diabetestalk.net

Respiratory Acidosis Labs

Respiratory Acidosis

Respiratory Acidosis

PaCO2 increase by 10 mmHg decreases pH 0.08 Bicarbonate increases 1 meq/L per 10 mmHg PaCO2 rise PaCO2 increase by 10 mmHg decreases pH 0.03 Bicarbonate increases 4 meq/L per 10 mmHg PaCO2 rise Rutecki (Dec 1997) Consultant, p. 3067-74 Images: Related links to external sites (from Bing) These images are a random sampling from a Bing search on the term "Respiratory Acidosis." Click on the image (or right click) to open the source website in a new browser window. Search Bing for all related images Related Studies (from Trip Database) Open in New Window A state due to excess retention of carbon dioxide in the body. Acid base imbalance resulting from an accumulation of carbon dioxide secondary to hypoventilation. excess retention of carbon dioxide in the body resulting from ventilatory impairment. Respiratory retention of carbon dioxide. It may be chronic or acute. Acidoses, Respiratory, Acidosis, Respiratory, Respiratory Acidoses, Respiratory Acidosis, ACIDOSIS RESPIRATORY, Hypercapnic Acidosis, hypercapnic acidosis, respiratory acidosis (diagnosis), respiratory acidosis, Acidosis respiratory, Respiratory acidoses, Acidosis, Respiratory [Disease/Finding], acidosis respiratory, RESPIRATORY ACIDOSIS, ACIDOSIS, RESPIRATORY, Respiratory acidosis, Respiratory acidosis (disorder), Respiratory acidosis, NOS ACIDOSE RESPIRATOIRE, Acidoses respiratoires, Acidose respiratoire, Acidose gazeuse ACIDOSE RESPIRATORIA, Acidose respiratria, Acidoses respiratrias, Acidose Respiratria ACIDOSIS RESPIRATORIA, acidosis respiratoria (trastorno), acidosis respiratoria, Acidosis respiratoria, Acidosis respiratorias, Acidosis Respiratoria Azidose respiratorisch, AZIDOSE RESPIRATORISCH, Respiratorische Azidosen, respiratorische Azidose, Azidose, respiratorische, Respiratorische Azidose ATSIDOZ RES Continue reading >>

Respiratory Acidosisworkup

Respiratory Acidosisworkup

In patients without an obvious source of hypoventilation and respiratory acidosis, a drug screen should be performed. The effects of sedating drugs such as narcotics and benzodiazepines in depressing the central ventilatory drive and causing respiratory acidosis should be considered. These sedative drugs should be avoided, if possible, in patients with respiratory acidosis. Radiography, computed tomography (CT) scanning, and fluoroscopy of the chest may provide helpful information in determining causes of respiratory acidosis. Radiologic studies (CT scanningand magnetic resonance imaging [MRI]) of the brain should be considered if a central cause of hypoventilation and respiratory acidosis is suspected. Tests for pulmonary function, nerve function, and transdiaphragmatic pressure (when available), may also be helpful. Arterial blood gas (ABG) analysis is necessary in the evaluation of a patient with suspected respiratory acidosis or other acid-base disorders. The bicarbonate level reported on the blood gas analysis is calculated from the Henderson-Hasselbalch equation. Thus, a measured serum bicarbonate level must also be obtained. Other tests that may be helpful include serum electrolytes and biochemistries, thyroid studies, a complete blood count (CBC), and drug and toxicology screens. Acidemia is documented by the presence of a decreased pH (< 7.35) on ABG analysis. The presence of an increased partial pressure of arterial carbon dioxide (PaCO2) (>45 mm Hg) indicates a respiratory etiology of the acidemia. Hypoxemia may be present and is frequently associated with pulmonary diseases that cause respiratory acidosis. The most common abnormal serum electrolyte finding in chronic respiratory acidosis is the presence of a compensatory increase in serum bicarbonate concen Continue reading >>

Respiratory Acidosis

Respiratory Acidosis

Respiratory acidosis is a medical emergency in which decreased ventilation (hypoventilation) increases the concentration of carbon dioxide in the blood and decreases the blood's pH (a condition generally called acidosis). Carbon dioxide is produced continuously as the body's cells respire, and this CO2 will accumulate rapidly if the lungs do not adequately expel it through alveolar ventilation. Alveolar hypoventilation thus leads to an increased PaCO2 (a condition called hypercapnia). The increase in PaCO2 in turn decreases the HCO3−/PaCO2 ratio and decreases pH. Terminology[edit] Acidosis refers to disorders that lower cell/tissue pH to < 7.35. Acidemia refers to an arterial pH < 7.36.[1] Types of respiratory acidosis[edit] Respiratory acidosis can be acute or chronic. In acute respiratory acidosis, the PaCO2 is elevated above the upper limit of the reference range (over 6.3 kPa or 45 mm Hg) with an accompanying acidemia (pH <7.36). In chronic respiratory acidosis, the PaCO2 is elevated above the upper limit of the reference range, with a normal blood pH (7.35 to 7.45) or near-normal pH secondary to renal compensation and an elevated serum bicarbonate (HCO3− >30 mm Hg). Causes[edit] Acute[edit] Acute respiratory acidosis occurs when an abrupt failure of ventilation occurs. This failure in ventilation may be caused by depression of the central respiratory center by cerebral disease or drugs, inability to ventilate adequately due to neuromuscular disease (e.g., myasthenia gravis, amyotrophic lateral sclerosis, Guillain–Barré syndrome, muscular dystrophy), or airway obstruction related to asthma or chronic obstructive pulmonary disease (COPD) exacerbation. Chronic[edit] Chronic respiratory acidosis may be secondary to many disorders, including COPD. Hypoventilation Continue reading >>

Respiratory Acidosis

Respiratory Acidosis

What is respiratory acidosis? Respiratory acidosis is a condition that occurs when the lungs can’t remove enough of the carbon dioxide (CO2) produced by the body. Excess CO2 causes the pH of blood and other bodily fluids to decrease, making them too acidic. Normally, the body is able to balance the ions that control acidity. This balance is measured on a pH scale from 0 to 14. Acidosis occurs when the pH of the blood falls below 7.35 (normal blood pH is between 7.35 and 7.45). Respiratory acidosis is typically caused by an underlying disease or condition. This is also called respiratory failure or ventilatory failure. Normally, the lungs take in oxygen and exhale CO2. Oxygen passes from the lungs into the blood. CO2 passes from the blood into the lungs. However, sometimes the lungs can’t remove enough CO2. This may be due to a decrease in respiratory rate or decrease in air movement due to an underlying condition such as: There are two forms of respiratory acidosis: acute and chronic. Acute respiratory acidosis occurs quickly. It’s a medical emergency. Left untreated, symptoms will get progressively worse. It can become life-threatening. Chronic respiratory acidosis develops over time. It doesn’t cause symptoms. Instead, the body adapts to the increased acidity. For example, the kidneys produce more bicarbonate to help maintain balance. Chronic respiratory acidosis may not cause symptoms. Developing another illness may cause chronic respiratory acidosis to worsen and become acute respiratory acidosis. Initial signs of acute respiratory acidosis include: headache anxiety blurred vision restlessness confusion Without treatment, other symptoms may occur. These include: sleepiness or fatigue lethargy delirium or confusion shortness of breath coma The chronic form of Continue reading >>

Respiratory Acidosis

Respiratory Acidosis

Causes of respiratory acidosis include: Diseases of the lung tissue (such as pulmonary fibrosis, which causes scarring and thickening of the lungs) Diseases of the chest (such as scoliosis) Diseases affecting the nerves and muscles that signal the lungs to inflate or deflate Drugs that suppress breathing (including powerful pain medicines, such as narcotics, and "downers," such as benzodiazepines), often when combined with alcohol Severe obesity, which restricts how much the lungs can expand Obstructive sleep apnea Chronic respiratory acidosis occurs over a long time. This leads to a stable situation, because the kidneys increase body chemicals, such as bicarbonate, that help restore the body's acid-base balance. Acute respiratory acidosis is a condition in which carbon dioxide builds up very quickly, before the kidneys can return the body to a state of balance. Some people with chronic respiratory acidosis get acute respiratory acidosis because an illness makes their condition worse. Continue reading >>

Acid Base Evaluation

Acid Base Evaluation

Use the measured total CO2 from venous blood as HCO3 anion gap is an artifact because some anions are not measured gap is mainly due to unmeasured proteins, phosphates and sulfates Normal anion gap is 8-12 meq/L (Varies from Lab to Lab) useful in identifying mixed acidbase disorders in single acidbase disorder the difference between anion gap and the change in total CO2 should be negligible in other words change in total CO2 (Normal total CO2-observed total CO2) should be equal to anion gap. Excess bicarbonate gap suggests metabolic alkalosis Decrease in the gap suggests metabolic acidosis Respiratory compensation for Metabolic acid basedisturbance You can use the following crude formula 0.1 change in pH 10 mm change of PaCO2. If all else is well the PaCO2 should be the same as decimal values of pH i.e. for a pH of 7.28, the CO2 levels would be 28 mm Hg. Acidosis increases respiratory drive, alveolar ventilation and gets rid of Carbonic acid. Respiratory system can never completely compensate for a metabolic defect. Respiratory compensation attempts to maintain pH in a reasonable range. It is unusual to see CO2 retention (I don't agree with Books and others) Compensation is never complete. If the pH is normal there is probablya superimposed second acid base disturbance. Estimation of expected PaCO2for a given acidic pH also enables us to determine whether respiratorycompensation is appropriate. Continue reading >>

Acid Base Disorders

Acid Base Disorders

Arterial blood gas analysis is used to determine the adequacy of oxygenation and ventilation, assess respiratory function and determine the acid–base balance. These data provide information regarding potential primary and compensatory processes that affect the body’s acid–base buffering system. Interpret the ABGs in a stepwise manner: Determine the adequacy of oxygenation (PaO2) Normal range: 80–100 mmHg (10.6–13.3 kPa) Determine pH status Normal pH range: 7.35–7.45 (H+ 35–45 nmol/L) pH <7.35: Acidosis is an abnormal process that increases the serum hydrogen ion concentration, lowers the pH and results in acidaemia. pH >7.45: Alkalosis is an abnormal process that decreases the hydrogen ion concentration and results in alkalaemia. Determine the respiratory component (PaCO2) Primary respiratory acidosis (hypoventilation) if pH <7.35 and HCO3– normal. Normal range: PaCO2 35–45 mmHg (4.7–6.0 kPa) PaCO2 >45 mmHg (> 6.0 kPa): Respiratory compensation for metabolic alkalosis if pH >7.45 and HCO3– (increased). PaCO2 <35 mmHg (4.7 kPa): Primary respiratory alkalosis (hyperventilation) if pH >7.45 and HCO3– normal. Respiratory compensation for metabolic acidosis if pH <7.35 and HCO3– (decreased). Determine the metabolic component (HCO3–) Normal HCO3– range 22–26 mmol/L HCO3 <22 mmol/L: Primary metabolic acidosis if pH <7.35. Renal compensation for respiratory alkalosis if pH >7.45. HCO3 >26 mmol/L: Primary metabolic alkalosis if pH >7.45. Renal compensation for respiratory acidosis if pH <7.35. Additional definitions Osmolar Gap Use: Screening test for detecting abnormal low MW solutes (e.g. ethanol, methanol & ethylene glycol [Reference]) An elevated osmolar gap (>10) provides indirect evidence for the presence of an abnormal solute which is prese Continue reading >>

Respiratory Acidosis

Respiratory Acidosis

LABORATORY TESTS The following lab tests can be used to interpret and explain acidosis and alkalosis conditions. All are measured on blood samples. 1. pH: This measures hydrogen ions - Normal pH = 7.35-7.45 2. pCO2= Partial Pressure of Carbon Dioxide: Although this is a pressure measurement, it relates to the concentration of GASEOUS CO2 in the blood. A high pCO2 may indicate acidosis. A low pCO2 may indicate alkalosis. 3. HCO3- = Bicarbonate: This measures the concentration of HCO3- ion only. High values may indicate alkalosis since bicarbonate is a base. Low values may indicate acidosis. 4. CO2 = Carbon Dioxide Content: This is a measure of ALL CO2 liberated on adding acid to blood plasma. This measure both carbon dioxide dissolved and bicarbonate ions and is an older test. Do not confuse with pCO2 Typically, dissolved carbon dioxide = l.2-2.0 mmoles/L and HCO3- = 22-28 mmoles/L Therefore, although it is listed as CO2 content, the lab test really reflects HCO3- concentration. Respiratory Acidosis .ABNORMAL pH IN THE BODY: ACIDOSIS AND ALKALOSIS: INTRODUCTION: Normal blood pH is maintained between 7.35 and 7.45 by the regulatory systems. The lungs regulate the amount of carbon dioxide in the blood and the kidneys regulate the bicarbonate. When the pH decreases to below 7.35 an acidosis condition is present. Acidosis means that the hydrogen ions are increased and that pH and bicarbonate ions are decreased. A greater number of hydrogen ions are present in the blood than can be absorbed by the buffer systems. Alkalosis results when the pH is above 7.45. This condition results when the buffer base (bicarbonate ions) is greater than normal and the concentration of hydrogen ions are decreased. Both acidosis and alkalosis can be of two different types: respiratory and metabol Continue reading >>

Respiratory Acidosis Nclex Review Notes

Respiratory Acidosis Nclex Review Notes

Are you studying respiratory acidosis and need to know a mnemonic on how to remember the causes? This article will give you a clever mnemonic and simplify the signs and symptoms and nursing interventions on how to remember respiratory acidosis for nursing lecture exams and NCLEX. In addition, you will learn how to differentiate respiratory acidosis from respiratory alkalosis. Don’t forget to take the respiratory acidosis and respiratory alkalosis quiz. This article will cover: Sequence of normal breathing Patho of respiratory acidosis Causes of respiratory acidosis Signs and symptoms of respiratory acidosis Nursing interventions for respiratory acidosis Lecture on Respiratory Acidosis Respiratory Acidosis What’s involved:…let’s look at normal breathing: Oxygen enters through the mouth or nose down through the Pharynx into the Larynx (the throat) then into the Trachea and the Bronchus (right and left) which branches into the bronchioles and ends in alveoli sac *The alveolar sacs are where gas exchange takes place (oxygen and carbon dioxide diffuse across the membrane). The oxygen enters into your blood stream and CARBON DIOXIDE CO2 is exhaled through your nose or mouth. The diaphragm also plays a role in allowing lungs into inflate and deflate. Note: if there is any problem with the patient breathing rate (too slow), alveolar sacs (damaged), or diaphragm (weak) the patient can experience respiratory acidosis. *Main cause of respiratory acidosis is bradypnea (slow respiratory rate <12 bpm which causes CO2 to build-up in the lungs) When this happens the following lab values are affected: Blood pH decreases (<7.35) Carbon dioxide levels increase (>45) **To compensate for this the Kidneys start to conserve bicarbonate (HCO3) to hopefully increase the blood’s pH bac Continue reading >>

Common Laboratory (lab) Values - Abgs

Common Laboratory (lab) Values - Abgs

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Laboratory VALUES Home Page Arterial Blood Gases Arterial blood gas analysis provides information on the following: 1] Oxygenation of blood through gas exchange in the lungs. 2] Carbon dioxide (CO2) elimination through respiration. 3] Acid-base balance or imbalance in extra-cellular fluid (ECF). Normal Blood Gases Arterial Venous pH 7.35 - 7.45 7.32 - 7.42 Not a gas, but a measurement of acidity or alkalinity, based on the hydrogen (H+) ions present. The pH of a solution is equal to the negative log of the hydrogen ion concentration in that solution: pH = - log [H+]. PaO2 80 to 100 mm Hg. 28 - 48 mm Hg The partial pressure of oxygen that is dissolved in arterial blood. New Born – Acceptable range 40-70 mm Hg. Elderly: Subtract 1 mm Hg from the minimal 80 mm Hg level for every year over 60 years of age: 80 - (age- 60) (Note: up to age 90) HCO3 22 to 26 mEq/liter (21–28 mEq/L) 19 to 25 mEq/liter The calculated value of the amount of bicarbonate in the bloodstream. Not a blood gas but the anion of carbonic acid. PaCO2 35-45 mm Hg 38-52 mm Hg The amount of carbon dioxide dissolved in arterial blood. Measured. Partial pressure of arterial CO2. (Note: Large A= alveolor CO2). CO2 is called a “volatile acid” because it can combine reversibly with H2O to yield a strongly acidic H+ ion and a weak basic bicarbonate ion (HCO3 -) according to the following equation: CO2 + H2O <--- --> H+ + HCO3 B.E. –2 to +2 mEq/liter Other sources: normal reference range is between -5 to +3. The base excess indicates the amount of excess or insufficient level of bicarbonate in the system. (A negative base excess indicates a base deficit in the blood.) A negative base excess is equivalent to an acid excess. A value outside of the normal r Continue reading >>

Simple Method Of Acid Base Balance Interpretation

Simple Method Of Acid Base Balance Interpretation

A FOUR STEP METHOD FOR INTERPRETATION OF ABGS Usefulness This method is simple, easy and can be used for the majority of ABGs. It only addresses acid-base balance and considers just 3 values. pH, PaCO2 HCO3- Step 1. Use pH to determine Acidosis or Alkalosis. ph < 7.35 7.35-7.45 > 7.45 Acidosis Normal or Compensated Alkalosis Step 2. Use PaCO2 to determine respiratory effect. PaCO2 < 35 35 -45 > 45 Tends toward alkalosis Causes high pH Neutralizes low pH Normal or Compensated Tends toward acidosis Causes low pH Neutralizes high pH Step 3. Assume metabolic cause when respiratory is ruled out. You'll be right most of the time if you remember this simple table: High pH Low pH Alkalosis Acidosis High PaCO2 Low PaCO2 High PaCO2 Low PaCO2 Metabolic Respiratory Respiratory Metabolic If PaCO2 is abnormal and pH is normal, it indicates compensation. pH > 7.4 would be a compensated alkalosis. pH < 7.4 would be a compensated acidosis. These steps will make more sense if we apply them to actual ABG values. Click here to interpret some ABG values using these steps. You may want to refer back to these steps (click on "linked" steps or use "BACK" button on your browser) or print out this page for reference. Step 4. Use HC03 to verify metabolic effect Normal HCO3- is 22-26 Please note: Remember, the first three steps apply to the majority of cases, but do not take into account: the possibility of complete compensation, but those cases are usually less serious, and instances of combined respiratory and metabolic imbalance, but those cases are pretty rare. "Combined" disturbance means HCO3- alters the pH in the same direction as the PaCO2. High PaCO2 and low HCO3- (acidosis) or Low PaCO2 and high HCO3- (alkalosis). Continue reading >>

Arterial Blood Gases - Indications And Interpretation

Arterial Blood Gases - Indications And Interpretation

Severely unwell patients from any cause - affects prognosis. Arterial blood can be obtained by direct arterial puncture most usually at the wrist (radial artery). Alternatives to the radial artery include the femoral and brachial artery - both of which are usually used in emergency settings. The dorsalis pedis artery and ulnar artery may also be used. It is important to ensure good collateral circulation (see below), as there is a theoretical risk of thrombus occlusion. If multiple samples are required then an indwelling arterial cannula can be placed. Allow the patient to titrate with the oxygen for 5-10 minutes (30 minutes if they have chronic obstructive pulmonary disease (COPD)) before taking a sample. If the radial artery is to be used, perform Allen's test to confirm collateral blood flow to the hand. Elevate the hand and make a fist for approximately 30 seconds. Apply pressure over the ulnar and the radial arteries occluding both (keep the hand elevated). Release pressure on the ulnar artery and look for perfusion of the hand (this takes under eight seconds). If there is any delay then it may not be safe to perform radial artery puncture. Explain the procedure to the patient - it is painful. If there is time then local anaesthesia can be used. ABG syringes usually come prepacked and are heparinised. Some contain a vacuum and thus the plunger does not always need to be pulled. (Check with your department as to which they use). The wrist is extended - a pillow under the hand may improve comfort. Palpate the artery and hold fingers firmly over the pulsation. Then introduce the needle at a 45 angle slowly with the bevel facing upwards, aiming for the point of maximum pulsation. Once you hit the artery, try to obtain at least a 1 ml sample. Once you have taken your s Continue reading >>

Acidosis And Alkalosis

Acidosis And Alkalosis

Find an explanation of your pathology test Acidosis and alkalosis are terms used to describe the abnormal conditions when a patients blood pH does not fall within the healthy range. Measuring the pH of blood is a way of determining how acidic or basic (alkaline) the blood is. Normal blood pH must be maintained within a narrow range of 7.35 - 7.45 to ensure that metabolic processes function properly and the right amount of blood is delivered to the tissues. Many diseases or situations can cause a patients blood pH to fall outside of these limits. In the human body, normal metabolism generates large quantities of acids that must be eliminated to maintain a normal pH balance. Most of the acid is carbonic acid which is produced when carbon dioxide (CO2) combines with water in the body. Lesser quantities of lactic acid, ketoacids and other organic acids are also produced. This balance can be disrupted by a build-up of an acid or a base (alkali) or by an increased loss of an acid or a base (see Figure 1, below). Acidosis occurs when blood pH falls below 7.35 Alkalosis occurs when blood pH rises above 7.45 Both of these conditions act as an alarm to the body; they trigger actions intended to restore the pH balance and return the blood pH to its normal range. The major organs involved in regulating blood pH are the lungs and the kidneys. The lungs flush acid out of the body by exhaling CO2 (carbon dioxide). Within physical limits, the body can raise and lower the rate of breathing to alter the amount of CO2 that is breathed out. This can affect blood pH within seconds or minutes. The kidneys excrete some acids in the urine, and they produce and regulate the retention of HCO3- (bicarbonate), a base that increases the bloods pH or alkalinity. Changes in HCO3- concentration occur Continue reading >>

Abg Interpreter

Abg Interpreter

pH CO2 HCO3 Result appears in here. Normal Arterial Blood Gas Values pH 7.35-7.45 PaCO2 35-45 mm Hg PaO2 80-95 mm Hg HCO3 22-26 mEq/L O2 Saturation 95-99% BE +/- 1 Four-Step Guide to ABG Analysis Is the pH normal, acidotic or alkalotic? Are the pCO2 or HCO3 abnormal? Which one appears to influence the pH? If both the pCO2 and HCO3 are abnormal, the one which deviates most from the norm is most likely causing an abnormal pH. Check the pO2. Is the patient hypoxic? I used Swearingen's handbook (1990) to base the results of this calculator. The book makes the distinction between acute and chronic disorders based on symptoms from identical ABGs. This calculator only differentiates between acute (pH abnormal) and compensated (pH normal). Compensation can be seen when both the PCO2 and HCO3 rise or fall together to maintain a normal pH. Part compensation occurs when the PCO2 and HCO3 rise or fall together but the pH remains abnormal. This indicates a compensatory mechanism attempted to restore a normal pH. I have not put exact limits into the calculator. For example, it will perceive respiratory acidosis as any pH < 7.35 and any CO2 > 45 (i.e. a pH of 1 and CO2 of 1000). These results do not naturally occur. pH PaCO2 HCO3 Respiratory Acidosis Acute < 7.35 > 45 Normal Partly Compensated < 7.35 > 45 > 26 Compensated Normal > 45 > 26 Respiratory Alkalosis Acute > 7.45 < 35 Normal Partly Compensated > 7.45 < 35 < 22 Compensated Normal < 35 < 22 Metabolic Acidosis Acute < 7.35 Normal < 22 Partly Compensated < 7.35 < 35 < 22 Compensated Normal < 35 < 22 Metabolic Alkalosis Acute > 7.45 Normal > 26 Partly Compensated > 7.45 > 45 > 26 Compensated Normal > 45 > 26 Mixed Disorders It's possible to have more than one disorder influencing blood gas values. For example ABG's with an alkale Continue reading >>

Respiratory Acidosis

Respiratory Acidosis

Respiratory Acidosisis an acid-base imbalance characterized by increased partial pressure of arterial carbon dioxide and decreased blood pH. The prognosis depends on the severity of the underlying disturbance as well as the patients general clinical condition. Compensatory mechanisms include (1) an increased respiratory rate; (2) hemoglobin (Hb) buffering, forming bicarbonate ions and deoxygenated Hb; and (3) increased renal ammonia acid excretions with reabsorption of bicarbonate. Acute respiratory acidosis:Associated with acute pulmonary edema, aspiration of foreign body, overdose of sedatives/barbiturate poisoning, smoke inhalation, acute laryngospasm, hemothorax / pneumothorax , atelectasis, adult respiratory distress syndrome (ARDS), anesthesia/ surgery , mechanical ventilators, excessive CO2intake (e.g., use of rebreathing mask, cerebral vascular accident [CVA] therapy), Pickwickian syndrome. Chronic respiratory acidosis:Associated with emphysema , asthma , bronchiectasis; neuromuscular disorders (such as Guillain-Barr syndrome and myasthenia gravis); botulism; spinal cord injuries. Condition, prognosis, and treatment needs understood. Plan in place to meet needs after discharge. This condition does not occur in isolation, but rather is a complication of a broader health problem/disease or condition for which the severely compromised patient requires admission to a medical-surgical or subacute unit. Main Article: Respiratory Acidosis Nursing Care Plan Remain alert for critical changes in patients respiratory, CNS and cardiovascular functions. Report such changes as well as any variations in ABG values or electrolyte status immediately. Maintain patent airway and provide humidification if acidosis requires mechanical ventilation . Perform tracheal suctioning frequ Continue reading >>

More in ketosis