diabetestalk.net

Metabolic Acidosis Would Be Compensated By What Body System

4.5 Respiratory Acidosis - Compensation

4.5 Respiratory Acidosis - Compensation

Acid-Base Physiology 4.5.1 The compensatory response is a rise in the bicarbonate level This rise has an immediate component (due to a resetting of the physicochemical equilibrium point) which raises the bicarbonate slightly. Next is a slower component where a further rise in plasma bicarbonate due to enhanced renal retention of bicarbonate. The additional effect on plasma bicarbonate of the renal retention is what converts an "acute" respiratory acidsosis into a "chronic" respiratory acidosis. As can be seen by inspection of the Henderson-Hasselbalch equation (below), an increased [HCO3-] will counteract the effect (on the pH) of an increased pCO2 because it returns the value of the [HCO3]/0.03 pCO2 ratio towards normal. pH = pKa + log([HCO3]/0.03 pCO2) 4.5.2 Buffering in Acute Respiratory Acidosis The compensatory response to an acute respiratory acidosis is limited to buffering. By the law of mass action, the increased arterial pCO2 causes a shift to the right in the following reaction: CO2 + H2O <-> H2CO3 <-> H+ + HCO3- In the blood, this reaction occurs rapidly inside red blood cells because of the presence of carbonic anhydrase. The hydrogen ion produced is buffered by intracellular proteins and by phosphates. Consequently, in the red cell, the buffering is mostly by haemoglobin. This buffering by removal of hydrogen ion, pulls the reaction to the right resulting in an increased bicarbonate production. The bicarbonate exchanges for chloride ion across the erythrocyte membrane and the plasma bicarbonate level rises. In an acute acidosis, there is insufficient time for the kidneys to respond to the increased arterial pCO2 so this is the only cause of the increased plasma bicarbonate in this early phase. The increase in bicarbonate only partially returns the extracel Continue reading >>

Chapter 19 €“ Acid Base Review Practice Questions

Chapter 19 €“ Acid Base Review Practice Questions

Study Guide NURS 2140 Interpreting Arterial Blood Gas Self Study: (condensed from the self study packet offered at Orlando Regional Healthcare, Education & Development, copyright 2004) “Arterial blood gas analysis is an essential part of diagnosing and managing a patient’s Oxygenation status and acid-base balance. The usefulness of this diagnostic tool is dependent on being able to correctly interpret the results. This self-learning packet will examine the components of an arterial blood gas, what each component represents and the interpretation of these values to determine the patient’s condition and treatment.†The Basics explained: The pH is a measurement of the acidity or alkalinity of the blood. It is inversely proportional to the number of hydrogen ions (H+) in the blood. The more H+ present, the lower the pH will be. Likewise, the fewer H+ present, the higher the pH will be. The pH of a solution is measured on a scale from 1 (very acidic) to 14 (very alkalotic). A liquid with a pH of 7, such as water, is neutral (neither acidic nor alkalotic). 1 7 14 Very Acidic Neutral Very Alkalotic (Base) The normal blood pH range is 7.35 to 7.45. In order for normal metabolism to take place, the body must maintain this narrow range at all times. When the pH is below 7.35, the blood is said to be acidic. Changes in body system functions that occur in an acidic state include a decrease in the force of cardiac contractions, a decrease in the vascular response to catecholamines, and a diminished response to the effects and actions of certain medications. When the pH is above 7.45, the blood is said to be alkalotic. An alkalotic state interferes with tissue oxygenation and normal neurological and muscular functioning. Significant changes in the blood pH abo Continue reading >>

Computer Simulation Physio Ex 10

Computer Simulation Physio Ex 10

Sort When returning to normal breathing the breathing slows until homeostasis is returned. This allows the Pco2 and H+ to stabilize. With hyperventilation w/o a return the imbalance remains and the breathing volume continues to be large and fast. (JUST READ AND KNOW THIS) Explain how returning to normal breathing after hyperventilation differed from hyperventilation without returning to normal breathing. Continue reading >>

Acid-base Balance

Acid-base Balance

1. Compensatory mechanisms of acid-base balance: respiratory acidosis and alkalosis and metabolic acidosis and alkalosis 2. Compensatory mechanisms for Metabolic Acidosis The body regulates the acidity of the blood by four buffering mechanisms: • Bicarbonate buffering system • Intracellular buffering system • Respiratory compensation • Renal compensation 3. Bicarbonate buffering system  The bicarbonate buffering system is an important buffer system in the acid-base homeostasis.  In this system, carbon dioxide (CO2) combines with water to form carbonic acid (H2CO3), which in turn rapidly dissociates to form hydrogen ions and bicarbonate (HCO3- )  The carbon dioxide - carbonic acid equilibrium is catalyzed by the enzyme carbonic 4. Intracellular buffering  by absorption of hydrogen atoms by various molecules, including proteins, phosphates and carbonate in bone. 5. Respiratory Compensation of Metabolic Acidosis  is a mechanism by which plasma pH can be altered by varying the respiratory rate. It is faster than renal compensation, but has less ability to restore normal values  In the case of Metabolic Acidosis chemoreceptors sense a deranged acid-base system, and there is increased breathing 6. Renal Compensation of Metabolic Acidosis  the kidney produces and excretes ammonium (NH4+) and monophosphate, generating bicarbonate in the process while clearing acid 7. Compensatory mechanisms for Metabolic Alkalosis  2 Buffering mechanisms : Renal compensation Respiratory compensation 8.  Respiratory compensation - occurs mainly in the lungs, which retain CO2 through slower breathing, or hypoventilation (respiratory compensation). CO2 is then consumed toward the formation of the carbonic acid intermediate, thus decreasing pH. The decrease in [H+ Continue reading >>

Renal Compensation

Renal Compensation

Chronic Carbon Dioxide Retainer Renal compensation of respiratory acidosis is by increased urinary excretion of hydrogen ions and resorption of HCO3−. This relatively slow process occurs over several days. Slowly, pH reaches low normal values, but HCO3− levels and BE are increased. This is the situation of the patient with chronic respiratory failure. Pulmonary patients usually have chronic obstructive pulmonary disease or restrictive pulmonary disease, or they are morbidly obese. Increased Co2 stores are the rule, and the normal respiratory drive to Paco2 is obtunded. This group of patients is sensitive to O2 supplementation because respiratory drive is predominantly determined by hypoxemia. Patients with a Pao2 in the mid-50s and a Paco2 at the same level usually receive home O2 treatment, initially at night to reduce pulmonary hypertension and to relieve dyspnea. When the chronic Co2 retainer develops an acute respiratory problem and pH levels fall to less than 7.20, noninvasive ventilatory assistance is usually indicated. Fetoplacental Elimination of Metabolic Acid Load Fetal respiratory and renal compensation in response to changes in fetal pH is limited by the level of maturity and the surrounding maternal environment. However, although the placentomaternal unit performs most compensatory functions,3 the fetal kidneys have some, although limited, ability to contribute to the maintenance of fetal acid–base balance. The most frequent cause of fetal metabolic acidosis is fetal hypoxemia owing to abnormalities of uteroplacental function or blood flow (or both). Primary maternal hypoxemia or maternal metabolic acidosis secondary to maternal diabetes mellitus, sepsis, or renal tubular abnormalities is an unusual cause of fetal metabolic acidosis. Pregnant women, a Continue reading >>

The Quick And Dirty Guide To Acid Base Balance | Medictests.com

The Quick And Dirty Guide To Acid Base Balance | Medictests.com

Your patient has a ph of 6.9 Is he acidic or alkalotic? Your patient has a ph of 7.4 Is he acidic or alkalotic? Your patient has a ph of 7.7 Is he acidic or alkalotic? Your patient has a ph of 7.25 Is he acidic or alkalotic? Your patient has a ph of 7.43 Is he acidic or alkalotic? Your patient has a ph of 8.0 Is he acidic or alkalotic? 1. acidic 2. normal 3. Alkaline 4. Acidic 5. Normal 6. Alkaline You take in oxygen by inhaling, your body turns oxygen into carbon dioxide, you exhale and remove the carbon dioxide from your body. Carbon dioxide is "respiratory acid."When you're not breathing adequately, you are not getting rid of this "respiratory acid" and it builds up in the tissues. The extra CO2 molecules combine with water in your body to form carbonic acid and makes your pH go up. This is bad. We can measure the amount of respiratory acid in the arterial blood using blood gases. They measure the amount of each gas in your blood. We measure the pH, the amount of carbon dioxide (PaCO2) and the amount of oxygen in the blood (PaO2). PaCO2 is the partial pressure of carbon dioxide. We can measure it to see how much respiratory acid (CO2) there is in the blood. We use arterial blood gas tests to check it. How much respiratory acid (CO2) should there be? The normal value is 35-45 mmHg (mmHg just means millimeters of mercury, its a measurement of pressure.) The (a) in PaCO2 just stands for arterial. If you measured venous blood gasses, the levels are different and PvCO2 is used. If CO2 is HIGH, it means there is a buildup of respiratory acids because he's not breathing enough CO2 away. If your pH is acidic, and your CO2 is HIGH, its considered respiratory acidosis. If CO2 is LOW, it means there are not enough respiratory acids because he's probably hyperventilating too mu Continue reading >>

Respiratory Acidosis: Causes, Symptoms, And Treatment

Respiratory Acidosis: Causes, Symptoms, And Treatment

Respiratory acidosis develops when air exhaled out of the lungs does not adequately exchange the carbon dioxide formed in the body for the inhaled oxygen in air. There are many conditions or situations that may lead to this. One of the conditions that can reduce the ability to adequately exhale carbon dioxide (CO2) is chronic obstructive pulmonary disease or COPD. CO2 that is not exhaled can shift the normal balance of acids and bases in the body toward acidic. The CO2 mixes with water in the body to form carbonic acid. With chronic respiratory acidosis, the body partially makes up for the retained CO2 and maintains acid-base balance near normal. The body's main response is an increase in excretion of carbonic acid and retention of bicarbonate base in the kidneys. Medical treatment for chronic respiratory acidosis is mainly treatment of the underlying illness which has hindered breathing. Treatment may also be applied to improve breathing directly. Respiratory acidosis can also be acute rather than chronic, developing suddenly from respiratory failure. Emergency medical treatment is required for acute respiratory acidosis to: Regain healthful respiration Restore acid-base balance Treat the causes of the respiratory failure Here are some key points about respiratory acidosis. More detail and supporting information is in the main article. Respiratory acidosis develops when decreased breathing fails to get rid of CO2 formed in the body adequately The pH of blood, as a measure of acid-base balance, is maintained near normal in chronic respiratory acidosis by compensating responses in the body mainly in the kidney Acute respiratory acidosis requires emergency treatment Tipping acid-base balance to acidosis When acid levels in the body are in balance with the base levels in t Continue reading >>

Respiratory Acidosis

Respiratory Acidosis

Respiratory Acidosis Definition Respiratory acidosis is a condition in which a build-up of carbon dioxide in the blood produces a shift in the body's pH balance and causes the body's system to become more acidic. This condition is brought about by a problem either involving the lungs and respiratory system or signals from the brain that control breathing. Description Respiratory acidosis is an acid imbalance in the body caused by a problem related to breathing. In the lungs, oxygen from inhaled air is exchanged for carbon dioxide from the blood. This process takes place between the alveoli (tiny air pockets in the lungs) and the blood vessels that connect to them. When this exchange of oxygen for carbon dioxide is impaired, the excess carbon dioxide forms an acid in the blood. The condition can be acute with a sudden onset, or it can develop gradually as lung function deteriorates. Causes and symptoms Respiratory acidosis can be caused by diseases or conditions that affect the lungs themselves, such as emphysema, chronic bronchitis, asthma, or severe pneumonia. Blockage of the airway due to swelling, a foreign object, or vomit can induce respiratory acidosis. Drugs like anesthetics, sedatives, and narcotics can interfere with breathing by depressing the respiratory center in the brain. Head injuries or brain tumors can also interfere with signals sent by the brain to the lungs. Such neuromuscular diseases as Guillain-Barré syndrome or myasthenia gravis can impair the muscles around the lungs making it more difficult to breathe. Conditions that cause chronic metabolic alkalosis can also trigger respiratory acidosis. The most notable symptom will be slowed or difficult breathing. Headache, drowsiness, restlessness, tremor, and confusion may also occur. A rapid heart rate Continue reading >>

Basics | Blood Gas Analysis

Basics | Blood Gas Analysis

Introduction Blood gas analysis (BGA) serves the purpose of assessing respiratory function and the acid-base balance. The most important parameters for determining respiratory function are the partial pressures for oxygen (p02) and carbon dioxide (pCO2), as well as oxygen saturation (sO2). Using these parameters it is possible to detect pulmonary or, synonymously, respiratory insufficiency (formerly termed respiratory partial insufficiency) and ventilator insufficiency (formerly termed respiratory global insufficiency). For assessing the acid-base balance, pH value, pCO2 and base excess (BE) are important. By referring to the pH value, either acidosis or alkalosis can be diagnosed. By observing changes in pCO2 and BE it may be determined whether these are due to respiratory or non-respiratory causes (metabolic, renal, intestinal). CO2 indicates acidity and gives us information as to the respiratory system; the regulation of pCO2 takes place via ventilation (pCO2 lowered: hyperventilation; pCO2 elevated: hypoventilation). BE represents the bases and provides information on the non-respiratory system. BGA can be arterial or venous. For those who want to learn more… Indication Disturbances in acid-base balance and respiratory function. Normal findings and normal values The normal values are given in mean values. The width of the normal range should be taken from the responsible laboratory. Original findings Findings: 55-year-old female patient. Arterial BGA. Normal findings. Findings: 56-year-old male patient. Arterial BGA. Compensated respiratory acidosis with normal pO2 values, for example, in association with respiratory insufficiency during oxygen therapy.. Findings: 56-year-old female patient. Arterial BGA. Severe respiratory acidosis without compensation in connect Continue reading >>

Ph > 7.45 - Alkalosis - Decreased Hydrogen Ions

Ph > 7.45 - Alkalosis - Decreased Hydrogen Ions

Scale Range 0 - 14 7= Neutral < 7= acid [hydrogen ion donor] > 7= alkaline [hydrogen ion taker] Normal pH 7.35 - 7.45 - The normal pH of extra cellular fluid (EC.) is sightly alkaline pH < 7.35 - ACIDOSIS - Increased hydrogen ions UNBALANCED RELATIONSHIP I. ACIDOSIS Neurologic dysfunction is an early indicator Lethargy Confusion Disorientation Headache Muscle twitching Stupor Coma Key Point: In acidosis, both pH and CNS function are depressed II. ALKALOSIS pH > 7.45 causes over excitability of CNS and produces: Tingling of extremities Nervousness and irritability Seizures BASE as mnemonic: B = Base pH A = Above normal pH (>7.45) produces S = Spasms E = Excitability Key Concepts: pH is a measure of hydrogen ion concentration pH < 7 is acid pH > 7 is alkaline Normal pH of EC. is 7.35 to 7.45 5. Acids are able to give up hydrogen ions Bases are able to accept hydrogen ions This ability (5 & 6) allows the body to maintain acid-base balance Alkalosis is a condition in which the pH of ECF is increased and the hydrogen ion concentration is decreased Acidosis is a condition in which the pH of ECF is decreased and the hydrogen ion concentration is increased Both acidosis and alkalosis affect the functioning of the nervous system ACIDOSIS - produces symptoms of CNS depression ALKALOSIS - produces symptoms of CNS excitement The body has (3) defense or Regulatory Systems it used to keep the pH 7.35 to 7.45: I. The Chemical Buffer System a. Buffers are chemical substances that act immediately (within 0.1 seconds) to reduce the impact of any drastic change in pH b. This is accomplished by Buffers releasing or absorbing hydrogen ions c. Buffers can combine with either an acid or base d. Primary buffer system in the body is the Bicarbonate-Carbonic Acid System (responsible for ~80% of Continue reading >>

Metabolic Acidosis

Metabolic Acidosis

Patient professional reference Professional Reference articles are written by UK doctors and are based on research evidence, UK and European Guidelines. They are designed for health professionals to use. You may find one of our health articles more useful. See also separate Lactic Acidosis and Arterial Blood Gases - Indications and Interpretations articles. Description Metabolic acidosis is defined as an arterial blood pH <7.35 with plasma bicarbonate <22 mmol/L. Respiratory compensation occurs normally immediately, unless there is respiratory pathology. Pure metabolic acidosis is a term used to describe when there is not another primary acid-base derangement - ie there is not a mixed acid-base disorder. Compensation may be partial (very early in time course, limited by other acid-base derangements, or the acidosis exceeds the maximum compensation possible) or full. The Winter formula can be helpful here - the formula allows calculation of the expected compensating pCO2: If the measured pCO2 is >expected pCO2 then additional respiratory acidosis may also be present. It is important to remember that metabolic acidosis is not a diagnosis; rather, it is a metabolic derangement that indicates underlying disease(s) as a cause. Determination of the underlying cause is the key to correcting the acidosis and administering appropriate therapy[1]. Epidemiology It is relatively common, particularly among acutely unwell/critical care patients. There are no reliable figures for its overall incidence or prevalence in the population at large. Causes of metabolic acidosis There are many causes. They can be classified according to their pathophysiological origin, as below. The table is not exhaustive but lists those that are most common or clinically important to detect. Increased acid Continue reading >>

Respiratory Acidosis

Respiratory Acidosis

LABORATORY TESTS The following lab tests can be used to interpret and explain acidosis and alkalosis conditions. All are measured on blood samples. 1. pH: This measures hydrogen ions - Normal pH = 7.35-7.45 2. pCO2= Partial Pressure of Carbon Dioxide: Although this is a pressure measurement, it relates to the concentration of GASEOUS CO2 in the blood. A high pCO2 may indicate acidosis. A low pCO2 may indicate alkalosis. 3. HCO3- = Bicarbonate: This measures the concentration of HCO3- ion only. High values may indicate alkalosis since bicarbonate is a base. Low values may indicate acidosis. 4. CO2 = Carbon Dioxide Content: This is a measure of ALL CO2 liberated on adding acid to blood plasma. This measure both carbon dioxide dissolved and bicarbonate ions and is an older test. Do not confuse with pCO2 Typically, dissolved carbon dioxide = l.2-2.0 mmoles/L and HCO3- = 22-28 mmoles/L Therefore, although it is listed as CO2 content, the lab test really reflects HCO3- concentration. Respiratory Acidosis .ABNORMAL pH IN THE BODY: ACIDOSIS AND ALKALOSIS: INTRODUCTION: Normal blood pH is maintained between 7.35 and 7.45 by the regulatory systems. The lungs regulate the amount of carbon dioxide in the blood and the kidneys regulate the bicarbonate. When the pH decreases to below 7.35 an acidosis condition is present. Acidosis means that the hydrogen ions are increased and that pH and bicarbonate ions are decreased. A greater number of hydrogen ions are present in the blood than can be absorbed by the buffer systems. Alkalosis results when the pH is above 7.45. This condition results when the buffer base (bicarbonate ions) is greater than normal and the concentration of hydrogen ions are decreased. Both acidosis and alkalosis can be of two different types: respiratory and metabol Continue reading >>

Intro To Arterial Blood Gases, Part 2

Intro To Arterial Blood Gases, Part 2

Arterial Blood Gas Analysis, Part 2 Introduction Acute vs. Chronic Respiratory Disturbances Primary Metabolic Disturbances Anion Gap Mixed Disorders Compensatory Mechanisms Steps in ABG Analysis, Part II Summary Compensatory Mechanisms Compensation refers to the body's natural mechanisms of counteracting a primary acid-base disorder in an attempt to maintain homeostasis. As you learned in Acute vs. Chronic Respiratory Disturbances, the kidneys can compensate for chronic respiratory disorders by either holding on to or dumping bicarbonate. With Chronic respiratory acidosis: Chronic respiratory alkalosis: the kidneys hold on to bicarbonate the kidneys dump bicarbonate With primary metabolic disturbances, the respiratory system compensates for the acid-base disorder. The lungs can either blow off excess acid (via CO2) to compensate for metabolic acidosis, or to a lesser extent, hold on to acid (via CO2) to compensate for metabolic alkalosis. With Metabolic acidosis: Metabolic alkalosis: ventilation increases to blow off CO2 ventilation decreases to hold on to CO2 The body's response to metabolic acidosis is predictable. With metabolic acidosis, respiration will increase to blow off CO2, thereby decreasing the amount of acid in the blood. Recall that with metabolic acidosis, central chemoreceptors are triggered by the low pH and increase the drive to breathe. For now, it is only important to learn (qualitatively) that there is a predictable compensatory response to metabolic acidosis. Later, during your 3rd or 4th year rotations, you might learn how to (quantitatively) determine if the compensatory response to metabolic acidosis is appropriate by using the Winter's Formula. The body's response to metabolic alkalosis is not as complete. This is because we would need to hypov Continue reading >>

Partially Compensated Vs. Fully Compensated Abgs Practice

Partially Compensated Vs. Fully Compensated Abgs Practice

This is an NCLEX practice question on partially compensated vs fully compensated ABGs. This question provides a scenario about arterial blood gas results. As the nurse, you must determine if this is a respiratory or metabolic problem, alkalosis or acidosis along with if it is uncompensated, partially or fully compensated based on the results. This question is one of the many questions we will be practicing in our new series called “Weekly NCLEX Question”. So, every week be sure to tune into our YouTube Channel for the NCLEX Question of the Week. More NCLEX Weekly Practice Questions. To solve ABGs problems, I like to use the Tic Tac Toe method. If you are not familiar with this method, please watch my video on how to solve arterial blood gas problems with this method. The Tic Tac Toe method makes solving ABG problems so EASY. However, if the ABG values are partially or fully compensated you must take it a step further by analyzing the values further with this method, which is the purpose of this review. My goal is to show you how to use the Tic Tac Toe method for partially and fully compensated interpretation. So let’s begin: NCLEX Practice Questions on Partially vs. Fully Compensated ABGs Problem 1 A patient has the following arterial blood gas results: blood pH 7.43, PaCO2 28 mmHg, and HCO3 18 mEq/L. This is known as: A. Partially compensated respiratory alkalosis B. Fully compensated metabolic acidosis C. Partially compensated respiratory acidosis D. Fully compensated respiratory alkalosis The first thing you want to do is to pull from your memory bank the normal values for arterial blood gases. Here they are: <-Acid Base-> pH: 7.35-7.45 (less than 7.35 ACID & greater than 7.45 ALKALOTIC) PaCO2: 45-35 (greater than 45 ACID & less than 35 ALKALOTIC)** HCO3: 22-26 Continue reading >>

Overview Of Acid-base Balance

Overview Of Acid-base Balance

An important property of blood is its degree of acidity or alkalinity. The acidity or alkalinity of any solution, including blood, is indicated on the pH scale. A doctor evaluates a person's acid-base balance by measuring the pH and levels of carbon dioxide (an acid) and bicarbonate (a base) in the blood. Blood acidity increases when the Level of acidic compounds in the body rises (through increased intake or production, or decreased elimination) Level of basic (alkaline) compounds in the body falls (through decreased intake or production, or increased elimination) Blood alkalinity increases when the level of acid in the body decreases or when the level of base increases. Control of Acid-Base Balance The body's balance between acidity and alkalinity is referred to as acid-base balance. The blood's acid-base balance is precisely controlled because even a minor deviation from the normal range can severely affect many organs. The body uses different mechanisms to control the blood's acid-base balance. These mechanisms involve the Role of the lungs One mechanism the body uses to control blood pH involves the release of carbon dioxide from the lungs. Carbon dioxide, which is mildly acidic, is a waste product of the processing (metabolism) of oxygen (which all cells need) and, as such, is constantly produced by cells. As with all waste products, carbon dioxide gets excreted into the blood. The blood carries carbon dioxide to the lungs, where it is exhaled. As carbon dioxide accumulates in the blood, the pH of the blood decreases (acidity increases). The brain regulates the amount of carbon dioxide that is exhaled by controlling the speed and depth of breathing (ventilation). The amount of carbon dioxide exhaled, and consequently the pH of the blood, increases as breathing bec Continue reading >>

More in ketosis