyperglycemia without raising the inherent risk of hypoglycemia. In 1945, Howard Root in Boston described how they had improved the outcomes for people with diabetic ketoacidosis (DKA), reducing mortality to 12% by 1940 and to 1.6% by 1945 using high doses of insulin—giving an average of 83 units within the first 3 h of treatment in 1940 and 216 units by 1945 [3]. They described how in 1945, they used an average of 287 units in the first 24 h, but this ranged from 50 to 1770 units [3]. In Birmingham, UK, high-dose insulin was also being used with similar success—doses varying depending on the degree of consciousness, with those unarousable on admission given doses between 500 and 1400 units per 24 h [4]. DKA remains a medical emergency; over time, mortality has continued to fall but remains a significant risk, especially amongst the young, socially isolated and when care provision is fragmented [5•, 6•]. Overall, the diagnosis and treatment of DKA are very similar in the UK and USA with a few differences. The UK has separate guidelines on the management of DKA [7], while the USA has a position statement on DKA and HHS that was updated in 2009 [8]. The UK guideline differs in several ways from the US position statement. The concept of low-dose intravenous insulin was established in the late 1960s and early 1970s by teams on both sides of the Atlantic. The UK championed the u Continue reading >>

Diabetic Ketoacidosis And Hyperglycemic Hyperosmolar Syndrome

Diabetic Ketoacidosis And Hyperglycemic Hyperosmolar Syndrome

In Brief Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic syndrome (HHS) are two acute complications of diabetes that can result in increased morbidity and mortality if not efficiently and effectively treated. Mortality rates are 2–5% for DKA and 15% for HHS, and mortality is usually a consequence of the underlying precipitating cause(s) rather than a result of the metabolic changes of hyperglycemia. Effective standardized treatment protocols, as well as prompt identification and treatment of the precipitating cause, are important factors affecting outcome. The two most common life-threatening complications of diabetes mellitus include diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar syndrome (HHS). Although there are important differences in their pathogenesis, the basic underlying mechanism for both disorders is a reduction in the net effective concentration of circulating insulin coupled with a concomitant elevation of counterregulatory hormones (glucagon, catecholamines, cortisol, and growth hormone). These hyperglycemic emergencies continue to be important causes of morbidity and mortality among patients with diabetes. DKA is reported to be responsible for more than 100,000 hospital admissions per year in the United States1 and accounts for 4–9% of all hospital discharge summaries among patients with diabetes.1 The incidence of HHS is lower than DKA and accounts for <1% of all primary diabetic admissions.1 Most patients with DKA have type 1 diabetes; however, patients with type 2 diabetes are also at risk during the catabolic stress of acute illness.2 Contrary to popular belief, DKA is more common in adults than in children.1 In community-based studies, more than 40% of African-American patients with DKA were >40 years of age and more than 2 Continue reading >>

Hyperosmolar Hyperglycemic Statetreatment & Management

Hyperosmolar Hyperglycemic Statetreatment & Management

Standard Care for Dehydration and Altered Mental Status Diagnosis and management guidelines for hyperglycemic crises are available from the American Diabetes Association. [ 6 , 10 , 24 ] The main goals in the treatment of hyperosmolar hyperglycemic state (HHS) are as follows: To vigorously rehydrate the patient while maintaining electrolyte homeostasis To monitor and assist cardiovascular, pulmonary, renal, and central nervous system (CNS) function In an emergency situation, whenever possible, contact the receiving facility while en route to ensure preparation for a comatose, dehydrated, or hyperglycemic patient. When appropriate, notify the facility of a possible cerebrovascular accident or myocardial infarction (MI). Initiation of insulin therapy in the emergency department (ED) through a subcutaneous insulin pump may be an alternative to intravenous (IV) insulin infusion. [ 25 ] Airway management is the top priority. In comatose patients in whom airway protection is of concern, endotracheal intubation may be indicated. Rapid and aggressive intravascular volume replacement is always indicated as the first line of therapy for patients with HHS. Isotonic sodium chloride solution is the fluid of choice for initial treatment because sodium and water must be replaced in these severely dehydrated patients. Although many patients with HHS respond to fluids alone, IV insulin in dosages similar to those used in diabetic ketoacidosis (DKA) can facilitate correction of hyperglycemia. [ 26 ] Insulin used without concomitant vigorous fluid replacement increases the risk of shock. Adjust insulin or oral hypoglycemic therapy on the basis of the patients insulin requirement once serum glucose level has been relatively stabilized. All patients diagnosed with HHS require hospitalizati Continue reading >>

Hyperosmolar Hyperglycemic State Treatment & Management

Hyperosmolar Hyperglycemic State Treatment & Management

Approach Considerations Diagnosis and management guidelines for hyperglycemic crises are available from the American Diabetes Association. [6, 10, 24] The main goals in the treatment of hyperosmolar hyperglycemic state (HHS) are as follows: In an emergency situation, whenever possible, contact the receiving facility while en route to ensure preparation for a comatose, dehydrated, or hyperglycemic patient. When appropriate, notify the facility of a possible cerebrovascular accident or myocardial infarction (MI). Initiation of insulin therapy in the emergency department (ED) through a subcutaneous insulin pump may be an alternative to intravenous (IV) insulin infusion. [25] Airway management is the top priority. In comatose patients in whom airway protection is of concern, endotracheal intubation may be indicated. Rapid and aggressive intravascular volume replacement is always indicated as the first line of therapy for patients with HHS. Isotonic sodium chloride solution is the fluid of choice for initial treatment because sodium and water must be replaced in these severely dehydrated patients. Although many patients with HHS respond to fluids alone, IV insulin in dosages similar to those used in diabetic ketoacidosis (DKA) can facilitate correction of hyperglycemia. [26] Insulin used without concomitant vigorous fluid replacement increases the risk of shock. Adjust insulin or oral hypoglycemic therapy on the basis of the patient’s insulin requirement once serum glucose level has been relatively stabilized. All patients diagnosed with HHS require hospitalization; virtually all need admission to a monitored unit managed by medicine, pediatrics, or the intensive care unit (ICU) for close monitoring. When available, an endocrinologist should direct the care of these patien Continue reading >>

Treatment Of Diabetic Ketoacidosis (dka)/hyperglycemic Hyperosmolar State (hhs): Novel Advances In The Management Of Hyperglycemic Crises (uk Versus Usa)

Treatment Of Diabetic Ketoacidosis (dka)/hyperglycemic Hyperosmolar State (hhs): Novel Advances In The Management Of Hyperglycemic Crises (uk Versus Usa)

Treatment of Diabetic Ketoacidosis (DKA)/Hyperglycemic Hyperosmolar State (HHS): Novel Advances in the Management of Hyperglycemic Crises (UK Versus USA) Current Diabetes Reports 2017, 17 (5): 33 PURPOSE OF REVIEW: Diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar state (HHS) are diabetic emergencies that cause high morbidity and mortality. Their treatment differs in the UK and USA. This review delineates the differences in diagnosis and treatment between the two countries. RECENT FINDINGS: Large-scale studies to determine optimal management of DKA and HHS are lacking. The diagnosis of DKA is based on disease severity in the USA, which differs from the UK. The diagnosis of HHS in the USA is based on total rather than effective osmolality. Unlike the USA, the UK has separate guidelines for DKA and HHS. Treatment of DKA and HHS also differs with respect to timing of fluid and insulin initiation. There is considerable overlap but important differences between the UK and USA guidelines for the management of DKA and HHS. Further research needs to be done to delineate a unifying diagnostic and treatment protocol. Continue reading >>

Hyperosmolar Hyperglycemic State

Hyperosmolar Hyperglycemic State

GREGG D. STONER, MD, University of Illinois College of Medicine, Peoria, Illinois Am Fam Physician.2017Dec1;96(11):729-736. Hyperosmolar hyperglycemic state is a life-threatening emergency manifested by marked elevation of blood glucose and hyperosmolarity with little or no ketosis. Although there are multiple precipitating causes, underlying infections are the most common. Other causes include certain medications, nonadherence to therapy, undiagnosed diabetes mellitus, substance abuse, and coexisting disease. In children and adolescents, hyperosmolar hyperglycemic state is often present when type 2 diabetes is diagnosed. Physical findings include profound dehydration and neurologic symptoms ranging from lethargy to coma. Treatment begins with intensive monitoring of the patient and laboratory values, especially glucose, sodium, and potassium levels. Vigorous correction of dehydration is critical, requiring an average of 9 L of 0.9% saline over 48 hours in adults. After urine output is established, potassium replacement should begin. Once dehydration is partially corrected, adults should receive an initial bolus of 0.1 units of intravenous insulin per kg of body weight, followed by a continuous infusion of 0.1 units per kg per hour (or a continuous infusion of 0.14 units per kg per hour without an initial bolus) until the blood glucose level decreases below 300 mg per dL. In children and adolescents, dehydration should be corrected at a rate of no more than 3 mOsm per hour to avoid cerebral edema. Identification and treatment of underlying and precipitating causes are necessary. Hyperosmolar hyperglycemic state (HHS) is a life-threatening endocrine emergency that most commonly affects adults with type 2 diabetes mellitus. 1 , 2 However, the incidence increased by 52.4% Continue reading >>

Difference Between Dka And Hhs

Difference Between Dka And Hhs

DKA vs HHS “DKA” means “diabetic ketoacidosis” and “HHS” means “Hyperosmolar Hyperglycemic Syndrome.” Both DKA and HHS are the two complications of diabetes mellitus. Though there are many differences between DKA and HHS, the basic problem is associated with insulin deficiency. When comparing the two, HHS has a higher mortality rate. When DKA has a mortality rate of 2 to 5 per cent, HHS has a 15 per cent mortality rate. Diabetic ketoacidosis is seen mainly in type 1 diabetic patients but is also seen in some type 2 diabetic patients. Hyperosmolar Hyperglycemic Syndrome is mainly seen in older patients having type 2 diabetes. DKA is mainly characterized by hyperglycemia, acidosis-producing derangements, and dehydration. Infection, disruption of insulin, and onset of diabetes are some of the common causes of DKA. Hyperglycemia, dehydration and hyperosmolarity are some of the common characteristics of Hyperosmolar Hyperglycemic Syndrome. But HHS does not have ketoacidosis. Some of the early symptoms of diabetic ketoacidosis include increased thirst and increased urination. Other symptoms include malaise, weakness, and fatigue. Bacterial infection, illness, insulin deficiency, stress, and insulin infusion catheter blockage are some of the causes that lead to DKA. When compared to diabetic ketoacidosis, the Hyperosmolar Hyperglycemic Syndrome develops only over the course of a week. Diabetic ketoacidosis develops rapidly. Increased dehydration, acute illness, vomiting, dementia, pneumonia, immobility, and urinary tract infections are some of the common causes of Hyperosmolar Hyperglycemic Syndrome. One of the main goals of treatment of DKA involves correcting high blood glucose levels by injecting insulin as well as replacing fluid lost because of vomiting an Continue reading >>

Treatment Of Diabetic Ketoacidosis (dka)/hyperglycemic Hyperosmolar State (hhs): Novel Advances In The Management Of Hyperglycemic Crises (uk Versus Usa)

Treatment Of Diabetic Ketoacidosis (dka)/hyperglycemic Hyperosmolar State (hhs): Novel Advances In The Management Of Hyperglycemic Crises (uk Versus Usa)

#The Author(s) 2017. This article is published with open access at Springerlink.com Purpose of Review Diabetic ketoacidosis (DKA) and hyper- glycemic hyperosmolar state (HHS) are diabetic emergencies that cause high morbidity and mortality. Their treatment dif- fers in the UK and USA. This review delineates the differ- ences in diagnosis and treatment between the two countries. Recent Findings Large-scale studies to determine optimal man- agement of DKA and HHS are lacking. The diagnosis of DKA is based on disease severity in the USA, which differs from the UK. The diagnosis of HHS in the USA is based on total rather than effective osmolality. Unlike the USA, the UK has separate guidelines for DKA and HHS. Treatment of DKA and HHS also differs with respect to timing of fluid and insulin initiation. Summary There is considerable overlap but important differ- ences between the UK and USA guidelines for the manage- ment of DKA and HHS. Further research needs to be done to delineate a unifying diagnostic and treatment protocol. Keywords Diabetic ketoacidosis .Management .Survey . Diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar state (HHS) are hyperglycemic emergencies that continue to account for increased burden of hospitaliza- tions in both the USA [1] and UK [2]. Historically, both DKA and HHS were initially described as one entity but subse- quently recognized as separate conditions. Since the advent of insulin, mortality has fallen for DKA and HHS, but the risk remains high. Previous work from the UK and seminal ran- domized controlled studies performed in the USA by Abbas Kitabchi form the basis of treatment of DKA and HHS. However, only a few of these were randomized studies to guide clinicians on the best way to manage DKA and HHS. Whilst the principles Continue reading >>

More in ketosis