diabetestalk.net

Metabolic Acidosis Would Be Compensated By What Body System

Metabolic Acidosis

Metabolic Acidosis

Metabolic acidosis is a condition that occurs when the body produces excessive quantities of acid or when the kidneys are not removing enough acid from the body. If unchecked, metabolic acidosis leads to acidemia, i.e., blood pH is low (less than 7.35) due to increased production of hydrogen ions by the body or the inability of the body to form bicarbonate (HCO3−) in the kidney. Its causes are diverse, and its consequences can be serious, including coma and death. Together with respiratory acidosis, it is one of the two general causes of acidemia. Terminology : Acidosis refers to a process that causes a low pH in blood and tissues. Acidemia refers specifically to a low pH in the blood. In most cases, acidosis occurs first for reasons explained below. Free hydrogen ions then diffuse into the blood, lowering the pH. Arterial blood gas analysis detects acidemia (pH lower than 7.35). When acidemia is present, acidosis is presumed. Signs and symptoms[edit] Symptoms are not specific, and diagnosis can be difficult unless the patient presents with clear indications for arterial blood gas sampling. Symptoms may include chest pain, palpitations, headache, altered mental status such as severe anxiety due to hypoxia, decreased visual acuity, nausea, vomiting, abdominal pain, altered appetite and weight gain, muscle weakness, bone pain, and joint pain. Those in metabolic acidosis may exhibit deep, rapid breathing called Kussmaul respirations which is classically associated with diabetic ketoacidosis. Rapid deep breaths increase the amount of carbon dioxide exhaled, thus lowering the serum carbon dioxide levels, resulting in some degree of compensation. Overcompensation via respiratory alkalosis to form an alkalemia does not occur. Extreme acidemia leads to neurological and cardia Continue reading >>

Blood Gas Analysis--insight Into The Acid-base Status Of The Patient

Blood Gas Analysis--insight Into The Acid-base Status Of The Patient

Acid-Base Physiology Buffers H+ A- HCO3- CO2 Buffers H+ A- CO2 Cells Blood Kidney Lungs Fluids, Electrolytes, and Acid-Base Status in Critical Illness Blood Gas Analysis--Insight into the Acid-Base status of the Patient The blood gas consists of pH-negative log of the Hydrogen ion concentration: -log[H+]. (also, pH=pK+log [HCO3]/ 0.03 x pCO2). The pH is always a product of two components, respiratory and metabolic, and the metabolic component is judged, calculated, or computed by allowing for the effect of the pCO2, ie, any change in the pH unexplained by the pCO2 indicates a metabolic abnormality. CO +H 0ºº H CO ººHCO + H2 2 2 3 3 - + CO2 and water form carbonic acid or H2CO3, which is in equilibrium with bicarbonate (HCO3-)and hydrogen ions (H+). A change in the concentration of the reactants on either side of the equation affects the subsequent direction of the reaction. For example, an increase in CO2 will result in increased carbonic acid formation (H2CO3) which leads to an increase in both HCO3- and H+ (\pH). Normally, at pH 7.4, a ratio of one part carbonic acid to twenty parts bicarbonate is present in the extracellular fluid [HCO3-/H2CO3]=20. A change in the ratio will affect the pH of the fluid. If both components change (ie, with chronic compensation), the pH may be normal, but the other components will not. pCO -partial pressure of carbon dioxide. Hypoventilation or hyperventilation (ie, minute2 ventilation--tidal volume x respitatory rate--imperfectly matched to physiologic demands) will lead to elevation or depression, respectively, in the pCO2. V/Q (ventilation/perfusion) mismatch does not usually lead to abnormalities in PCO2 because of the linear nature of the CO2 elimination curve (ie, good lung units can make up for bad lung units). Diffus Continue reading >>

Basics | Blood Gas Analysis

Basics | Blood Gas Analysis

Introduction Blood gas analysis (BGA) serves the purpose of assessing respiratory function and the acid-base balance. The most important parameters for determining respiratory function are the partial pressures for oxygen (p02) and carbon dioxide (pCO2), as well as oxygen saturation (sO2). Using these parameters it is possible to detect pulmonary or, synonymously, respiratory insufficiency (formerly termed respiratory partial insufficiency) and ventilator insufficiency (formerly termed respiratory global insufficiency). For assessing the acid-base balance, pH value, pCO2 and base excess (BE) are important. By referring to the pH value, either acidosis or alkalosis can be diagnosed. By observing changes in pCO2 and BE it may be determined whether these are due to respiratory or non-respiratory causes (metabolic, renal, intestinal). CO2 indicates acidity and gives us information as to the respiratory system; the regulation of pCO2 takes place via ventilation (pCO2 lowered: hyperventilation; pCO2 elevated: hypoventilation). BE represents the bases and provides information on the non-respiratory system. BGA can be arterial or venous. For those who want to learn more… Indication Disturbances in acid-base balance and respiratory function. Normal findings and normal values The normal values are given in mean values. The width of the normal range should be taken from the responsible laboratory. Original findings Findings: 55-year-old female patient. Arterial BGA. Normal findings. Findings: 56-year-old male patient. Arterial BGA. Compensated respiratory acidosis with normal pO2 values, for example, in association with respiratory insufficiency during oxygen therapy.. Findings: 56-year-old female patient. Arterial BGA. Severe respiratory acidosis without compensation in connect Continue reading >>

How Does The Renal System Compensate For Conditions Of Respiratory Alkalosis?

How Does The Renal System Compensate For Conditions Of Respiratory Alkalosis?

In order to function normally, your body needs a blood pH of between 7.35 and 7.45. Alkalosis is when you have too much base in your blood, causing your blood pH to rise above 7.45. The lungs and the kidneys are the two main organs involved in maintaining a normal blood pH. The lungs do this by blowing off carbon dioxide, since most of the acid in the body is carbonic acid, which is made from carbon dioxide during metabolic processes. The amount of carbon dioxide removed is controlled by your breathing rate. The kidneys maintain blood pH by controlling the amount of bicarbonate, which is a base that is excreted from the body. The kidneys also control the amount of acids excreted from the body. Respiratory alkalosis occurs when the lungs are blowing off more carbon dioxide than the body is producing. This usually occurs from hyperventilation. Your body's immediate response, after about 10 minutes of respiratory alkalosis, is a process called cell buffering. During cell buffering, hydrogen ions found in hemoglobin, proteins and phosphates, move out of the cells and into the extracellular fluid. There they combine with bicarbonate molecules and form carbonic acid. This process helps to reduce the amount of bicarbonate in the body and increase the amount of acid. However, while cell buffering occurs quickly, it does not have a huge effect on the body's pH. After about two to six hours of respiratory alkalosis the kidneys respond. They begin to limit the excretion of hydrogen and other acids and increase the excretion of bicarbonate. It usually takes the kidneys two or three days to reach a new steady state. In chronic respiratory alkalosis, the pH may constantly be high, but the body learns to adapt to it over time, with the help of the kidneys. Continue reading >>

Computer Simulation Physio Ex 10

Computer Simulation Physio Ex 10

Sort When returning to normal breathing the breathing slows until homeostasis is returned. This allows the Pco2 and H+ to stabilize. With hyperventilation w/o a return the imbalance remains and the breathing volume continues to be large and fast. (JUST READ AND KNOW THIS) Explain how returning to normal breathing after hyperventilation differed from hyperventilation without returning to normal breathing. Continue reading >>

Renal Compensation

Renal Compensation

Chronic Carbon Dioxide Retainer Renal compensation of respiratory acidosis is by increased urinary excretion of hydrogen ions and resorption of HCO3−. This relatively slow process occurs over several days. Slowly, pH reaches low normal values, but HCO3− levels and BE are increased. This is the situation of the patient with chronic respiratory failure. Pulmonary patients usually have chronic obstructive pulmonary disease or restrictive pulmonary disease, or they are morbidly obese. Increased Co2 stores are the rule, and the normal respiratory drive to Paco2 is obtunded. This group of patients is sensitive to O2 supplementation because respiratory drive is predominantly determined by hypoxemia. Patients with a Pao2 in the mid-50s and a Paco2 at the same level usually receive home O2 treatment, initially at night to reduce pulmonary hypertension and to relieve dyspnea. When the chronic Co2 retainer develops an acute respiratory problem and pH levels fall to less than 7.20, noninvasive ventilatory assistance is usually indicated. Fetoplacental Elimination of Metabolic Acid Load Fetal respiratory and renal compensation in response to changes in fetal pH is limited by the level of maturity and the surrounding maternal environment. However, although the placentomaternal unit performs most compensatory functions,3 the fetal kidneys have some, although limited, ability to contribute to the maintenance of fetal acid–base balance. The most frequent cause of fetal metabolic acidosis is fetal hypoxemia owing to abnormalities of uteroplacental function or blood flow (or both). Primary maternal hypoxemia or maternal metabolic acidosis secondary to maternal diabetes mellitus, sepsis, or renal tubular abnormalities is an unusual cause of fetal metabolic acidosis. Pregnant women, a Continue reading >>

Metabolic Acidosis: Causes, Symptoms, And Treatment

Metabolic Acidosis: Causes, Symptoms, And Treatment

The Terrible Effects of Acid Acid corrosion is a well-known fact. Acid rain can peel the paint off of a car. Acidifying ocean water bleaches and destroys coral reefs. Acid can burn a giant hole through metal. It can also burn holes, called cavities, into your teeth. I think I've made my point. Acid, regardless of where it's at, is going to hurt. And when your body is full of acid, then it's going to destroy your fragile, soft, internal organs even more quickly than it can destroy your bony teeth and chunks of thick metal. What Is Metabolic Acidosis? The condition that fills your body with proportionately too much acid is known as metabolic acidosis. Metabolic acidosis refers to a physiological state characterized by an increase in the amount of acid produced or ingested by the body, the decreased renal excretion of acid, or bicarbonate loss from the body. Metabolism is a word that refers to a set of biochemical processes within your body that produce energy and sustain life. If these processes go haywire, due to disease, then they can cause an excess production of hydrogen (H+) ions. These ions are acidic, and therefore the level of acidity in your body increases, leading to acidemia, an abnormally low pH of the blood, <7.35. The pH of the blood mimics the overall physiological state in the body. In short, a metabolic process is like a power plant producing energy. If a nuclear power plant goes haywire for any reason, then we know what the consequences will be: uncontrolled and excessive nuclear energetic reactions leading to the leakage of large amounts of radioactive material out into the environment. In our body, this radioactive material is acid (or hydrogen ions). Acidemia can also occur if the kidneys are sick and they do not excrete enough hydrogen ions out of th Continue reading >>

A Delicate Balance: Understanding Acid-base Issues In Ems Patients

A Delicate Balance: Understanding Acid-base Issues In Ems Patients

The human body has tremendous capacity to maintain internal balance, or homeostasis, in serious, prolonged situations. However, there are several situations in which an imbalance that is left uncorrected can cause serious harm. EMS providers are trained to recognize that a lack of oxygen or glucose will cause the patient to deteriorate in short order. While harder to detect in the field, derangements in the body's acid-base balance can also be catastrophic. However, a basic understanding of this critical concept can help develop a working field diagnosis and promote early interventions that could reduce morbidity. What are acids and bases? Like all organisms, humans live within a water-based environment. Water contains hydrogen and oxygen (H20). Water freely separates, or dissociates, into positively charged hydrogen ions (H+) and negatively charged hydroxide ions (OH-). Hydrogen ions are a weak acid that interacts with a variety of chemical processes. The number of hydrogen ions within a water solution is expressed through a measurement called the power of hydrogen, or pH. pH is measured using a negative logarithmic scale. This means two things. First, the smaller the pH number, the greater the concentration of hydrogen ions. Second, a change in whole number represents a tenfold change in the number of hydrogen ions. Taking those two concepts together, a fluid with a pH value of 5 is 10 times more acidic than a pH of 6; a pH value of 4 is 100 times more acidic than a pH of 6 (10x10). The range of pH is 1 to 14. Water itself is neutral with a value of 7. A pH number less than 7 is considered acidic, while a number above 7 is considered basic. The human body rests in a slightly basic environment, functioning within a range of 7.35 to 7.45. Acid-base balance within the bo Continue reading >>

Metabolic Acidosis

Metabolic Acidosis

Practice Essentials Metabolic acidosis is a clinical disturbance characterized by an increase in plasma acidity. Metabolic acidosis should be considered a sign of an underlying disease process. Identification of this underlying condition is essential to initiate appropriate therapy. (See Etiology, DDx, Workup, and Treatment.) Understanding the regulation of acid-base balance requires appreciation of the fundamental definitions and principles underlying this complex physiologic process. Go to Pediatric Metabolic Acidosis and Emergent Management of Metabolic Acidosis for complete information on those topics. Continue reading >>

Res 140

Res 140

Res 140 ex 3 Question Answer Correction of metabolic alkalosis may involve which of the following? D) I, II, and III I. Restoring normal fluid volume II. Administering acidifying agents III. Restoring normal K+ and Cl– levels In order to eliminate the influence of PCO2 changes on plasma HCO3- concentrations, what additional measures of the metabolic component of acid-base balance can be used? D) Standard bicarbonate Which organ system actually excretes H+ from the body? A) Kidneys An ABG result shows the pH to be 7.56 and the HCO3- to be 23 mEq/L. Which of the following is the most likely disorder? D) Respiratory alkalosis What compensates for a metabolic alkalosis? B) Hypoventilation Based on the following ABG results, what is the most likely acid-base diagnosis? pH = 7.43, PCO2 = 39 mm Hg, HCO3- = 25.1 mEq/L A) Acid-base status within normal limits. What explains the lack of an increased anion gap seen in metabolic acidosis caused by HCO3- loss? A) For each HCO3- ion lost, a Cl- ion is reabsorbed by the kidney. Based on the following ABG results, what is the most likely acid-base diagnosis? pH = 7.08, PCO2 = 39 mm Hg, HCO3- = 11.8 mEq/L A) Acute metabolic acidosis What affect does hyperventilation have on the closed buffer systems? B) Causes them to release more H+. A patient has a confirmed metabolic acidosis with a normal PCO2. What inference can you draw from these findings? A) A ventilatory disorder must coexist. What drives the bicarbonate buffer systems enormous ability to buffer acids? D) Ventilation continually removing CO2 from system. Based on the following ABG results, what is the most likely acid-base diagnosis? pH = 7.38, PCO2 = 21 mm Hg, HCO3- = 11.7 mEq/L B) Fully compensated metabolic acidosis With partially compensated respiratory alkalosis, which o Continue reading >>

Overview Of Acid-base Balance

Overview Of Acid-base Balance

An important property of blood is its degree of acidity or alkalinity. The acidity or alkalinity of any solution, including blood, is indicated on the pH scale. A doctor evaluates a person's acid-base balance by measuring the pH and levels of carbon dioxide (an acid) and bicarbonate (a base) in the blood. Blood acidity increases when the Level of acidic compounds in the body rises (through increased intake or production, or decreased elimination) Level of basic (alkaline) compounds in the body falls (through decreased intake or production, or increased elimination) Blood alkalinity increases when the level of acid in the body decreases or when the level of base increases. Control of Acid-Base Balance The body's balance between acidity and alkalinity is referred to as acid-base balance. The blood's acid-base balance is precisely controlled because even a minor deviation from the normal range can severely affect many organs. The body uses different mechanisms to control the blood's acid-base balance. These mechanisms involve the Role of the lungs One mechanism the body uses to control blood pH involves the release of carbon dioxide from the lungs. Carbon dioxide, which is mildly acidic, is a waste product of the processing (metabolism) of oxygen (which all cells need) and, as such, is constantly produced by cells. As with all waste products, carbon dioxide gets excreted into the blood. The blood carries carbon dioxide to the lungs, where it is exhaled. As carbon dioxide accumulates in the blood, the pH of the blood decreases (acidity increases). The brain regulates the amount of carbon dioxide that is exhaled by controlling the speed and depth of breathing (ventilation). The amount of carbon dioxide exhaled, and consequently the pH of the blood, increases as breathing bec Continue reading >>

Acid-base Balance

Acid-base Balance

Your blood needs the right balance of acidic and basic (alkaline) compounds to function properly. This is called the acid-base balance. Your kidneys and lungs work to maintain the acid-base balance. Even slight variations from the normal range can have significant effects on your vital organs. Acid and alkaline levels are measured on a pH scale. An increase in acidity causes pH levels to fall. An increase in alkaline causes pH levels to rise. When the levels of acid in your blood are too high, it’s called acidosis. When your blood is too alkaline, it is called alkalosis. Respiratory acidosis and alkalosis are due to a problem with the lungs. Metabolic acidosis and alkalosis are due to a problem with the kidneys. Each of these conditions is caused by an underlying disease or disorder. Treatment depends on the cause. When you breathe, your lungs remove excess carbon dioxide from your body. When they cannot do so, your blood and other fluids become too acidic. Symptoms of respiratory acidosis Symptoms may include fatigue, shortness of breath, and confusion. Causes of respiratory acidosis There are several different causes of respiratory acidosis including: chest deformities or injuries chronic lung and airway diseases overuse of sedatives obesity Types of respiratory acidosis There are no noticeable symptoms of chronic respiratory acidosis. This is due to the fact that your blood slowly becomes acidic and your kidneys adjust to compensate, returning your blood to a normal pH balance. Acute respiratory acidosis comes on suddenly, leaving the kidneys no time to adjust. Those with chronic respiratory acidosis may experience acute respiratory acidosis due to another illness that causes the condition to worsen. Diagnosis of respiratory acidosis A complete physical examination Continue reading >>

Ph > 7.45 - Alkalosis - Decreased Hydrogen Ions

Ph > 7.45 - Alkalosis - Decreased Hydrogen Ions

Scale Range 0 - 14 7= Neutral < 7= acid [hydrogen ion donor] > 7= alkaline [hydrogen ion taker] Normal pH 7.35 - 7.45 - The normal pH of extra cellular fluid (EC.) is sightly alkaline pH < 7.35 - ACIDOSIS - Increased hydrogen ions UNBALANCED RELATIONSHIP I. ACIDOSIS Neurologic dysfunction is an early indicator Lethargy Confusion Disorientation Headache Muscle twitching Stupor Coma Key Point: In acidosis, both pH and CNS function are depressed II. ALKALOSIS pH > 7.45 causes over excitability of CNS and produces: Tingling of extremities Nervousness and irritability Seizures BASE as mnemonic: B = Base pH A = Above normal pH (>7.45) produces S = Spasms E = Excitability Key Concepts: pH is a measure of hydrogen ion concentration pH < 7 is acid pH > 7 is alkaline Normal pH of EC. is 7.35 to 7.45 5. Acids are able to give up hydrogen ions Bases are able to accept hydrogen ions This ability (5 & 6) allows the body to maintain acid-base balance Alkalosis is a condition in which the pH of ECF is increased and the hydrogen ion concentration is decreased Acidosis is a condition in which the pH of ECF is decreased and the hydrogen ion concentration is increased Both acidosis and alkalosis affect the functioning of the nervous system ACIDOSIS - produces symptoms of CNS depression ALKALOSIS - produces symptoms of CNS excitement The body has (3) defense or Regulatory Systems it used to keep the pH 7.35 to 7.45: I. The Chemical Buffer System a. Buffers are chemical substances that act immediately (within 0.1 seconds) to reduce the impact of any drastic change in pH b. This is accomplished by Buffers releasing or absorbing hydrogen ions c. Buffers can combine with either an acid or base d. Primary buffer system in the body is the Bicarbonate-Carbonic Acid System (responsible for ~80% of Continue reading >>

Acid-base Homeostasis

Acid-base Homeostasis

Go to: Basic Concepts Intracellular and extracellular buffers are the most immediate mechanism of defense against changes in systemic pH. Bone and proteins constitute a substantial proportion of these buffers. However, the most important buffer system is the HCO3−/CO2 buffer system. The Henderson–Hasselbach equation (Equation 1) describes the relationship of pH, bicarbonate (HCO3−), and PCO2: where HCO3− is in milliequivalents per liter and PCO2 is in millimeters of mercury. Equation 2 represents the reaction (water [H2O]): This buffer system is physiologically most important because of its quantitative capacity to buffer acid or alkali loads and because of the capacity for independent regulation of HCO3− and PCO2 by the kidneys and lungs, respectively. In fact, this latter aspect of independent regulation is the most powerful aspect of this system. Although the lungs and kidneys can compensate for disorders of the other, normal homeostasis requires that both CO2 and HCO3− be normal. Disorders of CO2 are usually referred to as respiratory disorders, and disorders of HCO3− or fixed acids are referred to as metabolic disorders. Arterial CO2 is predominantly regulated by alveolar ventilation after production in peripheral tissues; CO2 is often referred to as a gaseous acid, because its addition to aqueous solutions produces carbonic acid, which then releases H+ and HCO3− (Equation 2 driven to the right). Plasma HCO3− is predominantly regulated by renal acid-base handling, and it will be discussed extensively below. The kidneys reabsorb, produce, and in some circumstances, excrete HCO3−. Plasma HCO3− is normally consumed daily by dietary acids and metabolic acids. As expressed by Equation 1, raising HCO3− or lowering PCO2 will raise systemic pH, and Continue reading >>

Disorders Of Acid-base Balance

Disorders Of Acid-base Balance

Learning Objectives By the end of this section, you will be able to: Identify the three blood variables considered when making a diagnosis of acidosis or alkalosis Identify the source of compensation for blood pH problems of a respiratory origin Identify the source of compensation for blood pH problems of a metabolic/renal origin Normal arterial blood pH is restricted to a very narrow range of 7.35 to 7.45. A person who has a blood pH below 7.35 is considered to be in acidosis (actually, “physiological acidosis,” because blood is not truly acidic until its pH drops below 7), and a continuous blood pH below 7.0 can be fatal. Acidosis has several symptoms, including headache and confusion, and the individual can become lethargic and easily fatigued. A person who has a blood pH above 7.45 is considered to be in alkalosis, and a pH above 7.8 is fatal. Some symptoms of alkalosis include cognitive impairment (which can progress to unconsciousness), tingling or numbness in the extremities, muscle twitching and spasm, and nausea and vomiting. Both acidosis and alkalosis can be caused by either metabolic or respiratory disorders. As discussed earlier in this chapter, the concentration of carbonic acid in the blood is dependent on the level of CO2 in the body and the amount of CO2 gas exhaled through the lungs. Thus, the respiratory contribution to acid-base balance is usually discussed in terms of CO2 (rather than of carbonic acid). Remember that a molecule of carbonic acid is lost for every molecule of CO2 exhaled, and a molecule of carbonic acid is formed for every molecule of CO2 retained. Metabolic Acidosis: Primary Bicarbonate Deficiency Metabolic acidosis occurs when the blood is too acidic (pH below 7.35) due to too little bicarbonate, a condition called primary bicar Continue reading >>

More in ketosis