diabetestalk.net

Metabolic Acidosis Sepsis Treatment

Sepsis And Septic Shock

Sepsis And Septic Shock

(Video) How to do Cardiopulmonary Resuscitation (CPR) in Adults By Paul M. Maggio, MD, MBA, Associate Professor of Surgery, Associate Chief Medical Officer, and Co-Director, Critical Care Medicine, Stanford University Medical Center Sepsis is a clinical syndrome of life-threatening organ dysfunction caused by a dysregulated response to infection. In septic shock, there is critical reduction in tissue perfusion; acute failure of multiple organs, including the lungs, kidneys, and liver, can occur. Common causes in immunocompetent patients include many different species of gram-positive and gram-negative bacteria. Immunocompromised patients may have uncommon bacterial or fungal species as a cause. Signs include fever, hypotension, oliguria, and confusion. Diagnosis is primarily clinical combined with culture results showing infection; early recognition and treatment is critical. Treatment is aggressive fluid resuscitation, antibiotics, surgical excision of infected or necrotic tissue and drainage of pus, and supportive care. Sepsis represents a spectrum of disease with mortality risk ranging from moderate (eg, 10%) to substantial (eg, > 40%) depending on various pathogen and host factors along with the timeliness of recognition and provision of appropriate treatment. Septic shock is a subset of sepsis with significantly increased mortality due to severe abnormalities of circulation and/or cellular metabolism. Septic shock involves persistent hypotension (defined as the need for vasopressors to maintain mean arterial pressure 65 mm Hg, and a serum lactate level > 18 mg/dL [2 mmol/L] despite adequate volume resuscitation [1] ). The concept of the systemic inflammatory response syndrome (SIRS), defined by certain abnormalities of vital signs and laboratory results, has long Continue reading >>

Lactic Acidosis, Hyperlactatemia And Sepsis | Montagnani | Italian Journal Of Medicine

Lactic Acidosis, Hyperlactatemia And Sepsis | Montagnani | Italian Journal Of Medicine

Montagnani and Nardi: Lactic Acidosis, Hyperlactatemia and Sepsis Lactic Acidosis, Hyperlactatemia and Sepsis [1] Division of Internal Medicine, Misericordia Hospital, Grosseto [2] Division of Internal Medicine, Maggiore Hospital, Bologna, Italy Correspondence to: Ospedale Misericordia di Grosseto, via Senese, 58100 Grosseto, Italy. +39.0564.485330. [email protected] Among hospitalized patients, lactic acidosis represents the most common cause of metabolic acidosis. Lactate is not just a metabolic product of anaerobic glycolysis but is triggered by a variety of metabolites even before the onset of anaerobic metabolism as part of an adaptive response to a hypermetabolic state. On the basis of such considerations, lactic acidosis is divided into two classes: inadequate tissue oxygenation (type A) and absence of tissue hypoxia (type B). Lactic acidosis is characterized by non-specific symptoms but it should be suspected in all critical patients who show hypovolemic, hypoxic, in septic or cardiogenic shock or if in the presence of an unexplained high anion gap metabolic acidosis. Lactic acidosis in sepsis and septic shock has traditionally been explained as a result of tissue hypoxia when whole-body oxygen delivery fails to meet whole body oxygen requirements. In sepsis lactate levels correlate with increased mortality with a poor prognostic threshold of 4 mmol/L. In hemodynamically stable patients with sepsis, hyperlactatemia might be the result of impaired lactate clearance rather than overproduction. In critically ill patients the speed at which hyperlactatemia resolves with appropriate therapy may be considered a useful prognostic indicator. The measure of blood lactate should be performed within 3 h of presentation in acute care setting. The presence of lactic a Continue reading >>

Hemodynamic Consequences Of Severe Lactic Acidosis In Shock States: From Bench To Bedside

Hemodynamic Consequences Of Severe Lactic Acidosis In Shock States: From Bench To Bedside

Hemodynamic consequences of severe lactic acidosis in shock states: from bench to bedside Kimmoun et al.; licensee BioMed Central.2015 The Erratum to this article has been published in Critical Care 2017 21:40 Lactic acidosis is a very common biological issue for shock patients. Experimental data clearly demonstrate that metabolic acidosis, including lactic acidosis, participates in the reduction of cardiac contractility and in the vascular hyporesponsiveness to vasopressors through various mechanisms. However, the contributions of each mechanism responsible for these deleterious effects have not been fully determined and their respective consequences on organ failure are still poorly defined, particularly in humans. Despite some convincing experimental data, no clinical trial has established the level at which pH becomes deleterious for hemodynamics. Consequently, the essential treatment for lactic acidosis in shock patients is to correct the cause. It is unknown, however, whether symptomatic pH correction is beneficial in shock patients. The latest Surviving Sepsis Campaign guidelines recommend against the use of buffer therapy with pH 7.15 and issue no recommendation for pH levels <7.15. Furthermore, based on strong experimental and clinical evidence, sodium bicarbonate infusion alone is not recommended for restoring pH. Indeed, bicarbonate induces carbon dioxide generation and hypocalcemia, both cardiovascular depressant factors. This review addresses the principal hemodynamic consequences of shock-associated lactic acidosis. Despite the lack of formal evidence, this review also highlights the various adapted supportive therapy options that could be putatively added to causal treatment in attempting to reverse the hemodynamic consequences of shock-associated lactic Continue reading >>

Metabolic Acidosis In Patients With Sepsis: Epiphenomenon Or Part Of The Pathophysiology?

Metabolic Acidosis In Patients With Sepsis: Epiphenomenon Or Part Of The Pathophysiology?

Metabolic acidosis in patients with sepsis: epiphenomenon or part of the pathophysiology? Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 1526, USA. To review the mechanisms of metabolic acidosis in sepsis. Articles and published reviews on metabolic acidosis in sepsis. Sepsis affects millions of patients each year and efforts to limit mortality have been limited. It is associated with many features one of which is acidosis which may be a result of the underlying pathophysiology (e.g. respiratory failure, shock, renal failure) or may also result from the way in which we manage critically ill patients. Lactic acidosis identifies septic patients at risk and aggressive fluid resuscitation (along with inotropes and blood in some patients) to reverse acidosis and improve venous oxygen saturation will improve mortality. However, most patients with severe sepsis or septic shock receive 0.9% saline and therefore may develop hyperchloraemic acidosis as a consequence of their resuscitation. Therefore alterations in acid-base balance are almost always in the background in the management of patients with sepsis. What is unknown is whether acidosis is in the causal pathway for organ dysfunction or whether it is simply an epiphenomenon. Changes in acid-base balance, of the type and magnitude commonly encountered in patients with sepsis, significantly alter the release of inflammatory mediators. Less significant changes in the immune response have already been implicated in influencing outcome for patients with sepsis and a reduction in acidosis in septic patients may have the same effect. Understanding the effects of acid-base on the inflammatory response is relevant as all forms of metabolic acidosis appear to be associated with pro Continue reading >>

The Use Of Sodium Bicarbonate In The Treatment Of Acidosis In Sepsis: A Literature Update On A Long Term Debate

The Use Of Sodium Bicarbonate In The Treatment Of Acidosis In Sepsis: A Literature Update On A Long Term Debate

Volume2015(2015), Article ID605830, 7 pages The Use of Sodium Bicarbonate in the Treatment of Acidosis in Sepsis: A Literature Update on a Long Term Debate 1Internal Medicine Department, University Hospital of Patras, 26500 Rion, Greece 2University of Patras School of Medicine, 26500 Rion, Greece 3Intensive Care Department, Brugmann University Hospital, 1030 Brussels, Belgium 4Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA Received 22 March 2015; Revised 29 June 2015; Accepted 1 July 2015 Copyright 2015 Dimitrios Velissaris et al. This is an open access article distributed under the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Introduction. Sepsis and its consequences such as metabolic acidosis are resulting in increased mortality. Although correction of metabolic acidosis with sodium bicarbonate seems a reasonable approach, there is ongoing debate regarding the role of bicarbonates as a therapeutic option. Methods. We conducted a PubMed literature search in order to identify published literature related to the effects of sodium bicarbonate treatment on metabolic acidosis due to sepsis. The search included all articles published in English in the last 35 years. Results. There is ongoing debate regarding the use of bicarbonates for the treatment of acidosis in sepsis, but there is a trend towards not using bicarbonate in sepsis patients with arterial blood gas . Conclusions. Routine use of bicarbonate for treatment of severe acidemia and lactic acidosis due to sepsis is subject of controversy, and current opinion does not favor routine use of bicarbonates. However, available evidence is inconclusive, and Continue reading >>

Lactic Acidosis In Sepsis: Its Not All Anaerobic: Implications For Diagnosis And Management - Sciencedirect

Lactic Acidosis In Sepsis: Its Not All Anaerobic: Implications For Diagnosis And Management - Sciencedirect

Volume 149, Issue 1 , January 2016, Pages 252-261 Contemporary Reviews in Critical Care Medicine Lactic Acidosis in Sepsis: Its Not All Anaerobic: Implications for Diagnosis and Management Author links open overlay panel BandarnSuetrongMD Keith R.WalleyMD Get rights and content Increased blood lactate concentration (hyperlactatemia) and lactic acidosis (hyperlactatemia and serum pH< 7.35) arecommon in patients with severe sepsis orseptic shock and are associated with significant morbidity and mortality. In some patients, most of the lactate that is produced in shock states is due to inadequate oxygen delivery resulting in tissue hypoxia and causing anaerobic glycolysis. However, lactate formation during sepsis is not entirely related to tissue hypoxia or reversible by increasing oxygen delivery. In this review, weinitially outline the metabolism of lactateand etiology of lactic acidosis; we thenaddress the pathophysiology of lacticacidosis in sepsis. We discuss the clinical implications of serum lactate measurement in diagnosis, monitoring, and prognostication in acute and intensive care settings. Finally, we explore treatment of lactic acidosis and its impact on clinical outcome. Continue reading >>

Metabolic Acidosis Treatment & Management: Approach Considerations, Type 1 Renal Tubular Acidosis, Type 2 Renal Tubular Acidosis

Metabolic Acidosis Treatment & Management: Approach Considerations, Type 1 Renal Tubular Acidosis, Type 2 Renal Tubular Acidosis

Metabolic AcidosisTreatment & Management Author: Christie P Thomas, MBBS, FRCP, FASN, FAHA; Chief Editor: Vecihi Batuman, MD, FASN more... Treatment of acute metabolic acidosis by alkali therapy is usually indicated to raise and maintain the plasma pH to greater than 7.20. In the following two circumstances this is particularly important. When the serum pH is below 7.20, a continued fall in the serum HCO3- level may result in a significant drop in pH. This is especially true when the PCO2 is close to the lower limit of compensation, which in an otherwise healthy young individual is approximately 15 mm Hg. With increasing age and other complicating illnesses, the limit of compensation is likely to be less. A further small drop in HCO3- at this point thus is not matched by a corresponding fall in PaCO2, and rapid decompensation can occur. For example, in a patient with metabolic acidosis with a serum HCO3- level of 9 mEq/L and a maximally compensated PCO2 of 20 mm Hg, a drop in the serum HCO3- level to 7 mEq/L results in a change in pH from 7.28 to 7.16. A second situation in which HCO3- correction should be considered is in well-compensated metabolic acidosis with impending respiratory failure. As metabolic acidosis continues in some patients, the increased ventilatory drive to lower the PaCO2 may not be sustainable because of respiratory muscle fatigue. In this situation, a PaCO2 that starts to rise may change the plasma pH dramatically even without a significant further fall in HCO3-. For example, in a patient with metabolic acidosis with a serum HCO3- level of 15 and a compensated PaCO2 of 27 mm Hg, a rise in PaCO2 to 37 mm Hg results in a change in pH from 7.33 to 7.20. A further rise of the PaCO2 to 43 mm Hg drops the pH to 7.14. All of this would have occurred whi Continue reading >>

Metabolic Acidosis: Pathophysiology, Diagnosis And Management: Management Of Metabolic Acidosis

Metabolic Acidosis: Pathophysiology, Diagnosis And Management: Management Of Metabolic Acidosis

Recommendations for the treatment of acute metabolic acidosis Gunnerson, K. J., Saul, M., He, S. & Kellum, J. Lactate versus non-lactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients. Crit. Care Med. 10, R22-R32 (2006). Eustace, J. A., Astor, B., Muntner, P M., Ikizler, T. A. & Coresh, J. Prevalence of acidosis and inflammation and their association with low serum albumin in chronic kidney disease. Kidney Int. 65, 1031-1040 (2004). Kraut, J. A. & Kurtz, I. Metabolic acidosis of CKD: diagnosis, clinical characteristics, and treatment. Am. J. Kidney Dis. 45, 978-993 (2005). Kalantar-Zadeh, K., Mehrotra, R., Fouque, D. & Kopple, J. D. Metabolic acidosis and malnutrition-inflammation complex syndrome in chronic renal failure. Semin. Dial. 17, 455-465 (2004). Kraut, J. A. & Kurtz, I. Controversies in the treatment of acute metabolic acidosis. NephSAP 5, 1-9 (2006). Cohen, R. M., Feldman, G. M. & Fernandez, P C. The balance of acid base and charge in health and disease. Kidney Int. 52, 287-293 (1997). Rodriguez-Soriano, J. & Vallo, A. Renal tubular acidosis. Pediatr. Nephrol. 4, 268-275 (1990). Wagner, C. A., Devuyst, O., Bourgeois, S. & Mohebbi, N. Regulated acid-base transport in the collecting duct. Pflugers Arch. 458, 137-156 (2009). Boron, W. F. Acid base transport by the renal proximal tubule. J. Am. Soc. Nephrol. 17, 2368-2382 (2006). Igarashi, T., Sekine, T. & Watanabe, H. Molecular basis of proximal renal tubular acidosis. J. Nephrol. 15, S135-S141 (2002). Sly, W. S., Sato, S. & Zhu, X. L. Evaluation of carbonic anhydrase isozymes in disorders involving osteopetrosis and/or renal tubular acidosis. Clin. Biochem. 24, 311-318 (1991). Dinour, D. et al. A novel missense mutation in the sodium bicarbonate cotransporter (NBCe1/ SLC4A4) Continue reading >>

Acidbase Disturbances In Intensive Care Patients: Etiology, Pathophysiology And Treatment

Acidbase Disturbances In Intensive Care Patients: Etiology, Pathophysiology And Treatment

Acidbase disturbances in intensive care patients: etiology, pathophysiology and treatment Center for Critical Care Nephrology, CRISMA Center, Department of Critical Care Medicine Correspondence and offprint requests to: John A. Kellum; E-mail: [email protected] Search for other works by this author on: Center for Critical Care Nephrology, CRISMA Center, Department of Critical Care Medicine Nephrology Dialysis Transplantation, Volume 30, Issue 7, 1 July 2015, Pages 11041111, Mohammed Al-Jaghbeer, John A. Kellum; Acidbase disturbances in intensive care patients: etiology, pathophysiology and treatment, Nephrology Dialysis Transplantation, Volume 30, Issue 7, 1 July 2015, Pages 11041111, Acidbase disturbances are very common in critically ill and injured patients as well as contribute significantly to morbidity and mortality. An understanding of the pathophysiology of these disorders is vital to their proper management. This review will discuss the etiology, pathophysiology and treatment of acidbase disturbances in intensive care patientswith particular attention to evidence from recent studies examining the effects of fluid resuscitation on acidbase and its consequences. acidbase physiology , acidosis , alkalosis , anion gap , strong ion difference The modern intensive care unit is a place where complex acidbase and electrolyte disorders are common, with one study, showing that 64% of critically ill patients have acute metabolic acidosis [ 1 ]. Although it is generally believed that most cases of acidbase derangement are mild and self-limiting, extremes of blood pH in either direction, especially when happening quickly, can have significant multiorgan consequences. Advances in evaluating acidbase balance have helped in understanding the impact of fluids in the critic Continue reading >>

A Profile Of Metabolic Acidosis In Patients With Sepsis In An Intensive Care Unit Setting

A Profile Of Metabolic Acidosis In Patients With Sepsis In An Intensive Care Unit Setting

A profile of metabolic acidosis in patients with sepsis in an Intensive Care Unit setting Department of Internal Medicine, Amrita Institute of Medical Sciences, Kochi, Kerala, India 1Department of Emergency Medicine, Amrita Institute of Medical Sciences, Kochi, Kerala, India Address for correspondence: Dr. Kartik Ganesh, Department of Nephrology, Amrita Institute of Medical Sciences, Kochi - 682 041, Kerala, India. E-mail: [email protected] Author information Copyright and License information Disclaimer Copyright : International Journal of Critical Illness and Injury Science This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. This article has been cited by other articles in PMC. Metabolic acidosis is frequently found in patients with severe sepsis. An understanding of types of acidosis in sepsis and their evolution over the course of treatment may give us insight into the behavior of acidbase balance in these patients. To describe at Intensive Care Unit (ICU) admission and over the first 5 days the composition of metabolic acidosis in patients with sepsis and to evaluate and compare acidosis patterns in survivors and nonsurvivors. A prospective study conducted at Amrita Institute of Medical Sciences, Kochi, Kerala, in the Department of Internal Medicine. Seventy-five consecutive patients admitted in the medical ICU with sepsis and metabolic acidosis were assessed. Arterial blood gas and serum electrolytes were measured during the first five days of admission or until death, renal replacement or discharge supervened. Continue reading >>

Lactic Acidosis: What You Need To Know

Lactic Acidosis: What You Need To Know

Lactic acidosis is a form of metabolic acidosis that begins in the kidneys. People with lactic acidosis have kidneys that are unable to remove excess acid from their body. If lactic acid builds up in the body more quickly than it can be removed, acidity levels in bodily fluids — such as blood — spike. This buildup of acid causes an imbalance in the body’s pH level, which should always be slightly alkaline instead of acidic. There are a few different types of acidosis. Lactic acid buildup occurs when there’s not enough oxygen in the muscles to break down glucose and glycogen. This is called anaerobic metabolism. There are two types of lactic acid: L-lactate and D-lactate. Most forms of lactic acidosis are caused by too much L-lactate. Lactic acidosis has many causes and can often be treated. But if left untreated, it may be life-threatening. The symptoms of lactic acidosis are typical of many health issues. If you experience any of these symptoms, you should contact your doctor immediately. Your doctor can help determine the root cause. Several symptoms of lactic acidosis represent a medical emergency: fruity-smelling breath (a possible indication of a serious complication of diabetes, called ketoacidosis) confusion jaundice (yellowing of the skin or the whites of the eyes) trouble breathing or shallow, rapid breathing If you know or suspect that you have lactic acidosis and have any of these symptoms, call 911 or go to an emergency room right away. Other lactic acidosis symptoms include: exhaustion or extreme fatigue muscle cramps or pain body weakness overall feelings of physical discomfort abdominal pain or discomfort diarrhea decrease in appetite headache rapid heart rate Lactic acidosis has a wide range of underlying causes, including carbon monoxide poisoni Continue reading >>

Sepsis - Wikipedia

Sepsis - Wikipedia

For the genus of flies of this name, see Sepsis (genus) . Blood culture bottles: orange label for anaerobes , green label for aerobes , and yellow label for blood samples from children Sepsis is a life-threatening condition that arises when the body's response to infection causes injury to its own tissues and organs. [8] Common signs and symptoms include fever , increased heart rate , increased breathing rate , and confusion . [1] There also may be symptoms related to a specific infection, such as a cough with pneumonia , or painful urination with a kidney infection . [2] In the very young, old, and people with a weakened immune system , there may be no symptoms of a specific infection and the body temperature may be low or normal, rather than high . [2] Severe sepsis is sepsis causing poor organ function or insufficient blood flow. [9] Insufficient blood flow may be evident by low blood pressure , high blood lactate , or low urine output . [9] Septic shock is low blood pressure due to sepsis that does not improve after reasonable amounts of intravenous fluids are given. [9] Sepsis is caused by an immune response triggered by an infection. [2] [3] Most commonly, the infection is bacterial , but it may also be from fungi , viruses , or parasites . [2] Common locations for the primary infection include lungs, brain, urinary tract , skin, and abdominal organs . [2] Risk factors include young or old age, a weakened immune system from conditions such as cancer or diabetes , major trauma , or burns . [1] An older method of diagnosis was based on meeting at least two systemic inflammatory response syndrome (SIRS) criteria due to a presumed infection. [2] In 2016, SIRS was replaced with qSOFA which is two of the following three: increased breathing rate, change in level of con Continue reading >>

Lactic Acidosis Treatment & Management: Approach Considerations, Sodium Bicarbonate, Tromethamine

Lactic Acidosis Treatment & Management: Approach Considerations, Sodium Bicarbonate, Tromethamine

Author: Kyle J Gunnerson, MD; Chief Editor: Michael R Pinsky, MD, CM, Dr(HC), FCCP, MCCM more... Treatment is directed towards correcting the underlying cause of lactic acidosis and optimizing tissue oxygen delivery. The former is addressed by various therapies, including administration of appropriate antibiotics, surgical drainage and debridement of a septic focus, chemotherapy of malignant disorders, discontinuation of causative drugs, and dietary modification in certain types of congenital lactate acidosis. Cardiovascular collapse secondary to hypovolemia or sepsis should be treated with fluid replacement. Both crystalloids and colloids can restore intravascular volume, but hydroxyethyl starch solutions should be avoided owing to increased mortality. [ 21 ] Excessive normal saline administration can cause a nongap metabolic acidosis due to hyperchloremia, which has been associated with increased acute kidney injury. [ 32 ] Balanced salt solutions such as Ringer lactate and Plasma-Lyte will not cause a nongap metabolic acidosis and may reduce the need for renal replacement therapy; however, these can cause a metabolic alkalosis. [ 33 ] No randomized, controlled trial has yet established the safest and most effective crystalloid. If a colloid is indicated, albumin should be used. Despite appropriate fluid management, vasopressors or inotropes may still be required to augment oxygen delivery. Acidemia decreases the response to catecholamines, and higher doses may be needed. Conversely, high doses may exacerbate ischemia in critical tissue beds. Careful dose titration is needed to maximize benefit and reduce harm. Lactic acidosis causes a compensatory increase in minute ventilation. Patients may be tachypneic initially, but respiratory muscle fatigue can ensue rapidly a Continue reading >>

Metabolic Acidosis In Patients With Severe Sepsis And Septic Shock: A Longitudinal Quantitative Study

Metabolic Acidosis In Patients With Severe Sepsis And Septic Shock: A Longitudinal Quantitative Study

Patients:Sixty patients with either severe sepsis or septic shock. Measurements and Main Results:Data were collected until 5 days after intensive care unit admission. We studied the contribution of inorganic ion difference, lactate, albumin, phosphate, and strong ion gap to metabolic acidosis. At admission, standard base excess was 6.69 4.19 mEq/L in survivors vs. 11.63 4.87 mEq/L in nonsurvivors (p < .05); inorganic ion difference (mainly resulting from hyperchloremia) was responsible for a decrease in standard base excess by 5.64 4.96 mEq/L in survivors vs. 8.94 7.06 mEq/L in nonsurvivors (p < .05); strong ion gap was responsible for a decrease in standard base excess by 4.07 3.57 mEq/L in survivors vs. 4.92 5.55 mEq/L in nonsurvivors with a nonsignificant probability value; and lactate was responsible for a decrease in standard base excess to 1.34 2.07 mEq/L in survivors vs. 1.61 2.25 mEq/L in nonsurvivors with a nonsignificant probability value. Albumin had an important alkalinizing effect in both groups; phosphate had a minimal acid-base effect. Acidosis in survivors was corrected during the study period as a result of a decrease in lactate and strong ion gap levels, whereas nonsurvivors did not correct their metabolic acidosis. In addition to Acute Physiology and Chronic Health Evaluation II score and serum creatinine level, inorganic ion difference acidosis magnitude at intensive care unit admission was independently associated with a worse outcome. Conclusions:Patients with severe sepsis and septic shock exhibit a complex metabolic acidosis at intensive care unit admission, caused predominantly by hyperchloremic acidosis, which was more pronounced in nonsurvivors. Acidosis resolution in survivors was attributable to a decrease in strong ion gap and lactate leve Continue reading >>

Lactic Acidosis: Clinical Implications And Management Strategies

Lactic Acidosis: Clinical Implications And Management Strategies

Lactic acidosis: Clinical implications and management strategies Cleveland Clinic Journal of Medicine. 2015 September;82(9):615-624 Quality Officer, Medical Intensive Care Unit, Departments of Pulmonary Medicine and Critical Care Medicine, Respiratory Institute, Cleveland Clinic; Assistant Professor, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH Department of Pharmacy, Cleveland Clinic; Assistant Professor, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH Medical ICU Clinical Specialist, Department of Pharmacy, Cleveland Clinic Director, Medical Intensive Care Unit, Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic Address: Anita J. Reddy, MD, Department of Critical Care Medicine, Respiratory Institute, A90, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195; e-mail: [email protected] ABSTRACTIn hospitalized patients, elevated serum lactate levels are both a marker of risk and a target of therapy. The authors describe the mechanisms underlying lactate elevations, note the risks associated with lactic acidosis, and outline a strategy for its treatment. Serum lactate levels can become elevated by a variety of underlying processes, categorized as increased production in conditions of hypoperfusion and hypoxia (type A lactic acidosis), or as increased production or decreased clearance not due to hypoperfusion and hypoxia (type B). The higher the lactate level and the slower the rate of normalization (lactate clearance), the higher the risk of death. Treatments differ depending on the underlying mechanism of the lactate elevation. Thus, identifying the reason for hyperlactatemia and differentiating between type A and B lactic acidosis are of the utmo Continue reading >>

More in ketosis