diabetestalk.net

Starvation Ketoacidosis Signs And Symptoms

Ketones And Exercise – What You Need To Know

Ketones And Exercise – What You Need To Know

A researcher on diabetes and exercise describes why exercise elevates risk of DKA for people with Type 1 diabetes. In a new set of guidelines for Type 1 diabetes and exercise, I and my fellow researchers warn that people with Type 1 diabetes need to monitor for elevated levels of ketones during exercise. If you have Type 1 and exercise regularly, testing for ketones could save your life. Ketones develop in our bodies when we mobilize fat as fuel. Fat is an important energy source that is used by the body at rest and during exercise. Ketones are a general term in medicine used to describe the three main ketone bodies that the liver produces – acetoacetate, beta-hydroxybutyrate, and acetone. Read “Too Many with Type 1 Don’t Test for Ketones.” sponsor Ketone bodies help fuel the brain and skeletal muscle during times of prolonged fasting or starvation, so in a way ketones are very important for survival. We actually have enough stored fat to generate energy for days, but this can cause a number of metabolic problems, the most important of which is ketoacidosis. In Type 1 diabetes, ketone levels can rise even without starvation, if insulin levels drop too much and levels of other hormones like glucagon and catecholamines rise. This rise in ketone levels in diabetes can cause a life-threatening condition called diabetic ketoacidosis (DKA). Read “How DKA Happens and What to Do About it.” The symptoms of ketoacidosis include: A lack of energy, weakness, and fatigue Nausea and vomiting, stomach pain, decreased appetite Rapid weight loss Decreased perspiration, foul or fruity breath Altered consciousness, mild disorientation or confusion Coma sponsor The reasons for developing high ketone levels in Type 1 diabetes include: Missed insulin injections Failure of insulin Continue reading >>

Diabetic Ketoacidosis In The Pediatric Population With Type 1 Diabetes

Diabetic Ketoacidosis In The Pediatric Population With Type 1 Diabetes

Diabetic Ketoacidosis in the Pediatric Population with Type 1 Diabetes Abstract: Diabetic ketoacidosis (DKA) is a leading cause of morbidity and mortality in patients with type 1 diabetes (T1DM). Individuals familiar with this complication of diabetes should be able to identify the earliest signs and symptoms and act promptly to prevent further deterioration. However, even in patients with established diabetes, the rates of DKA are considerable. This chapter discusses in detail the various aspects of DKA in the pediatric population with T1DM. The prevalence and regional effects on the prevalence of DKA as well as the specific risk factors, whether disease, patient, or physician related, are reviewed. Patients with DKA experience a condition of starvation despite the abundance of metabolic substrate (i.e., glucose); the pathophysiological mechanisms responsible for the development of DKA are outlined. Next, a detailed discussion of the clinical aspects of DKA is provided. This includes the clinical findings at presentation, the approach to treatment, and potential complications. Prevention is the best method for reducing rates of DKA. Somewhat different factors apply in patients with new-onset diabetes when compared with those with established diabetes and these are reviewed. Continue reading >>

Ketonuria - Symptom, Causes And Treatment

Ketonuria - Symptom, Causes And Treatment

Ketonuria is a medical condition where high levels of ketone bodies are present in the urine. Ketone bodies occur when cells are broken down for energy. Usually carbohydrates are the main source of energy for the body and small amounts of ketones are produced as a metabolic by-product. These ketone bodies are broken down in the liver and usually high concentrations do not show up in urine. However, during fasting or certain diseases such as type I Diabetes there is glucose shortage in the blood and body resorts to breaking down fats for energy. A high amount of ketones is generated as a metabolic byproduct when fat is the main source of energy. These ketones can buildup in the body and cause further damage. Ketonuria can be a highly dangerous condition if the ketones levels are high. People who have insufficient insulin are more likely to produce ketones. Therefore, people with type 1 diabetes are at higher risk for ketonuria. When the body is producing low amountof insulin, then the body will start preparing for alternate measure for energy.Due to the lack of sufficient insulin to get energy, the body will start breaking down body tissue into ketones, which can be used as fuel in the lack of insulin. The causes and treatmentof ketonuria differ from person to person and the course of treatment depends on the original cause. Here are some of the most common causes of ketonuria. Causes of ketonuria Ketonuria is primarily caused by the high levels of ketones in the urines of a person. So everything that can lead to release of high amount of ketones into the blood or urines can cause ketonuria. The most common such causes of ketonuria causes are: Metabolic abnormalities Any condition which causes a reduction in glucose availability in the bloodstream such as diabetes or ren Continue reading >>

Ketosis Signs & Appetite

Ketosis Signs & Appetite

Ketosis is a metabolic condition in which the body begins breaking down fats, thus releasing carbon fragments known as ketones from the liver. The liver produces ketones as a byproduct of breaking down fatty acids. When your body is in a state of ketosis, your appetite is typically reduced. For this reason, some diets -- such as a low-carbohydrate diet -- aim to trigger a state of ketosis in your body. If too many ketones are released, however, this can have harmful consequences. Video of the Day Having diabetes, not eating or eating a low carbohydrate diet can induce ketosis. This is because ketosis occurs when your body does not have or is not able to use glycogen, which is the body’s stored form of carbohydrate. Because your body does not have glycogen, it switches to its next option: burning fat. This fat releases ketones in the body, inducing a state of ketosis. Because ketones are sweet by nature, one sign of ketosis is fruity-smelling breath. Nausea, fatigue and water and muscle loss are other symptoms. Another sign is an initial boost in appetite, followed by a loss of appetite. This is because when ketosis is induced, this signals the body that it is in a state of starvation. The liver and stomach send signals to the brain that it is starving, and keeps you from feeling satiated. However, over time the body becomes accustomed to its fat burning mode and adapts. Your hunger is then reduced after about a two- to four-week time period. If you are trying to lose weight, inducing a state of ketosis and reducing your appetite can be beneficial. This is because ketosis does not completely reduce your appetite, but instead helps to reduce your cravings for food that can sometimes lead you to overeat. The heart, brain and other muscle tissues “prefer” to burn keto Continue reading >>

Why Dka & Nutritional Ketosis Are Not The Same

Why Dka & Nutritional Ketosis Are Not The Same

There’s a very common misconception and general misunderstanding around ketones. Specifically, the misunderstandings lie in the areas of: ketones that are produced in low-carb diets of generally less than 50 grams of carbs per day, which is low enough to put a person in a state of “nutritional ketosis” ketones that are produced when a diabetic is in a state of “diabetic ketoacidosis” (DKA) and lastly, there are “starvation ketones” and “illness-induced ketones” The fact is they are very different. DKA is a dangerous state of ketosis that can easily land a diabetic in the hospital and is life-threatening. Meanwhile, “nutritional ketosis” is the result of a nutritional approach that both non-diabetics and diabetics can safely achieve through low-carb nutrition. Diabetic Ketoacidosis vs. Nutritional Ketosis Ryan Attar (soon to be Ryan Attar, ND) helps explain the science and actual human physiology behind these different types of ketone production. Ryan is currently studying to become a Doctor of Naturopathic Medicine in Connecticut and also pursuing a Masters Degree in Human Nutrition. He has interned under the supervision of the very well-known diabetes doc, Dr. Bernstein. Ryan explains: Diabetic Ketoacidosis: “Diabetic Ketoacidosis (DKA), is a very dangerous state where an individual with uncontrolled diabetes is effectively starving due to lack of insulin. Insulin brings glucose into our cells and without it the body switches to ketones. Our brain can function off either glucose or fat and ketones. Ketones are a breakdown of fat and amino acids that can travel through the blood to various tissues to be utilized for fuel.” “In normal individuals, or those with well controlled diabetes, insulin acts to cancel the feedback loop and slow and sto Continue reading >>

The Paleo Guide To Ketosis

The Paleo Guide To Ketosis

Ketosis is a word that gets tossed around a lot within the Paleo community – to some, it’s a magical weight-loss formula, to others, it’s a way of life, and to others it’s just asking for adrenal fatigue. But understanding what ketosis really is (not just what it does), and the physical causes and consequences of a fat-fueled metabolism can help you make an informed decision about the best diet for your particular lifestyle, ketogenic or not. Ketosis is essentially a metabolic state in which the body primarily relies on fat for energy. Biologically, the human body is a very adaptable machine that can run on a variety of different fuels, but on a carb-heavy Western diet, the primary source of energy is glucose. If glucose is available, the body will use it first, since it’s the quickest to metabolize. So on the standard American diet, your metabolism will be primarily geared towards burning carbohydrates (glucose) for fuel. In ketosis, it’s just the opposite: the body primarily relies on ketones, rather than glucose. To understand how this works, it’s important to understand that some organs in the body (especially the brain) require a base amount of glucose to keep functioning. If your brain doesn’t get any glucose, you’ll die. But this doesn’t necessarily mean that you need glucose in the diet – your body is perfectly capable of meeting its glucose needs during an extended fast, a period of famine, or a long stretch of very minimal carbohydrate intake. There are two different ways to make this happen. First, you could break down the protein in your muscles and use that as fuel for your brain and liver. This isn’t ideal from an evolutionary standpoint though – when you’re experiencing a period of food shortage, you need to be strong and fast, Continue reading >>

Ketoacidosis: A Complication Of Diabetes

Ketoacidosis: A Complication Of Diabetes

Diabetic ketoacidosis is a serious condition that can occur as a complication of diabetes. People with diabetic ketoacidosis (DKA) have high blood sugar levels and a build-up of chemicals called ketones in the body that makes the blood more acidic than usual. Diabetic ketoacidosis can develop when there isn’t enough insulin in the body for it to use sugars for energy, so it starts to use fat as a fuel instead. When fat is broken down to make energy, ketones are made in the body as a by-product. Ketones are harmful to the body, and diabetic ketoacidosis can be life-threatening. Fortunately, treatment is available and is usually successful. Symptoms Ketoacidosis usually develops gradually over hours or days. Symptoms of diabetic ketoacidosis may include: excessive thirst; increased urination; tiredness or weakness; a flushed appearance, with hot dry skin; nausea and vomiting; dehydration; restlessness, discomfort and agitation; fruity or acetone smelling breath (like nail polish remover); abdominal pain; deep or rapid breathing; low blood pressure (hypotension) due to dehydration; and confusion and coma. See your doctor as soon as possible or seek emergency treatment if you develop symptoms of ketoacidosis. Who is at risk of diabetic ketoacidosis? Diabetic ketoacidosis usually occurs in people with type 1 diabetes. It rarely affects people with type 2 diabetes. DKA may be the first indication that a person has type 1 diabetes. It can also affect people with known diabetes who are not getting enough insulin to meet their needs, either due to insufficient insulin or increased needs. Ketoacidosis most often happens when people with diabetes: do not get enough insulin due to missed or incorrect doses of insulin or problems with their insulin pump; have an infection or illne Continue reading >>

Ketoacidosis

Ketoacidosis

Alcoholic ketoacidosis is a severe metabolic complication due to long-term alcohol consumption. The disease is the accumulation of ketones in the blood. Ketones are the by-product of the body when it breaks down fat for energy. A person who drinks alcohol every day can often be malnourished. One of the main reasons for getting the disease is the clear effects of alcoholism and starvation. In this condition, starvation means the glucose starvation of metabolism. Ketoacidosis from alcoholism should be a tigger that you need to seek alcohol addiction treatment. What causes Alcoholic Ketoacidosis? Long-term very heavy alcohol consumption will cause the disease. Prolonged alcohol abuse may cause malnutrition; the combination of these two may lead to Alcoholic Ketoacidosis. How does the body metabolize? For the body to function properly, the cells need glucose (sugar) and insulin. The body can produce glucose when it digests the food, and the pancreas produces insulin. However, when a person drinks alcohol, the pancreas may stop producing insulin for a brief period. Without insulin, the cell cannot produce glucose for the energy that the body needs. To replenish itself with the energy it will start to burn fat. Once the body turns fat for energy, it will produce ketones. Once the body stops producing insulin for long period due to alcohol intake, ketones will start to accumulate in the bloodstream. This buildup will eventually lead to a severe condition called ketoacidosis. Here are the important events when a person drinks heavy for a long period of time: Also, people who drink too much alcohol may not eat properly and regularly. Most often they vomit frequently because of the alcohol intake. Not eating properly and vomiting may result in starvation. Whenever this happens, t Continue reading >>

Starvation Ketoacidosis: A Cause Of Severe Anion Gap Metabolic Acidosis In Pregnancy

Starvation Ketoacidosis: A Cause Of Severe Anion Gap Metabolic Acidosis In Pregnancy

Copyright © 2014 Nupur Sinha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Pregnancy is a diabetogenic state characterized by relative insulin resistance, enhanced lipolysis, elevated free fatty acids and increased ketogenesis. In this setting, short period of starvation can precipitate ketoacidosis. This sequence of events is recognized as “accelerated starvation.” Metabolic acidosis during pregnancy may have adverse impact on fetal neural development including impaired intelligence and fetal demise. Short periods of starvation during pregnancy may present as severe anion gap metabolic acidosis (AGMA). We present a 41-year-old female in her 32nd week of pregnancy, admitted with severe AGMA with pH 7.16, anion gap 31, and bicarbonate of 5 mg/dL with normal lactate levels. She was intubated and accepted to medical intensive care unit. Urine and serum acetone were positive. Evaluation for all causes of AGMA was negative. The diagnosis of starvation ketoacidosis was established in absence of other causes of AGMA. Intravenous fluids, dextrose, thiamine, and folic acid were administered with resolution of acidosis, early extubation, and subsequent normal delivery of a healthy baby at full term. Rapid reversal of acidosis and favorable outcome are achieved with early administration of dextrose containing fluids. 1. Introduction A relative insulin deficient state has been well described in pregnancy. This is due to placentally derived hormones including glucagon, cortisol, and human placental lactogen which are increased in periods of stress [1]. The insulin resistance increases with gestational age Continue reading >>

Alcoholic Ketoacidosis

Alcoholic Ketoacidosis

Background In 1940, Dillon and colleagues first described alcoholic ketoacidosis (AKA) as a distinct syndrome. AKA is characterized by metabolic acidosis with an elevated anion gap, elevated serum ketone levels, and a normal or low glucose concentration. [1, 2] Although AKA most commonly occurs in adults with alcoholism, it has been reported in less-experienced drinkers of all ages. Patients typically have a recent history of binge drinking, little or no food intake, and persistent vomiting. [3, 4, 5] A concomitant metabolic alkalosis is common, secondary to vomiting and volume depletion (see Workup). [6] Treatment of AKA is directed toward reversing the 3 major pathophysiologic causes of the syndrome, which are: This goal can usually be achieved through the administration of dextrose and saline solutions (see Treatment). Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

The Facts Diabetic ketoacidosis (DKA) is a condition that may occur in people who have diabetes, most often in those who have type 1 (insulin-dependent) diabetes. It involves the buildup of toxic substances called ketones that make the blood too acidic. High ketone levels can be readily managed, but if they aren't detected and treated in time, a person can eventually slip into a fatal coma. DKA can occur in people who are newly diagnosed with type 1 diabetes and have had ketones building up in their blood prior to the start of treatment. It can also occur in people already diagnosed with type 1 diabetes that have missed an insulin dose, have an infection, or have suffered a traumatic event or injury. Although much less common, DKA can occasionally occur in people with type 2 diabetes under extreme physiologic stress. Causes With type 1 diabetes, the pancreas is unable to make the hormone insulin, which the body's cells need in order to take in glucose from the blood. In the case of type 2 diabetes, the pancreas is unable to make sufficient amounts of insulin in order to take in glucose from the blood. Glucose, a simple sugar we get from the foods we eat, is necessary for making the energy our cells need to function. People with diabetes can't get glucose into their cells, so their bodies look for alternative energy sources. Meanwhile, glucose builds up in the bloodstream, and by the time DKA occurs, blood glucose levels are often greater than 22 mmol/L (400 mg/dL) while insulin levels are very low. Since glucose isn't available for cells to use, fat from fat cells is broken down for energy instead, releasing ketones. Ketones accumulate in the blood, causing it to become more acidic. As a result, many of the enzymes that control the body's metabolic processes aren't able Continue reading >>

Ketones: Clearing Up The Confusion

Ketones: Clearing Up The Confusion

Ketones, ketosis, ketoacidosis, DKA…these are words that you’ve probably heard at one point or another, and you might be wondering what they mean and if you need to worry about them at all, especially if you have diabetes. This week, we’ll explore the mysterious world of ketones, including if and how they may affect you. Ketones — what are they? Ketones are a type of acid that the body can form if there’s not enough carbohydrate to be burned for energy (yes, you do need carbs for fuel). Without enough carb, the body turns to another energy source: fat. Ketones are made in the liver from fat breakdown. This is called ketogenesis. People who don’t have diabetes can form ketones. This might occur if a person does extreme exercise, has an eating disorder, is fasting (not eating), or is following a low-carbohydrate diet. This is called ketosis and it’s a normal response to starvation. In a person who has diabetes, ketones form for the same reason (not enough carb for energy), but this often occurs because there isn’t enough insulin available to help move carb (in the form of glucose) from the bloodstream to the cells to be used for energy. Again, the body scrambles to find an alternate fuel source in the form of fat. You might be thinking that it’s a good thing to burn fat for fuel. However, for someone who has diabetes, ketosis can quickly become dangerous if it occurs due to a continued lack of insulin (the presence of ketones along with “normal” blood sugar levels is not necessarily a cause for concern). In the absence of insulin (which can occur if someone doesn’t take their insulin or perhaps uses an insulin pump and the pump has a malfunction, for example), fat cells continue to release fat into the circulation; the liver then continues to churn Continue reading >>

Starvation Ketoacidosis As A Cause Of Unexplained Metabolic Acidosis In The Perioperative Period

Starvation Ketoacidosis As A Cause Of Unexplained Metabolic Acidosis In The Perioperative Period

Go to: Abstract Patient: Female, 24 Final Diagnosis: Starvation ketoacidosis Symptoms: None Medication: — Clinical Procedure: Lumbar laminectomy Specialty: Orthopedics and Traumatology Besides providing anesthesia for surgery, the anesthesiologist’s role is to optimize the patient for surgery and for post-surgical recovery. This involves timely identification and treatment of medical comorbidities and abnormal laboratory values that could complicate the patient’s perioperative course. There are several potential causes of anion and non-anion gap metabolic acidosis in surgical patients, most of which could profoundly affect a patient’s surgical outcome. Thus, the presence of an acute acid-base disturbance requires a thorough workup, the results of which will influence the patient’s anesthetic management. An otherwise-healthy 24-year-old female presented for elective spine surgery and was found to have metabolic acidosis, hypotension, and polyuria intraoperatively. Common causes of acute metabolic acidosis were investigated and systematically ruled out, including lactic acidosis, diabetic ketoacidosis, drug-induced ketoacidosis, ingestion of toxic alcohols (e.g., methanol, ethylene glycol), uremia, and acute renal failure. Laboratory workup was remarkable only for elevated serum and urinary ketone levels, believed to be secondary to starvation ketoacidosis. Due to the patient’s unexplained acid-base disturbance, she was kept intubated postoperatively to allow for further workup and management. Starvation ketoacidosis is not widely recognized as a perioperative entity, and it is not well described in the medical literature. Lack of anesthesiologist awareness about this disorder may complicate the differential diagnosis for acute intraoperative metabolic acidosi Continue reading >>

Alcoholic Ketoacidosis

Alcoholic Ketoacidosis

Alcoholic ketoacidosis is a metabolic complication of alcohol use and starvation characterized by hyperketonemia and anion gap metabolic acidosis without significant hyperglycemia. Alcoholic ketoacidosis causes nausea, vomiting, and abdominal pain. Diagnosis is by history and findings of ketoacidosis without hyperglycemia. Treatment is IV saline solution and dextrose infusion. Alcoholic ketoacidosis is attributed to the combined effects of alcohol and starvation on glucose metabolism. Alcohol diminishes hepatic gluconeogenesis and leads to decreased insulin secretion, increased lipolysis, impaired fatty acid oxidation, and subsequent ketogenesis, causing an elevated anion gap metabolic acidosis. Counter-regulatory hormones are increased and may further inhibit insulin secretion. Plasma glucose levels are usually low or normal, but mild hyperglycemia sometimes occurs. Diagnosis requires a high index of suspicion; similar symptoms in an alcoholic patient may result from acute pancreatitis, methanol or ethylene glycol poisoning, or diabetic ketoacidosis (DKA). In patients suspected of having alcoholic ketoacidosis, serum electrolytes (including magnesium), BUN and creatinine, glucose, ketones, amylase, lipase, and plasma osmolality should be measured. Urine should be tested for ketones. Patients who appear significantly ill and those with positive ketones should have arterial blood gas and serum lactate measurement. The absence of hyperglycemia makes DKA improbable. Those with mild hyperglycemia may have underlying diabetes mellitus, which may be recognized by elevated levels of glycosylated Hb (HbA1c). Typical laboratory findings include a high anion gap metabolic acidosis, ketonemia, and low levels of potassium, magnesium, and phosphorus. Detection of acidosis may be com Continue reading >>

The Mechanisms And Management Strategies For Diabetic Ketoacidosis

The Mechanisms And Management Strategies For Diabetic Ketoacidosis

are discussed elsewhere, as one of the scenarios in critical care endocrinology. Rather than get bogged down in thick endocrinology (thereby duplicating content from the Endocrinology section) I offer this brief summary, aimed at answering the short ABG interpretation questions rather than the long "how'd you manage this ketoacidosis" or "critically evaluate something" questions. Ketoacidosis-asociated ABG interpretation questions include the following: Question 7.1 from the second paper of 2013 Question 26.2 from the second paper of 2013 Question 8.3 from the first paper of 2012 Question 7.1 from the first paper of 2009 Question 6.1 from the first paper of 2008 Just like in real life, the ketoacidosis in these questions if often paired with some sort of hyperglycaemic hyperosmolar state. Calculation of corrected sodium is occasionally called for. A brief summary of different ketoacidosis subvarieties follows: The Varieties of Ketoacidosis Starvation ketoacidosis Alcoholic ketoacidosis Diabetic ketoacidosis Trigger Prolonged starvation: ~3 days Starvation following a binge Inadequate insulin supplementation in the face of increased requirements. eg. sepsis Mechanism Diminished intake of carbohydrates leads to decreased insulin levels, and thus ketogenesis Ketogenesis occurs in the absence of adequate hepatic glycogen stores Diminished intake of carbohydrates leads to decreased insulin levels, and thus ketogenesis Hepatic metabolism of ethanol depletes NAD+ and increases NADH levels, favouring conversion of acetoacetate into β-hydroxybutyrate In the absence of insulin, and the presence of stress hormones and glucagin, hepatic lipid metabolism switches to ketogenesis Characteristic features mild acidosis Low ketone levels Anion gap may be normal BSL is frequently low Pat Continue reading >>

More in ketosis