diabetestalk.net

Respiratory Acidosis And Alkalosis Made Easy

Review Easy Blood Gas Analysis: Implications For Nursing

Review Easy Blood Gas Analysis: Implications For Nursing

Introduction Arterial blood gas analysis is a common investigation in emergency departments and intensive care units for monitoring patients with acute respiratory failure. It also has some applications in general practice, such as assessing the need for domiciliary oxygen therapy in patients with chronic obstructive pulmonary disease. An arterial blood gas result can help in the assessment of a patient’s gas exchange, ventilatory control and acid–base balance [1]. However, the investigation does not give a diagnosis and should not be used as a screening test. It is imperative that the results are considered in the context of the patient’s symptoms. While non-invasive monitoring of pulmonary function, such as pulse oximetry, is simple, effective and increasingly widely used, pulse oximetry is no substitute for arterial blood gas analysis [2,3]. Pulse oximetry is solely a measure of oxygen saturation and gives no indication about blood pH, carbon dioxide or bicarbonate concentrations [4]. The arterial blood gas (ABG) is frequently used for monitoring the patient’s respiratory status and ABGs can be sampled as an arterial stab or by drawing blood from an arterial line. Knowledge about interpretation of ABGs is consequently essential for nurses who are working in ICU, to be able to analyze each component of the ABGs to avoid overlooking a change that could result in an inaccurate interpretation and lead to inappropriate treatment. All over the world nurses in ICU use considerable time in drawing, documenting, reporting and interpreting blood gases. Blood gases can be obtained from the arteries, veins or capillaries [1,3]. Arterial blood gases are analyzed with a great frequency. Nurses are usually involved in taking and analyzing the ABGs and normally they report t Continue reading >>

Arterial Blood Gases Made Easy

Arterial Blood Gases Made Easy

pH=ACIDOSIS, PaCO2=NORMAL, HCO3=ACIDOSIS. This is Metabolic Acidosis pH=ALKALOSIS, PaCO2=ALKALOSIS, HCO3=NORMAL This is RESPIRATORY ALKALOSIS pH=ACIDOSIS, PaCO2=ACIDOSIS, HCO3=NORMAL This is RESPIRATORY ACIDOSIS. pH=ALKALOSIS, PaCO2=NORMAL, HCO3=ALKALOSIS. This is METABOLIC ALKALOSIS. This occurs as the body begins to correct the acid-base imbalance? If total compensation occurs, the pH will? If Partial Compensation occurs the pH will? If Compensation occurs what happens to PaCO2 and HCO3? RESPIRATORY Imbalances are compensated for by the? METABOLIC Imbalances are compensated for by the? pH=ACIDOSIS, PaCO2=ALKALOSIS, HCO3=ACIDOSIS. This is METABOLIC ACIDOSIS with PARTIAL COMPENSATION pH=ALKALOSIS, PaCO2=ACIDOSIS, HCO3=ALKALOSIS. This is METABOLIC ALKALOSIS with PARTIAL COMPENSATION pH=NORMAL, PaCO2-ACIDOSIS, HCO3=ALKALOSIS. This is FULLY COMPENSATED METABOLIC ALKALOSIS LOW Hydrogen ion concentration indicates? HIGH Hydrogen ion concentration indicates? BUFFER SYSTEMS. Either Extracellular or Intracellular Buffers HCO3 (Bicarb)=Kidneys/Lungs, a Ratio of 20:1 and Inorganic Phosphates and Plasma Proteins. Proteins, Inorganic Phosphates and Hemoglobin Loss of HCO3 from ECF, Diarrhea, Diuretics, Renal Insufficiency, Excessive Chloride, Ketoacidosis, Lactic Acidosis, Methanol or Ethyline Toxicity Signs and Symptoms of Metabolic Acidosis? HA, Confusion, Drowsiness, Increased Respirations, Peripheral Vasodilation, Decreased Cardiac Output, Decreased BP, Dysrhythmias, Shock Correct underlying Metabolic Defect. Eliminate Cloride, Monitor K+ levels, ECG Metabolic Alkalosis. A gain of Bicarbonate or Hydrogen. Can be acute or chronic Vomiting, Gastric Suctioning, Loss of K+, Excessive Adrenocorticoid Hormones Signs and Symptoms of Metabolic Alkalosis? Tingling toes and fingers, Diz Continue reading >>

Easy Way To Interpret Abg Values

Easy Way To Interpret Abg Values

ABG values can be very intimidating! Its hard to remember all the different normal values, what they mean, and which direction theyre supposed to be going. With so much information, its super easy to get mixed up and make a stupid mistake on an exam, even when you really DO know how to interpret ABGs. In this article, Im focusing more on the How to, rather than understanding whats going on with the A&P, which Ive already done in previous articles. If you want to understand whythese steps work (which you should do anyway to become a great nurse!),take some time to review my articles on Respiratory Imbalances and Metabolic Imbalances . Heres my 7-step method to interpreting ABGs. We have three puzzle pieces to put together: B)uncompensated, partially compensated, or compensated 1) Across the top of your page, write down the normal values for the three most important ABG lab results: pH (7.35-7.45), PaCO2 (35-45), and HCO3 (22-26). 2) Underneath pH, draw arrows to remind you which direction is acidic (down), and which direction is basic (down). 3) UnderneathPaCO2, and HCO3, draw arrows to remind you what abnormally high and low values would do to the bodys pH. When youre done, your page should look something like this: So far, we havent even looked at the question yet, were just trying to prevent any stupid mistakes!! 4) Now you can finally look at the patients ABG values. Check the pH and decide if the value is normal, high, or low. 4a) If the pH is normal, check PaCO2, and HCO3. If they are both normal, then you patient is fine and you can stop here. But if one or both of these values is abnormal, then continue to step 5. 5) Identify if the patient has alkalosis or acidosis. 5a) If the pH is abnormal, then compare it to the arrows you wrote at the top of your paper and Continue reading >>

Respiratory Acidosis Nclex Review Notes

Respiratory Acidosis Nclex Review Notes

Are you studying respiratory acidosis and need to know a mnemonic on how to remember the causes? This article will give you a clever mnemonic and simplify the signs and symptoms and nursing interventions on how to remember respiratory acidosis for nursing lecture exams and NCLEX. In addition, you will learn how to differentiate respiratory acidosis from respiratory alkalosis. Don’t forget to take the respiratory acidosis and respiratory alkalosis quiz. This article will cover: Sequence of normal breathing Patho of respiratory acidosis Causes of respiratory acidosis Signs and symptoms of respiratory acidosis Nursing interventions for respiratory acidosis Lecture on Respiratory Acidosis Respiratory Acidosis What’s involved:…let’s look at normal breathing: Oxygen enters through the mouth or nose down through the Pharynx into the Larynx (the throat) then into the Trachea and the Bronchus (right and left) which branches into the bronchioles and ends in alveoli sac *The alveolar sacs are where gas exchange takes place (oxygen and carbon dioxide diffuse across the membrane). The oxygen enters into your blood stream and CARBON DIOXIDE CO2 is exhaled through your nose or mouth. The diaphragm also plays a role in allowing lungs into inflate and deflate. Note: if there is any problem with the patient breathing rate (too slow), alveolar sacs (damaged), or diaphragm (weak) the patient can experience respiratory acidosis. *Main cause of respiratory acidosis is bradypnea (slow respiratory rate <12 bpm which causes CO2 to build-up in the lungs) When this happens the following lab values are affected: Blood pH decreases (<7.35) Carbon dioxide levels increase (>45) **To compensate for this the Kidneys start to conserve bicarbonate (HCO3) to hopefully increase the blood’s pH bac Continue reading >>

Respiratory Therapy Cave: Abg Interpretation Made Easy: Acid Base Balance

Respiratory Therapy Cave: Abg Interpretation Made Easy: Acid Base Balance

ABG interpretation made easy: acid base balance So you made it this far. Now you must interpret the results. Looking for some tips to ease your anxiety over an upcoming test that covers arterial blood gas (ABG) interpretation? Well, look no further. The goal of this blog is to make your life easy. ABG interpretation is as easy as remembering four basic questions, and then answering them in sequence. Of course then you'll have to practice, practice, practice. By the time your test comes up you should be an ABG interpretation expert. To make things simple, I will only refer to the three basic ABG values in this post To interpret these results, all you have to do is memorize these four basic questions, and then answer them in order. If all the values fall within the normal parameters, then you have a normal ABG and you can stop here: The ABG is normal. If any one of the values is out of the normal range, then you must move on to the next question. B. Is the pH Acidotic or Alkalotic?To determine this you look only at the pH. Alkalotic: If the pH is greater than 7.45 the patient is Alkalotic. Acidotic: If the pH is below 7.35 the patient is acidotic. C. Is the cause respiratory or metabolic?To determine this you look at pH and compare it with HcO3 and CO2. If the pH is acidotic, you look for whichever value (HcO3 or CO2) is also acidotic. If the pH is alkalotic, you look for whichever value (HcO3 or CO2) is also alkalotic. In this sense, you match the pH with HcO3 and CO2. If the pH matches with the CO2, you have respiratory. If the pH matches with the HcO3, you have metabolic. Metabolic Alkalosis: If the pH is alkatotic and the HcO3 alkalotic. Respiratory Alkalosis: If the pH is alkalotic and the CO2 is alkalotic Metabolic Acidosis: If the pH is acidotic and the HcO3 acido Continue reading >>

My Life As A Resident

My Life As A Resident

Hello Mr Ryan, Mr Trump, and whomever else this may concern. (And, if you are an American of any stripe, then as it turnsout it also concerns you.) I am a family physician. I interact with your constituentsall day, every day. I hear about their problems, their struggles, and often thelimitations they face regarding healthcare. I try to help them when I can. Thatsmy job in a nutshell. So let me tell you about one of your constituents who alsohappened to become my patient. Lets call him Bob. Bob is a middle aged man who worked full time at an entrylevel manual labor type job. The kind of job you spend 40 hrs/wk working butstill hover around the poverty line. The kind of job with no benefits. He didntgo to the doctor and had no health insurance but as far as he knew he also didnthave any health problems. Until one day he started feeling unwell. Thispersisted for a few days and he refused to let his wife take him to the doctor.He was worried about the cost and figured hed get better in a few days anyway.Only he didnt. He got worse and his wife called an ambulance. Actually, lets skip ahead to the final diagnosis. Bob hastype 2 diabetes. Newly diagnosed. Easy. Boring. Right? Except Bob clearly haddiabetes for some time, unbeknownst to him. When he arrived in the EmergencyDepartment he was in septic shock. He was riddled with large abscesses in hisinternal organs and soft tissues. Both his lower limbs were necrotic. He hadosteomyelitis in multiple locations. Whats really amazing though is that helived. He had both his legs amputated below the knees and was hospitalized forweeks. All told he had 8 or 9 surgeries. He required weeks of additional IVantibiotics. But he ultimately got better. And his diabetes is well controllednow on pretty minimal medication. During his hospital Continue reading >>

Simple Method Of Acid Base Balance Interpretation

Simple Method Of Acid Base Balance Interpretation

A FOUR STEP METHOD FOR INTERPRETATION OF ABGS Usefulness This method is simple, easy and can be used for the majority of ABGs. It only addresses acid-base balance and considers just 3 values. pH, PaCO2 HCO3- Step 1. Use pH to determine Acidosis or Alkalosis. ph < 7.35 7.35-7.45 > 7.45 Acidosis Normal or Compensated Alkalosis Step 2. Use PaCO2 to determine respiratory effect. PaCO2 < 35 35 -45 > 45 Tends toward alkalosis Causes high pH Neutralizes low pH Normal or Compensated Tends toward acidosis Causes low pH Neutralizes high pH Step 3. Assume metabolic cause when respiratory is ruled out. You'll be right most of the time if you remember this simple table: High pH Low pH Alkalosis Acidosis High PaCO2 Low PaCO2 High PaCO2 Low PaCO2 Metabolic Respiratory Respiratory Metabolic If PaCO2 is abnormal and pH is normal, it indicates compensation. pH > 7.4 would be a compensated alkalosis. pH < 7.4 would be a compensated acidosis. These steps will make more sense if we apply them to actual ABG values. Click here to interpret some ABG values using these steps. You may want to refer back to these steps (click on "linked" steps or use "BACK" button on your browser) or print out this page for reference. Step 4. Use HC03 to verify metabolic effect Normal HCO3- is 22-26 Please note: Remember, the first three steps apply to the majority of cases, but do not take into account: the possibility of complete compensation, but those cases are usually less serious, and instances of combined respiratory and metabolic imbalance, but those cases are pretty rare. "Combined" disturbance means HCO3- alters the pH in the same direction as the PaCO2. High PaCO2 and low HCO3- (acidosis) or Low PaCO2 and high HCO3- (alkalosis). Continue reading >>

The Quick And Dirty Guide To Acid Base Balance | Medictests.com

The Quick And Dirty Guide To Acid Base Balance | Medictests.com

Your patient has a ph of 6.9 Is he acidic or alkalotic? Your patient has a ph of 7.4 Is he acidic or alkalotic? Your patient has a ph of 7.7 Is he acidic or alkalotic? Your patient has a ph of 7.25 Is he acidic or alkalotic? Your patient has a ph of 7.43 Is he acidic or alkalotic? Your patient has a ph of 8.0 Is he acidic or alkalotic? 1. acidic 2. normal 3. Alkaline 4. Acidic 5. Normal 6. Alkaline You take in oxygen by inhaling, your body turns oxygen into carbon dioxide, you exhale and remove the carbon dioxide from your body. Carbon dioxide is "respiratory acid."When you're not breathing adequately, you are not getting rid of this "respiratory acid" and it builds up in the tissues. The extra CO2 molecules combine with water in your body to form carbonic acid and makes your pH go up. This is bad. We can measure the amount of respiratory acid in the arterial blood using blood gases. They measure the amount of each gas in your blood. We measure the pH, the amount of carbon dioxide (PaCO2) and the amount of oxygen in the blood (PaO2). PaCO2 is the partial pressure of carbon dioxide. We can measure it to see how much respiratory acid (CO2) there is in the blood. We use arterial blood gas tests to check it. How much respiratory acid (CO2) should there be? The normal value is 35-45 mmHg (mmHg just means millimeters of mercury, its a measurement of pressure.) The (a) in PaCO2 just stands for arterial. If you measured venous blood gasses, the levels are different and PvCO2 is used. If CO2 is HIGH, it means there is a buildup of respiratory acids because he's not breathing enough CO2 away. If your pH is acidic, and your CO2 is HIGH, its considered respiratory acidosis. If CO2 is LOW, it means there are not enough respiratory acids because he's probably hyperventilating too mu Continue reading >>

Acid Base Calculation Made Easy !

Acid Base Calculation Made Easy !

Posted by Ash from IP 74.138.144.66 on October 12, 2006 at 17:50:13: 6 steps to ABG analysis, go step by step in the very same order:- 1.Chk whether the pt is academic or alkalemic,by looking at the arterial pH (NL = 7.38 7.42) 2. Chk whether the ABG abnormality is due to a primary repiratory or metabolic disorder by chking the PCo2 levels( NL 38-42) and HCO3 levels (NL 22-26) 3. Now if there is respiratory component identified,chk whether this is acute or chronic respiratory acidosis or alkalosis. 4. Now if u identify a metabolic component ,chk whether it is high anion or normal anion gap M.Acidosis 5. Chk wether the respiratory system is adequetly compensating for this primary metabolic disorder. 6. Now u identify a high anion gap M.A,chk the corrected HCO3 level,y we do this coz to know wether there was a intial primary disorder ,before this new metabolic disorder developed. VERY IMPO FORMULAS :- U have to learn the formulas byheart) In Metabolic acidosis pH and HCO3 (DECREASES) So to compensate for every 1 mmol/l of drop in HCO3 , 1.2mmhg of PCO2 shld decrease So to compensate for every 1 mmol/l of increase HCO3, 0.07 mmhg of pco2 will increase. In Resp .Acidosis (PH - DECREASED and PCO2 AND HCO3 INCREASED) Acute R.acidosis:- For every 10 mmhg increase in pco2 , 1 mmol/l Hco3 shld increase Chronic R acidosis:- for every 10 mmhg increase in pco2, Hco3 increases by 3.5mmol/l In Respiratory Alkalosis pH INCREASED, pco2 and Hco3 DECREASED Acute R.alkalosis :- for every 10 mmhg decrease in PCO2 , hco2 decreases by 2meq/l Chronic :- for very 10 mmhg decrease in PCO2 ,hco3 decreases by 10mmol/l Winters equation :- this equation helps u to determine ,what the expected PCO2 lloks like when there is a metabolic acidosis:- Anion GAP :- done always when the disorder is metabol Continue reading >>

Acid-base Imbalances Made Easy With Picmonic

Acid-base Imbalances Made Easy With Picmonic

We value your time, which is why we made lab values easier than ever to understand with Picmonics pathway for acid-base imbalances! Guess what? Picmonic has a super-easy nursing acid base imbalances visual study guide that will help you soak in all the acid base information you need. We worked hard to make sure our nursing acid base imbalances visual study aid was simple to understand and fun. See for yourself! Then, read this article to learn the basics of how to interpret acid base imbalances in 3 steps. You can even test your knowledge afterward with this FREE QUIZ ! Watch Kendall teach basics of how to interpret Acid Base Imbalances. Read and learn the basics of how to interpret acid base imbalances in these 3 steps* Helpful Hint: Look at the numbers .35 and .45 in the pH levels. Looks pretty similar to the lab values of 35-45 in pCO2, right? Youve already got two lab values memorized right there! Once youve got those lab values memorized, its easy to recognize what is abnormal. Now, if a patients pH falls below 7.35, they are in a state of acidosis. If the patients pH is above 7.45, the patient would be in a state of alkalosis. 2. Figure out what kind of acidosis or alkalosis our patient is in: respiratory or metabolic? Here, we first look at the partial pressure of carbon dioxide (pCO2) in the blood. CO2 is acidic in the body and is regulated through respiration. Think breathing. We blow off CO2 with every breath. A good little trick here is to look at the pH and see what direction its going (up or down), and then look at the CO2 and see what direction thats going. If they are going in the opposite directions, then we have ourselves a patient with a respiratory disorder. Thats where you take part one (acidosis or alkalosis) and match it here with respiratory ( re Continue reading >>

Abg Interpretation

Abg Interpretation

Arterial blood gas (ABG) interpretation is something many medical students find difficult to grasp (we’ve been there). We’ve created this guide, which aims to provide a structured approach to ABG interpretation whilst also increasing your understanding of each results relevance. The real value of an ABG comes from its ability to provide a near immediate reflection of the physiology of your patient, allowing you to recognise and treat pathology more rapidly. To see how to perform an arterial blood gas check out our guide here. If you want to put your ABG interpretation skills to the test, check out our ABG quiz here. Normal ranges pH: 7.35 – 7.45 PaCO2: 4.7-6.0 kPa PaO2: 11-13 kPa HCO3-: 22-26 mEg/L Base excess: -2 to +2 mmol/L Patient’s clinical condition Before getting stuck into the details of the analysis, it’s important to look at the patient’s current clinical status, as this provides essential context to the ABG result. Below are a few examples to demonstrate how important context is when interpreting an ABG. A normal PaO2 in a patient on high flow oxygen – this is abnormal as you would expect the patient to have a PaO2 well above the normal range with this level of oxygen therapy A normal PaCO2 in a hypoxic asthmatic patient – a sign they are tiring and need ITU intervention A very low PaO2 in a patient who looks completely well, is not short of breath and has normal O2 saturations – likely a venous sample Oxygenation (PaO2) Your first question when looking at the ABG should be “Is this patient hypoxic?” (because this will kill them long before anything else does). PaO2 should be >10 kPa on air in a healthy patient If the patient is receiving oxygen therapy their PaO2 should be approximately 10kPa less than the % inspired concentration / FiO Continue reading >>

Acid Base Balance Made Easy Notes -very Good - Usmle Forum

Acid Base Balance Made Easy Notes -very Good - Usmle Forum

Acute respiratory alkalosis ----- HCO3- 18 [24-6] Chronic respiratory alkalosis ---HCO3- 7.4] ii. PCO2 = 22 --- so this is respiratory alkalosis iii. HCO3- = 14 --- so this is Chronic respiratory alkalosis ---but this is NOT the answer iv. Observe here clearly that PH =7.42 which is 0.02 above than 7.4 & near normal to 7.4 (7.35 7.45 is normal range according to goljan) (see clearly in other problems that in a partially compensated, PH is either < 7.35 or > 7.45 ---but never between 7.35 7.45, if present it is mixed disorder with acidosis + alkalosis) -----so this is not Chronic respiratory alkalosis because compensation (chronic) never brings the PH to normal & compensation is always outside the normal range (partially compensated Goljen High Yield General pg 82 ) v. So this is mixed respiratory alkalosis and metabolic acidosis because PH is above 7.4 and come to 7.42. If the CO2 and HCO3- change in opposite directions , it is a combined disturbance . It is either a combined respiratory and metabolic acidosis or a combined respiratory and metabolic alkalosis. Kaplan Physiology pg 801 a. Combined Respiratory And Metabolic Alkalosis.----------if the CO2 is depressed and HCO3- elevated Kaplan Physiology pg 801 b. Combined Respiratory And Metabolic Acidosis.------------if the CO2 is elevated and HCO3- depressed Kaplan Physiology pg 801 i. E.g: PCO2=55mmHg , HCO3- =20 mEq/L Ans: Combined respiratory and metabolic acidosis. 1. PH = these type of problems they dont give PH 2. PCO2=55mmHg ----inference is either 3. HCO3- =20 mEq/L --- ---but in All Acute respiratory acidosis or Chronic respiratory acidosis or Chronic metabolic alkalosis the HCO3 has to be ------but here it is -----so this is Combined Respiratory And Metabolic Acidosis Kaplan Physiology pg 803 ii. E.g: Cardior Continue reading >>

8-step Guide To Abg Analysis: Tic-tac-toe Method

8-step Guide To Abg Analysis: Tic-tac-toe Method

An arterial blood gas (ABG) is a blood test that measures the acidity (pH) and the levels of oxygen and carbon dioxide in the blood . Blood for an ABG test is taken from an artery whereas most other blood tests are done on a sample of blood taken from a vein. This test is done to monitor several conditions that can cause serious health complications especially to critically ill individuals. Every day, a lot of nursing and medical students assigned in acute areas encounter ABG results, which they may not necessarily be able to interpret with its knotty aspect. They struggle over the interpretation of its measurements, but they are not especially complicated nor difficult if you understand the basic physiology and have a step by step process to analyze and interpret them. There may be various tips and strategies to guide you, from mnemonics, to charts, to lectures, to practice, but this article will tell you how to interpret ABGs in the easiest possible way. And once you have finished reading this, youll be doing actual ABG analysis in the NCLEX with fun and excitement! Here are the steps: Know the normal and abnormal ABG values when you review the lab reports. Theyre fairly easy to remember: for pH, the normal value is 7.35 to 7.45; 35-45 for paCO2; and 22-26 for HCO3. Remember also this diagram and note that paCO2 is intentionallyinverted for the purpose of this method. 2. Determine if pH is under acidosis or alkalosis Next thing to do is to determine the acidity or alkalinity of the blood through the value of pH. The pH level of a healthy human should be between 7.35 to 7.45. The human body is constantly striving to keep pH in balance. 3. Determine if acid-base is respiratory or metabolic Next thing you need to determine is whether the acid base is Respiratory or Meta Continue reading >>

Interpreting Abgs | Ausmed | Tips For Nurses

Interpreting Abgs | Ausmed | Tips For Nurses

Arterial blood gasses, or ABGs, may be among the most complex and confusing parts of nursing practice. Everyone can read an electrolyte level, but when faced with a list of ABGs, most nurses wilt. Fortunately, there are some easy ways to remember how to decipher these important lab results. Without knowing them, your patient could easily go downhill when the answer was in front of you all along. These easy questions are all you need to know in order to interpret ABGs effectively and help your patient, should a problem arise. Firstly, it is important to know what values you are looking at and what is considered normal. The first value is the pH, which measures how many hydrogen ions are in the sample. This determines if the blood is acidotic or alkalotic. Normal values for pH range from 7.35 to 7.45. The next value is the carbon dioxide level, and this will tell you if the problem is a respiratory one. Normal range for CO2 is 35 to 45mmHg. Finally, bicarbonate ions, or HCO3-, will tell you if the problem is related to metabolic changes in your patient. Normal is considered to be from 22 to 26mmol/L. When the numbers fall out of these ranges, you use them to determine what type of problem the patient is experiencing. If the numbers are not within normal range, you have to ask yourself if the patients pH is acidotic or alkalotic. It may seem counter-intuitive, but the lower the number, the more acidotic the patient is. For instance, a pH of 3 is severely acidotic and requires emergency intervention. Alkalosis is the opposite. The higher the number, the more base is in the blood sample. Although this doesnt sound as bad as a high acid count, it can still disrupt the normal functioning of the body. Once youve determined whether there is too much acid or too much base, you c Continue reading >>

Acid Base Disorders

Acid Base Disorders

Arterial blood gas analysis is used to determine the adequacy of oxygenation and ventilation, assess respiratory function and determine the acid–base balance. These data provide information regarding potential primary and compensatory processes that affect the body’s acid–base buffering system. Interpret the ABGs in a stepwise manner: Determine the adequacy of oxygenation (PaO2) Normal range: 80–100 mmHg (10.6–13.3 kPa) Determine pH status Normal pH range: 7.35–7.45 (H+ 35–45 nmol/L) pH <7.35: Acidosis is an abnormal process that increases the serum hydrogen ion concentration, lowers the pH and results in acidaemia. pH >7.45: Alkalosis is an abnormal process that decreases the hydrogen ion concentration and results in alkalaemia. Determine the respiratory component (PaCO2) Primary respiratory acidosis (hypoventilation) if pH <7.35 and HCO3– normal. Normal range: PaCO2 35–45 mmHg (4.7–6.0 kPa) PaCO2 >45 mmHg (> 6.0 kPa): Respiratory compensation for metabolic alkalosis if pH >7.45 and HCO3– (increased). PaCO2 <35 mmHg (4.7 kPa): Primary respiratory alkalosis (hyperventilation) if pH >7.45 and HCO3– normal. Respiratory compensation for metabolic acidosis if pH <7.35 and HCO3– (decreased). Determine the metabolic component (HCO3–) Normal HCO3– range 22–26 mmol/L HCO3 <22 mmol/L: Primary metabolic acidosis if pH <7.35. Renal compensation for respiratory alkalosis if pH >7.45. HCO3 >26 mmol/L: Primary metabolic alkalosis if pH >7.45. Renal compensation for respiratory acidosis if pH <7.35. Additional definitions Osmolar Gap Use: Screening test for detecting abnormal low MW solutes (e.g. ethanol, methanol & ethylene glycol [Reference]) An elevated osmolar gap (>10) provides indirect evidence for the presence of an abnormal solute which is prese Continue reading >>

More in ketosis