
Starvation Ketoacidosis In Pregnancy
Introduction: Starvation ketosis outside pregnancy is a rare phenomenon and is unlikely to cause a severe acidosis. Pregnancy is an insulin resistant state due to placental production of hormones including glucagon and human placental lactogen. Insulin resistance increases with advancing gestation and this confers a susceptibility to ketosis, particularly in the third trimester. Starvation ketoacidosis in pregnancy has been reported and is usually precipitated by a period of severe vomiting. Ketoacidosis has been associated with intrauterine death. Case report: A 22-year-old woman in her third pregnancy presented at 32 weeks gestation with a 24 h history of severe vomiting. She had been treated for an asthma exacerbation with prednisolone and erythromycin the day prior to presentation. She was unwell, hypertensive (145/70 mmHg) with a sinus tachycardia and Kussmaul breathing. Urinalysis showed ++++ ketones, + protein and pH 5. Fingerprick glucose was 4 mmol/l and ketones were 4.0 mmol/l. Arterial blood gas showed pH 7.27, PaCO2 1.1 kPa, base excess −23, bicarbonate 8.6 mmol/l and lactate 0.6 mmol/l. The anion gap was 20. Serum ethanol, salicylates and paracetamol levels were undetectable. She was fluid resuscitated but her biochemical parameters did not improve. She was intubated and underwent emergency caesarean section. A healthy boy was delivered and her acidosis resolved over the subsequent 8 h. Discussion: We believe this case is explained by starvation ketoacidosis. There was no evidence of diabetes mellitus or other causes of a metabolic acidosis. In view of the hypertension, proteinuria and raised urate the differential diagnosis was an atypical presentation of pre-eclampsia. This case illustrates the metabolic stress imposed by the feto-placental unit. It als Continue reading >>

Ketosis: Symptoms, Signs & More
Every cell in your body needs energy to survive. Most of the time, you create energy from the sugar (glucose) in your bloodstream. Insulin helps regulate glucose levels in the blood and stimulate the absorption of glucose by the cells in your body. If you don’t have enough glucose or insufficient insulin to get the job done, your body will break down fat instead for energy. This supply of fat is an alternative energy source that keeps you from starvation. When you break down fat, you produce a compound called a ketone body. This process is called ketosis. Insulin is required by your cells in order to use the glucose in your blood, but ketones do not require insulin. The ketones that don’t get used for energy pass through your kidneys and out through your urine. Ketosis is most likely to occur in people who have diabetes, a condition in which the body produces little or no insulin. Ketosis and Ketoacidosis: What You Need To Know Ketosis simply means that your body is producing ketone bodies. You’re burning fat instead of glucose. Ketosis isn’t necessarily harmful to your health. If you don’t have diabetes and you maintain a healthy diet, it’s unlikely to be a problem. While ketosis itself isn’t particularly dangerous, it’s definitely something to keep an eye on, especially if you have diabetes. Ketosis can be a precursor to ketoacidosis, also known as diabetic ketoacidosis. Ketoacidosis is a condition in which you have both high glucose and high ketone levels. Having ketoacidosis results in your blood becoming too acidic. It’s more common for those with type 1 diabetes rather than type 2. Once symptoms of ketoacidosis begin, they can escalate very quickly. Symptoms include: breath that smells fruity or like nail polish or nail polish remover rapid breat Continue reading >>

Ketosis Vs. Ketoacidosis (dka): What Is The Difference?
Let’s break it down so that you can understand exactly what ketosis is and how it differs from ketoacidosis. But the states they refer to are nothing alike. In this case, maybe mistakes are understandable. Many people who believe that ketosis is dangerous are mixing it up with another state called "ketoacidosis." The two words do sound very similar. And some people simply make mistakes. Profit motives tend to muddy up the works when it comes to getting clear, factual information about your health. Well, there are a lot of individuals and companies which all have their own goals and motivations. Where do these misperceptions come from? Here’s the thing though … that is all misinformation. You then Googled something like, "low carb dangerous" and found a list of link-bait articles informing you that low-carb is a ketogenic diet, and ketosis is a dangerous metabolic state which can be fatal. And then maybe someone said something to you like, "What are you thinking? Low-carb is a dangerous diet." If you are thinking about starting a low-carb diet, maybe you have mentioned it to some of your family or friends. By the time you finish reading this article, you will understand why low-carb is a safe diet. Continue reading >>

Extreme Gestational Starvation Ketoacidosis: Case Report And Review Of Pathophysiology
A case of severe starvation ketoacidosis developing during pregnancy is presented. The insulinopenic/insulinresistant state found during fasting in late gestation predisposes to ketosis. Superimposition of stress hormones, which further augment lipolysis, exacerbates the degree of ketoacidosis. In our patient, gestational diabetes, twin pregnancies, preterm labor, and occult infection were factors that contributed to severe starvation ketoacidosis. Diagnosis was delayed because starvation ketosis is not generally considered to be a cause of severe acidosis, and because the anion gap was not elevated. Improved understanding of the complex fuel metabolism during pregnancy should aid in prevention, early recognition, and appropriate therapy of this condition. Continue reading >>

Diabetic, Alcoholic And Starvation Ketoacidosis
Copious amounts of ketones which are generated in insulin-deficient or insulin-unresponsive patients will give rise to a high anion gap metabolic acidosis. Ketones are anions, and they form the high anion gap. Management of DKA and HONK is discussed elsewhere. Meet the ketones Chemically speaking, a ketone is anything with a carbonyl group between a bunch of other carbon atoms. The above are your three typical ketoacidosis-associated ketone bodies. The biochemistry nerds among us will hasten to add that the beta-hydroxybutyrate is in fact not a ketone but a carboxylic acid, but - because it is associated with ketoacidosis, we will continue to refer to it as a ketone for the remainder of this chapter, in the spirit of convention. In the same spirit, we can suspend our objections to acetone being included in a discussion of ketoacidosis, which (though a true ketone) is in fact not acidic or basic, as it does not ionise at physiological pH (its pKa is 20 or so). So really, the only serious ketone acid is acetoacetate, which has a pKa of 3.77. However, beta-hydroxybutyrate is the prevalent ketone in ketoacidosis; the normal ratio of beta-hydroxybutyrate and acetoacetate is 3:1, and it can rise to 10:1 in diabetic ketoacidosis. Acetone is the least abundant. The metabolic origin of ketones The generation of ketones is a normal response to fasting, which follows the depletion of hepatic glycogen stores. Let us discuss normal physiology for a change. You, a healthy adult without serious alcohol problems, are fasting from midnight for a routine elective hernia repair. You will go to be after dinner with a few nice lumps of undigested food in your intestine, as well as about 75g of hepatic glycogen. As you sleep, you gradually digest the food and dip into the glycogen store. At Continue reading >>

Why Dka & Nutritional Ketosis Are Not The Same
There’s a very common misconception and general misunderstanding around ketones. Specifically, the misunderstandings lie in the areas of: ketones that are produced in low-carb diets of generally less than 50 grams of carbs per day, which is low enough to put a person in a state of “nutritional ketosis” ketones that are produced when a diabetic is in a state of “diabetic ketoacidosis” (DKA) and lastly, there are “starvation ketones” and “illness-induced ketones” The fact is they are very different. DKA is a dangerous state of ketosis that can easily land a diabetic in the hospital and is life-threatening. Meanwhile, “nutritional ketosis” is the result of a nutritional approach that both non-diabetics and diabetics can safely achieve through low-carb nutrition. Diabetic Ketoacidosis vs. Nutritional Ketosis Ryan Attar (soon to be Ryan Attar, ND) helps explain the science and actual human physiology behind these different types of ketone production. Ryan is currently studying to become a Doctor of Naturopathic Medicine in Connecticut and also pursuing a Masters Degree in Human Nutrition. He has interned under the supervision of the very well-known diabetes doc, Dr. Bernstein. Ryan explains: Diabetic Ketoacidosis: “Diabetic Ketoacidosis (DKA), is a very dangerous state where an individual with uncontrolled diabetes is effectively starving due to lack of insulin. Insulin brings glucose into our cells and without it the body switches to ketones. Our brain can function off either glucose or fat and ketones. Ketones are a breakdown of fat and amino acids that can travel through the blood to various tissues to be utilized for fuel.” “In normal individuals, or those with well controlled diabetes, insulin acts to cancel the feedback loop and slow and sto Continue reading >>

Starvation Ketoacidosis In Pregnancy
Abstract Starvation ketosis outside pregnancy is rare and infrequently causes a severe acidosis. Placental production of hormones, including glucagon and human placental lactogen, leads to the insulin resistance that is seen in pregnancy, which in turn increases susceptibility to ketosis particularly in the third trimester. Starvation ketoacidosis in pregnancy has been reported and is usually precipitated by a period of severe vomiting. Ketoacidosis is likely to have important implications for fetal survival as ketoacidosis in women with type 1 diabetes mellitus is associated with intrauterine death. This article features four cases of women with vomiting in the third trimester of pregnancy associated with a severe metabolic acidosis. The mechanism underlying ketogenesis, the evidence for accelerated ketogenesis in pregnancy and other similar published cases are reviewed. A proposed strategy for management of these women is presented. Continue reading >>

Fasting Ketosis And Alcoholic Ketoacidosis
INTRODUCTION Ketoacidosis is the term used for metabolic acidoses associated with an accumulation of ketone bodies. The most common cause of ketoacidosis is diabetic ketoacidosis. Two other causes are fasting ketosis and alcoholic ketoacidosis. Fasting ketosis and alcoholic ketoacidosis will be reviewed here. Issues related to diabetic ketoacidosis are discussed in detail elsewhere. (See "Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Epidemiology and pathogenesis" and "Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Clinical features, evaluation, and diagnosis" and "Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Treatment".) PHYSIOLOGY OF KETONE BODIES There are three major ketone bodies, with the interrelationships shown in the figure (figure 1): Acetoacetic acid is the only true ketoacid. The more dominant acid in patients with ketoacidosis is beta-hydroxybutyric acid, which results from the reduction of acetoacetic acid by NADH. Beta-hydroxybutyric acid is a hydroxyacid, not a true ketoacid. Continue reading >>

Starvation Ketoacidosis As A Cause Of Unexplained Metabolic Acidosis In The Perioperative Period
Go to: Abstract Patient: Female, 24 Final Diagnosis: Starvation ketoacidosis Symptoms: None Medication: — Clinical Procedure: Lumbar laminectomy Specialty: Orthopedics and Traumatology Besides providing anesthesia for surgery, the anesthesiologist’s role is to optimize the patient for surgery and for post-surgical recovery. This involves timely identification and treatment of medical comorbidities and abnormal laboratory values that could complicate the patient’s perioperative course. There are several potential causes of anion and non-anion gap metabolic acidosis in surgical patients, most of which could profoundly affect a patient’s surgical outcome. Thus, the presence of an acute acid-base disturbance requires a thorough workup, the results of which will influence the patient’s anesthetic management. An otherwise-healthy 24-year-old female presented for elective spine surgery and was found to have metabolic acidosis, hypotension, and polyuria intraoperatively. Common causes of acute metabolic acidosis were investigated and systematically ruled out, including lactic acidosis, diabetic ketoacidosis, drug-induced ketoacidosis, ingestion of toxic alcohols (e.g., methanol, ethylene glycol), uremia, and acute renal failure. Laboratory workup was remarkable only for elevated serum and urinary ketone levels, believed to be secondary to starvation ketoacidosis. Due to the patient’s unexplained acid-base disturbance, she was kept intubated postoperatively to allow for further workup and management. Starvation ketoacidosis is not widely recognized as a perioperative entity, and it is not well described in the medical literature. Lack of anesthesiologist awareness about this disorder may complicate the differential diagnosis for acute intraoperative metabolic acidosi Continue reading >>

Starvation Ketoacidosis: A Cause Of Severe Anion Gap Metabolic Acidosis In Pregnancy
Copyright © 2014 Nupur Sinha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Pregnancy is a diabetogenic state characterized by relative insulin resistance, enhanced lipolysis, elevated free fatty acids and increased ketogenesis. In this setting, short period of starvation can precipitate ketoacidosis. This sequence of events is recognized as “accelerated starvation.” Metabolic acidosis during pregnancy may have adverse impact on fetal neural development including impaired intelligence and fetal demise. Short periods of starvation during pregnancy may present as severe anion gap metabolic acidosis (AGMA). We present a 41-year-old female in her 32nd week of pregnancy, admitted with severe AGMA with pH 7.16, anion gap 31, and bicarbonate of 5 mg/dL with normal lactate levels. She was intubated and accepted to medical intensive care unit. Urine and serum acetone were positive. Evaluation for all causes of AGMA was negative. The diagnosis of starvation ketoacidosis was established in absence of other causes of AGMA. Intravenous fluids, dextrose, thiamine, and folic acid were administered with resolution of acidosis, early extubation, and subsequent normal delivery of a healthy baby at full term. Rapid reversal of acidosis and favorable outcome are achieved with early administration of dextrose containing fluids. 1. Introduction A relative insulin deficient state has been well described in pregnancy. This is due to placentally derived hormones including glucagon, cortisol, and human placental lactogen which are increased in periods of stress [1]. The insulin resistance increases with gestational age Continue reading >>

Starvation Ketoacidosis In Pregnancy
King's Authors Abstract Starvation ketosis outside pregnancy is rare and infrequently causes a severe acidosis. Placental production of hormones, including glucagon and human placental lactogen, leads to the insulin resistance that is seen in pregnancy, which in turn increases susceptibility to ketosis particularly in the third trimester. Starvation ketoacidosis in pregnancy has been reported and is usually precipitated by a period of severe vomiting. Ketoacidosis is likely to have important implications for fetal survival as ketoacidosis in women with type 1 diabetes mellitus is associated with intrauterine death. This article features four cases of women with vomiting in the third trimester of pregnancy associated with a severe metabolic acidosis. The mechanism underlying ketogenesis, the evidence for accelerated ketogenesis in pregnancy and other similar published cases are reviewed. A proposed strategy for management of these women is presented. Continue reading >>

What Is Starvation Ketosis?
Starvation ketosis is a metabolic state in humans and many animals in which the body breaks down fat and produces acids known as ketones, then uses these as a primary energy source. The “starvation” part of the name owes to the fact that, in most cases, people only use ketones for energy when they aren’t getting adequate glucose from food. The body typically converts carbohydrates to glucose as a main source of energy, but once the liver has used all of its stored glucose it begins to metabolize fatty acids, forming ketone bodies. Malnutrition and fasting are two of the most common causes, but it can also be the result of conditions like diabetes, alcoholism, and a low carbohydrate diet. People sometimes intentionally trigger this state as a means of burning fat to lose weight, but whether this practice is safe or even advisable is widely disputed in the medical community. Ketones are capable of supplying energy to the body, but an abnormally high level can cause a number of problems, including organ damage, coma, and even death. Understanding Ketones The liver typically makes ketones in response to some sort of energy crisis in the body. People generally get the majority of their energy by synthesizing glucose, which is a sugar molecule found in carbohydrates like bread and grain products. When people aren’t getting enough glucose, the liver begins creating ketones that the body uses in combination with any fat stores it has on hand. Ketones in many ways prevent the body from robbing muscles of their core proteins. Starvation ketosis happens when these become the body’s primary source of energy. The condition can usually be identified by looking for excesses. The body gets rid of unneeded supplies by spilling them out through exhalations, urine, and sweat. Wh Continue reading >>

Starvation Ketoacidosis: A Cause Of Severe Anion Gap Metabolic Acidosis In Pregnancy
Pregnancy is a diabetogenic state characterized by relative insulin resistance, enhanced lipolysis, elevated free fatty acids and increased ketogenesis. In this setting, short period of starvation can precipitate ketoacidosis. This sequence of events is recognized as "accelerated starvation." Metabolic acidosis during pregnancy may have adverse impact on fetal neural development including impaired intelligence and fetal demise. Short periods of starvation during pregnancy may present as severe anion gap metabolic acidosis (AGMA). We present a 41-year-old female in her 32nd week of pregnancy, admitted with severe AGMA with pH 7.16, anion gap 31, and bicarbonate of 5 mg/dL with normal lactate levels. She was intubated and accepted to medical intensive care unit. Urine and serum acetone were positive. Evaluation for all causes of AGMA was negative. The diagnosis of starvation ketoacidosis was established in absence of other causes of AGMA. Intravenous fluids, dextrose, thiamine, and folic acid were administered with resolution of acidosis, early extubation, and subsequent normal delivery of a healthy baby at full term. Rapid reversal of acidosis and favorable outcome are achieved with early administration of dextrose containing fluids. DOI: 10.1155/2014/906283 Continue reading >>

Starvation Ketoacidosis
Etiology xxx Physiology Accumulation of Ketones Generated by Metabolism of Free Fatty Acids Diagnosis Anion Gap: usually >20 Osmolal Gap: increased Serum Ketones: positive Serum Potassium: normal (ketoacidosis does not cause hyperkalemia) Clinical Manifestations Neurologic Manifestations xxxx Renal Manifestations Anion Gap Metabolic Acidosis (AGMA) (see Metabolic Acidosis-Elevated Anion Gap, [[Metabolic Acidosis-Elevated Anion Gap]]) Diagnosis Delta Gap/Delta Bicarbonate Ratio: usually 1.1 Ketoacidosis xxx Elevated Osmolal Gap (see Serum Osmolality, [[Serum Osmolality]]) Physiology: increased (due to presence of osmotically-active, acetone) Other Manifestations xxx xxx Treatment Nutritional Support References xxx Continue reading >>

“starvation Mode” And Muscle Wasting Myth On A Low Carbohydrate Diet
Another one of the fallacies that seems to pervade is that a ketogenic diet is the same as being in starvation – whereby the body significantly reduces it’s metabolism and starts tapping into the muscles for energy. This is completely bogus and you’d be best off just ignoring the idea altogether. In light of restricted carbohydrates through either keto or starvation the body will focus on maintaining glucose homeostasis, ie constant blood-glucose level. It’s highest priority is to provide sufficient energy to the brain and other critical functions, and can do so with a mix of glucose and ketone bodies. The only real common ground is that ketone production is elevated in both a keto diet and in starvation due to reduced carbohydrate intake. Conflating keto with starvation is guilt by association – eg falling asleep makes you unconscious; being punched out also renders you unconscious and can cause serious injury; therefore falling asleep is dangerous like being punched out. Starvation is just that – severe restriction of calories over a long period, and “starvation mode” is what anti-low-carb people tend to call it as a scare tactic. After a few days of complete fasting the metabolic rate only drops 5-10% – sometimes increases – and even on an intake of half the amount of energy you’d normally consume for maintenance, you would be fine for months without too much of a drop. If you have a significant amount of fat to lose then your metabolism will barely drop at all, even on severe restriction your extra adipose stores will make up any energy requirements you have. A ketogenic diet stabilises glucose and maintains very low levels of circulating insulin, so access to liberating energy from your adipose stores is unhampered. A ketogenic diet is extreme Continue reading >>
- The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus
- The interpretation and effect of a low-carbohydrate diet in the management of type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials
- Wasting Money on Diabetes Education That Fails to Teach the Right Things