diabetestalk.net

Sodium Bicarbonate Acidosis

Sodium Bicarbonate (sodium Bicarbonate 5% Injection): Side Effects, Interactions, Warning, Dosage & Uses

Sodium Bicarbonate (sodium Bicarbonate 5% Injection): Side Effects, Interactions, Warning, Dosage & Uses

Sodium Bicarbonate (sodium bicarbonate 5% injection) Injection may be indicated in the treatment of metabolic acidosis which can occur in severe renal disease, uncontrolled diabetes , circulatory insufficiency due to shock , anoxia or severe dehydration, extracorporeal circulation of blood and severe primary lactic acidosis . Sodium Bicarbonate (sodium bicarbonate 5% injection) Injection is further indicated in the treatment of certain drug intoxications, including barbiturates, in poisoning by salicylates or methyl alcohol, and in hemolytic reactions requiring alkalinization of the urine to diminish nephrotoxicity of blood pigments. Sodium Bicarbonate (sodium bicarbonate 5% injection) Injection may also be indicated in severe diarrhea which is often accompanied by a significant loss of bicarbonate. As directed by a physician. Dosage is dependent upon the age, weight and clinical condition of the patient as well as laboratory determinations. For mild acidosis, the usual dosage is 1 to 2 mEq per kg of body weight, administered slowly. For more severe acidosis, 2 to 5 mEq per kg of body weight may be administered over a 4 to 8 hour period. Subsequent therapy is dependent on the clinical response of the patient. In emergencies, 300 to 500 mL of the 5% Sodium Bicarbonate (sodium bicarbonate 5% injection) Injection should or administered as rapidly as is possible without overalkalinizing the patient. Generally, to avoid overalkalinizing a patient whose own body mechanisms for correcting metabolic acidosis may be maximally stimulated, only 1/3 to 1/2 of the calculated dose is administered as rapidly as indicated by the patient's cardiovascular and fluid balance status. The serum pH and bicarbonate concentration should then be redetermined. Parenteral drug products should be Continue reading >>

Review Article Sodium Bicarbonate Therapy In Patients With Metabolic Acidosis

Review Article Sodium Bicarbonate Therapy In Patients With Metabolic Acidosis

Correspondence should be addressed to Mar Received July ; Revised September ; Accepted September ; Published October a M. Adeva-Andany et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is Metabolic acidosis occurs when a relative accumulation of plasma anions in excess of cations reduces plasma pH. Replacement of sodium bicarbonate to patients with sodium bicarbonate loss due to diarrhea or renal proximal tubular acidosis is useful, but there is no denite evidence that sodium bicarbonate administration to patients with acute metabolic acidosis, including diabetic ketoacidosis, lactic acidosis, septic shock, intraoperative metabolic acidosis, or cardiac arrest, is benecial regarding clinical outcomes or mortality rate. Patients with advanced chronic kidney disease usually show metabolic acidosis due to increased unmeasured anions and hyperchloremia. It has been suggested that metabolic acidosis might have a negative impact on progression of kidney dysfunction and that sodium bicarbonate administration might attenuate this eect, but further evaluation is required to validate such a renoprotective strategy. Sodium bicarbonate is the predominant buer used in dialysis uids and patients on maintenance dialysis are subjected to a load of sodium bicarbonate during the sessions, suering a transient metabolic alkalosis of variable severity. Side eects associated with sodium bicarbonate therapy include hypercapnia, hypokalemia, ionized hypocalcemia, and QTc interval prolongation. e potential impact of regular sodium bicarbonate therapy on worsening vascular calcications in patients with chronic kidney disease has been insuciently i Continue reading >>

Sodium Bicarbonate Therapy In Patients With Metabolic Acidosis

Sodium Bicarbonate Therapy In Patients With Metabolic Acidosis

The Scientific World Journal Volume 2014 (2014), Article ID 627673, 13 pages Nephrology Division, Hospital General Juan Cardona, Avenida Pardo Bazán, s/n, Ferrol, 15406 A Coruña, Spain Academic Editor: Biagio R. Di Iorio Copyright © 2014 María M. Adeva-Andany et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Metabolic acidosis occurs when a relative accumulation of plasma anions in excess of cations reduces plasma pH. Replacement of sodium bicarbonate to patients with sodium bicarbonate loss due to diarrhea or renal proximal tubular acidosis is useful, but there is no definite evidence that sodium bicarbonate administration to patients with acute metabolic acidosis, including diabetic ketoacidosis, lactic acidosis, septic shock, intraoperative metabolic acidosis, or cardiac arrest, is beneficial regarding clinical outcomes or mortality rate. Patients with advanced chronic kidney disease usually show metabolic acidosis due to increased unmeasured anions and hyperchloremia. It has been suggested that metabolic acidosis might have a negative impact on progression of kidney dysfunction and that sodium bicarbonate administration might attenuate this effect, but further evaluation is required to validate such a renoprotective strategy. Sodium bicarbonate is the predominant buffer used in dialysis fluids and patients on maintenance dialysis are subjected to a load of sodium bicarbonate during the sessions, suffering a transient metabolic alkalosis of variable severity. Side effects associated with sodium bicarbonate therapy include hypercapnia, hypokalemia, ionized hypocalcemia, and QTc inter Continue reading >>

Acidosis

Acidosis

When your body fluids contain too much acid, it’s known as acidosis. Acidosis occurs when your kidneys and lungs can’t keep your body’s pH in balance. Many of the body’s processes produce acid. Your lungs and kidneys can usually compensate for slight pH imbalances, but problems with these organs can lead to excess acid accumulating in your body. The acidity of your blood is measured by determining its pH. A lower pH means that your blood is more acidic, while a higher pH means that your blood is more basic. The pH of your blood should be around 7.4. According to the American Association for Clinical Chemistry (AACC), acidosis is characterized by a pH of 7.35 or lower. Alkalosis is characterized by a pH level of 7.45 or higher. While seemingly slight, these numerical differences can be serious. Acidosis can lead to numerous health issues, and it can even be life-threatening. There are two types of acidosis, each with various causes. The type of acidosis is categorized as either respiratory acidosis or metabolic acidosis, depending on the primary cause of your acidosis. Respiratory acidosis Respiratory acidosis occurs when too much CO2 builds up in the body. Normally, the lungs remove CO2 while you breathe. However, sometimes your body can’t get rid of enough CO2. This may happen due to: chronic airway conditions, like asthma injury to the chest obesity, which can make breathing difficult sedative misuse deformed chest structure Metabolic acidosis Metabolic acidosis starts in the kidneys instead of the lungs. It occurs when they can’t eliminate enough acid or when they get rid of too much base. There are three major forms of metabolic acidosis: Diabetic acidosis occurs in people with diabetes that’s poorly controlled. If your body lacks enough insulin, keton Continue reading >>

The Use Of Sodium Bicarbonate In The Treatment Of Acidosis In Sepsis: A Literature Update On A Long Term Debate

The Use Of Sodium Bicarbonate In The Treatment Of Acidosis In Sepsis: A Literature Update On A Long Term Debate

The Use of Sodium Bicarbonate in the Treatment of Acidosis in Sepsis: A Literature Update on a Long Term Debate We are experimenting with display styles that make it easier to read articles in PMC. The ePub format uses eBook readers, which have several "ease of reading" features already built in. The ePub format is best viewed in the iBooks reader. You may notice problems with the display of certain parts of an article in other eReaders. Generating an ePub file may take a long time, please be patient. The Use of Sodium Bicarbonate in the Treatment of Acidosis in Sepsis: A Literature Update on a Long Term Debate Dimitrios Velissaris, Vasilios Karamouzos, [...], and Menelaos Karanikolas Introduction. Sepsis and its consequences such as metabolic acidosis are resulting in increased mortality. Although correction of metabolic acidosis with sodium bicarbonate seems a reasonable approach, there is ongoing debate regarding the role of bicarbonates as a therapeutic option. Methods. We conducted a PubMed literature search in order to identify published literature related to the effects of sodium bicarbonate treatment on metabolic acidosis due to sepsis. The search included all articles published in English in the last 35 years. Results. There is ongoing debate regarding the use of bicarbonates for the treatment of acidosis in sepsis, but there is a trend towards not using bicarbonate in sepsis patients with arterial blood gas pH > 7.15. Conclusions. Routine use of bicarbonate for treatment of severe acidemia and lactic acidosis due to sepsis is subject of controversy, and current opinion does not favor routine use of bicarbonates. However, available evidence is inconclusive, and more studies are required to determine the potential benefit, if any, of bicarbonate therapy in the Continue reading >>

Therapy Of Lactic Acidosis: Alternatives To Sodium Bicarbonate

Therapy Of Lactic Acidosis: Alternatives To Sodium Bicarbonate

Therapy of Lactic Acidosis: Alternatives to Sodium Bicarbonate Part of the Clinical Physiology Series book series (CLINPHY) Lactic acidosis is the most common form of metabolic acidosis, and the current mortality from this condition is in excess of 50%. Because of its diverse pathophysiology, the clinical management of lactic acidosis is difficult. The mainstay of therapy has traditionally been the intravenous administration of sodium bicarbonate (NaHCO3), but recent clinical and experimental evidence strongly suggests that such therapy may in fact be detrimental. Lactic acidosis is generally defined as a metabolic acidosis due to the accumulation of lactic acid in the blood in excess of 5 mM, with an accompanying blood pH of less than 7.25. However, the mechanisms by which lactic acid accumulation occurs vary and include both the stimulation of lactate production and reductions of lactate metabolism. Clinically, the disorders of lactate metabolism are conveniently divided as either anaerobic (type A) or aerobic (type B) (16). The hallmark of type A lactic acidosis is tissue hypoxia, resulting in anaerobic lactic acid production. The most common causes of type A lactic acidosis are cardiopulmonary arrest and other states characterized by impaired cardiac performance, reduced tissue perfusion, and arterial hypoxemia. In these states, the hypoxia and circulatory insufficiency combine to reduce tissue oxygen availability, resulting in anaerobic metabolism and stimulation of lactic acid production. In type B lactic acidosis, on the other hand, tissue hypoxia appears not to be present, and lactic acid production is metabolically enhanced for other reasons in what is apparently an aerobic state. Examples of type B lactic acidosis include diabetes mellitus, certain malignanci Continue reading >>

Intravenous Sodium Bicarbonate

Intravenous Sodium Bicarbonate

Robin Gross, William Peruzzi, in Critical Care Medicine (Third Edition) , 2008 Intravenous sodium bicarbonate (NaHCO3) solution is an appropriate intervention for reversing metabolic acidemia, provided that lung and cardiac function are adequate. NaHCO3 solution adds HCO3 to the blood only after the CO2 load inherent in the NaHCO3 solution is eliminated by the lungs. When NaHCO3 solution is administered to a patient with acute ventilatory failure (respiratory acidosis), the Paco2 usually increases, and pH decreases because the CO2 load cannot be eliminated. As illustrated in Figure 14-8, low cardiac output may be a limiting factor in CO2 excretion. When NaHCO3 solution is administered to a patient with very poor cardiac output, the venous blood shows a paradoxical respiratory acidosis. When NaHCO3 is administered intravenously to correct severe metabolic acidemia, it is essential to quantify the abnormality as a guide to therapy. A simple way to calculate the amount of bicarbonate to administer is: mmol HCO3 = base deficit (mmol/L) ideal weight (kg) 0.25 (L/kg) where 0.25 represents the volume of distribution of the bicarbonate. It is generally prudent to administer one half to one third of the calculated deficit, obtain another ABG sample in 5 minutes, and re-evaluate. In Pocket Companion to Brenner and Rector's The Kidney (Eighth Edition) , 2011 In cases of intractable shock, metabolic acidosis may persist despite volume expansion and improved oxygen delivery. Intravenous bicarbonate is often used in this setting in an attempt to improve cardiac function. However, decreased cardiac contractility in the setting of lactic acidosis may be partially due to hypoxemia, hypoperfusion, or sepsis, and establishing the direct effects of the low pH is difficult. Many patients t Continue reading >>

Sodium Bicarbonate Use

Sodium Bicarbonate Use

metabolic acidosis leads to adverse cardiovascular effects bicarbonate must be administered in a solution as sodium bicarbonate 8.4% solution contains 1mmol of HCO3-/mL and is very hypertonic (2,000mOsm/kg) goal of NaHCO3 administration in severe metabolic acidosis to counteract the negative cardiovascular effects of acidaemia alternatives to NaHCO3 include carbicarb, dichloroacetate, Tris/THAM Treatment of sodium channel blocker overdose (e.g. tricyclic overdose) Urinary alkalinisation (salicylate poisoning) Metabolic acidosis (NAGMA) due to HCO3 loss (RTA, fistula losses) Cardiac arrest (in prolonged resuscitation + documented severe metabolic acidosis) Diabetic ketoacidosis (very rarely, perhaps if shocked and pH < 6.8) Severe pulmonary hypertension with RVF to optimize RV function Severe ischemic heart disease where lactic acidosis is thought to be an arrhythmogenic risk hypernatraemia (1mmol of Na+ for every 1mmol of HCO3-) hyperosmolality (cause arterial vasodilation and hypotension) impaired oxygen unloading due to left shift of the oxyhaemoglobin dissociation curve removal of acidotic inhibition of glycolysis by increased activity of PFK hypercapnia (CO2 readily passes intracellularly and worsens intracellular acidosis) severe tissue necrosis if extravasation takes place bicarbonate increases lactate production by: increasing the activity of the rate limiting enzyme phosphofructokinase and removal of acidotic inhibition of glycolysis shifts Hb-O2 dissociation curve, increased oxygen affinity of haemoglobin and thereby decreases oxygen delivery to tissues POINTS TO REMEMBER WHEN USING BICARBONATE it is generally better to correct underlying cause of acidosis and give supportive care than to give sodium bicarbonate ensure adequate ventilation to eliminate CO2 pro Continue reading >>

Metabolic Acidosis Treatment & Management: Approach Considerations, Type 1 Renal Tubular Acidosis, Type 2 Renal Tubular Acidosis

Metabolic Acidosis Treatment & Management: Approach Considerations, Type 1 Renal Tubular Acidosis, Type 2 Renal Tubular Acidosis

Metabolic AcidosisTreatment & Management Author: Christie P Thomas, MBBS, FRCP, FASN, FAHA; Chief Editor: Vecihi Batuman, MD, FASN more... Treatment of acute metabolic acidosis by alkali therapy is usually indicated to raise and maintain the plasma pH to greater than 7.20. In the following two circumstances this is particularly important. When the serum pH is below 7.20, a continued fall in the serum HCO3- level may result in a significant drop in pH. This is especially true when the PCO2 is close to the lower limit of compensation, which in an otherwise healthy young individual is approximately 15 mm Hg. With increasing age and other complicating illnesses, the limit of compensation is likely to be less. A further small drop in HCO3- at this point thus is not matched by a corresponding fall in PaCO2, and rapid decompensation can occur. For example, in a patient with metabolic acidosis with a serum HCO3- level of 9 mEq/L and a maximally compensated PCO2 of 20 mm Hg, a drop in the serum HCO3- level to 7 mEq/L results in a change in pH from 7.28 to 7.16. A second situation in which HCO3- correction should be considered is in well-compensated metabolic acidosis with impending respiratory failure. As metabolic acidosis continues in some patients, the increased ventilatory drive to lower the PaCO2 may not be sustainable because of respiratory muscle fatigue. In this situation, a PaCO2 that starts to rise may change the plasma pH dramatically even without a significant further fall in HCO3-. For example, in a patient with metabolic acidosis with a serum HCO3- level of 15 and a compensated PaCO2 of 27 mm Hg, a rise in PaCO2 to 37 mm Hg results in a change in pH from 7.33 to 7.20. A further rise of the PaCO2 to 43 mm Hg drops the pH to 7.14. All of this would have occurred whi Continue reading >>

8.7 Use Of Bicarbonate In Metabolic Acidosis

8.7 Use Of Bicarbonate In Metabolic Acidosis

8.7 Use of Bicarbonate in Metabolic Acidosis Metabolic acidosis causes adverse metabolic effects (see Section 5.4 ). In particular the adverse effects on the cardiovascular system may cause serious clinical problems. Bicarbonate is an anion and cannot be given alone. Its therapeutic use is as a solution of sodium bicarbonate. An 8.4% solution is a molar solution (ie it contains 1mmol of HCO3- per ml) and is the concentration clinically available in Australia. This solution is very hypertonic (osmolality is 2,000 mOsm/kg). The main goal of alkali therapy is to counteract the extracellular acidaemia with the aim of reversing or avoiding the adverse clinical effects of the acidosis (esp the adverse cardiovascular effects). Other reasons for use of bicarbonate in some cases of acidosis are: to promote alkaline diuresis (eg to hasten salicylate excretion) 8.7.2 Undesirable effects of bicarbonate administration In general, the severity of these effects are related to the amount of bicarbonate used. These undesirable effects include: 8.7.3 Important points about bicarbonate 1. Ventilation must be adequate to eliminate the CO2 produced from bicarbonate Bicarbonate decreases H+ by reacting with it to to produce CO2 and water. For this reaction to continue the product (CO2) must be removed. So bicarbonate therapy can increase extracellular pH only if ventilation is adequate to remove the CO2. Indeed if hypercapnia occurs then as CO2 crosses cell membranes easily, intracellular pH may decrease even further with further deterioration of cellular function. 2. Bicarbonate may cause clinical deterioration if tissue hypoxia is present If tissue hypoxia is present, then the use of bicarbonate may be particularly disadvantageous due to increased lactate production (removal of acidotic i Continue reading >>

Sodium Bicarbonate Deficit Calc

Sodium Bicarbonate Deficit Calc

In all cases, the primary goal in treating metabolic acidosis is to focus on reversal of the underlying process causing the acidosis. Examples: (1) Renal failure: dialysis if needed. (2) Alcoholic ketoacidosis: fluids, electrolytes, thiamine, folic acid. (3) Sepsis/shock: volume resuscitation, vasopressors, etc. (4) Salicylate intoxication: IV fluids, alkalinization of the urine, .... If there is a severe deficit (HCO3- < 10-12 mEq/L and pH<7.2) correct with sodium bicarbonate. Sodium bicarb is also useful if the acidosis is due to inorganic acids (especially if renal disease is present). However, when the acidosis results from organic acids (lactic acid, acetoacetic acid, etc) the role of bicarbonate is controversial. In most cases of DKA or severe lactic acidosis the administration of sodium bicarbonate does not decrease mortality even when the acidosis is severe. In sum, sodium bicarbonate should be reserved for severe cases of acidosis only (pH <7.2 and serum bicarbonate levels <10-12 meq/L). This can be accomplished by adding 1 to 3 ampoules of sodium bicarb to D5W or 1/2NS. IV-push administration should be reserved for cardiac life support and not metabolic acidosis. Sodium bicarbonate administration: It is recommended that 50% of total deficit be given over 3 to 4 hours, and the remainder replaced over 8-24 hours. The usual initial target ((desired HCO3- concentration): 10 - 12 mEq/L, which should bring the blood pH to ~7.20. The subsequent goal is to increase the bicarbonate level to 15 meq/L over the next 24 hours. Replace 50% over 3 to 4 hours and the reminder over 24 hours. Once the pH is 7.2 - 7.25, the serum [HCO3-] should not be increased by more than 4 to 8 mEq/L over 6 to 12 hours to avoid the risks of over-alkalinization (paradoxical CNS acidosis; decr Continue reading >>

Metabolic Acidosis

Metabolic Acidosis

Metabolic acidosis is a condition that occurs when the body produces excessive quantities of acid or when the kidneys are not removing enough acid from the body. If unchecked, metabolic acidosis leads to acidemia, i.e., blood pH is low (less than 7.35) due to increased production of hydrogen ions by the body or the inability of the body to form bicarbonate (HCO3−) in the kidney. Its causes are diverse, and its consequences can be serious, including coma and death. Together with respiratory acidosis, it is one of the two general causes of acidemia. Terminology : Acidosis refers to a process that causes a low pH in blood and tissues. Acidemia refers specifically to a low pH in the blood. In most cases, acidosis occurs first for reasons explained below. Free hydrogen ions then diffuse into the blood, lowering the pH. Arterial blood gas analysis detects acidemia (pH lower than 7.35). When acidemia is present, acidosis is presumed. Signs and symptoms[edit] Symptoms are not specific, and diagnosis can be difficult unless the patient presents with clear indications for arterial blood gas sampling. Symptoms may include chest pain, palpitations, headache, altered mental status such as severe anxiety due to hypoxia, decreased visual acuity, nausea, vomiting, abdominal pain, altered appetite and weight gain, muscle weakness, bone pain, and joint pain. Those in metabolic acidosis may exhibit deep, rapid breathing called Kussmaul respirations which is classically associated with diabetic ketoacidosis. Rapid deep breaths increase the amount of carbon dioxide exhaled, thus lowering the serum carbon dioxide levels, resulting in some degree of compensation. Overcompensation via respiratory alkalosis to form an alkalemia does not occur. Extreme acidemia leads to neurological and cardia Continue reading >>

Bicarbonate Therapy In Severe Metabolic Acidosis

Bicarbonate Therapy In Severe Metabolic Acidosis

Abstract The utility of bicarbonate administration to patients with severe metabolic acidosis remains controversial. Chronic bicarbonate replacement is obviously indicated for patients who continue to lose bicarbonate in the ambulatory setting, particularly patients with renal tubular acidosis syndromes or diarrhea. In patients with acute lactic acidosis and ketoacidosis, lactate and ketone bodies can be converted back to bicarbonate if the clinical situation improves. For these patients, therapy must be individualized. In general, bicarbonate should be given at an arterial blood pH of ≤7.0. The amount given should be what is calculated to bring the pH up to 7.2. The urge to give bicarbonate to a patient with severe acidemia is apt to be all but irresistible. Intervention should be restrained, however, unless the clinical situation clearly suggests benefit. Here we discuss the pros and cons of bicarbonate therapy for patients with severe metabolic acidosis. Metabolic acidosis is an acid-base disorder characterized by a primary consumption of body buffers including a fall in blood bicarbonate concentration. There are many causes (Table 1), and there are multiple mechanisms that minimize the fall in arterial pH. A patient with metabolic acidosis may have a normal or even high pH if there is another primary, contravening event that raises the bicarbonate concentration (vomiting) or lowers the arterial Pco2 (respiratory alkalosis). Metabolic acidosis differs from “acidemia” in that the latter refers solely to a fall in blood pH and not the process. A recent online survey by Kraut and Kurtz1 highlighted the uncertainty over when to give bicarbonate to patients with metabolic acidosis. They reported that nephrologists will prescribe therapy at a higher pH compared with Continue reading >>

Metabolic Acidosis And Kidney Disease: Does Bicarbonate Therapy Slow The Progression Of Ckd?

Metabolic Acidosis And Kidney Disease: Does Bicarbonate Therapy Slow The Progression Of Ckd?

Metabolic acidosis and kidney disease: does bicarbonate therapy slow the progression of CKD? Correspondence and offprint requests to: Csaba P. Kovesdy; E-mail: [email protected] Search for other works by this author on: Nephrology Dialysis Transplantation, Volume 27, Issue 8, 1 August 2012, Pages 30563062, Csaba P. Kovesdy; Metabolic acidosis and kidney disease: does bicarbonate therapy slow the progression of CKD?, Nephrology Dialysis Transplantation, Volume 27, Issue 8, 1 August 2012, Pages 30563062, Metabolic acidosis is a common complication associated with progressive loss of kidney function. The diminishing ability of the kidneys to maintain acidbase homeostasis results in acid accumulation, leading to various complications such as impairment in nutritional status, worsened uremic bone disease and an association with increased mortality. In addition to these adverse effects which are related to acid retention, metabolic acidosis may also cause kidney damage, possibly through the stimulation of adaptive mechanisms aimed at maintaining acidbase homeostasis in the face of decreasing kidney function. Recent clinical trials have suggested that correction or prevention of metabolic acidosis by alkali administration is able to attenuate kidney damage and to slow progression of chronic kidney disease (CKD), and may hence offer an effective, safe and affordable renoprotective strategy. We review the physiology and pathophysiology of acidbase homeostasis in CKD, the mechanisms whereby metabolic acidosis may be deleterious to kidney function, and the results of clinical trials suggesting a benefit of alkali therapy, with special attention to details related to the practical implementation of the results of these trials. bicarbonate , chronic kidney disease , metabolic ac Continue reading >>

Sodium Bicarbonate To Treat Severe Acidosis In The Critically Ill ((bicar-icu))

Sodium Bicarbonate To Treat Severe Acidosis In The Critically Ill ((bicar-icu))

Design: randomized multiple center clinical trial, open label Arms: intravenous 4.2% Sodium Bicarbonate vs no additional treatment Inclusion: age of 18 yo or above, critically ill patient with a SOFA score of 4 or above, lactatemia of 2mmol/l or above, with pH of 7.20 or below and PaCO2 of 45mmHg or below and bicarbonatemia of 20mmol/l or below Exclusion: single respiratory disorder (PaCO2 > 50 mmHg, Bicarbonatemia equal or higher than (PaCO2-40)/10 + 24 ; acute diarrhea, ileostomy or biliary drainage ; stage IV kidney failure or chronic dialysis ; tubular acidosis, ketoacidosis, high anion gap acids poisoning (PEG, aspirin, methanol) ; PaCO2 equal to 45mmHg or above and spontaneous breathing, pregnancy, protected patients, moribund patient (life expectancy of 48h or below) Randomization: website randomization with stratification on age, presence of sepsis at inclusion, renal failure Intervention: experimental arm: intravenous 4.2% Sodium Bicarbonate 125 to 250ml in 30min up to 1000ml/24h. The target is a plasma pH of 7.30 or above. An interim statistical analysis is planned when 200 patients will be included Evolution of the organ failure scores [TimeFrame:Day 0 to Day 28] use of SOFA score to assess the outcome 2 Duration of renal replacement therapy (days) [TimeFrame:Day 0 to Day 28] Duration of mechanical ventilation and ventilatory free days (days) [TimeFrame:Day 0 to Day 28] duration of mechanical ventilation and ventilatory free days Duration of vasopressors administration (h) [TimeFrame:Day 0 to Day 28] need for vasopressors and fluids using duration of vasopressor infusion (D0 to D28) Hospital acquired infections (incidence) [TimeFrame:Day 0 to Day 28] hospital acquired infections using United States Centers for Disease Control definitions and a dedicated docu Continue reading >>

More in ketosis