diabetestalk.net

Metabolic Acidosis Lab Values Potassium

Metabolic Acidosis In Emergency Medicine Workup

Metabolic Acidosis In Emergency Medicine Workup

Laboratory Studies Arterial blood gas analysis A low HCO3 level found on an automated sequential multiple analyzer (SMA) (eg, serum chemistries) is often the first clue to the presence of a metabolic acidosis; however, it cannot be the only consideration in the diagnosis of metabolic acidosis. A low HCO3 level can be caused by metabolic acidosis, a metabolic compensation of a respiratory alkalosis, or a laboratory error. The HCO3 level that is calculated by the arterial blood gas (ABG) machine, which uses the Henderson-Hasselbalch equation, represents a more accurate measure of the plasma HCO3 level than the SMA measurement. It is suggested that the HCO3 level that is determined from the ABG be used in the anion gap calculation instead of the HCO3 level found using the SMA. Measurement of pH and PCO2 by ABG in a patient with a low HCO3 level makes it possible to differentiate a metabolic compensation of a respiratory alkalosis from a primary metabolic acidosis. Measurement of PCO2 also makes it possible to judge the appropriateness of respiratory compensation of a metabolic acidosis, and to detect respiratory acidosis, which is signified by an elevated PCO2 level. Oxygenation does not affect the acid-base status of a patient and generally should not be part of the discussion unless severe hypoxia is leading to ischemia. In that case, measurement of PO2 can identify severe hypoxia as a precipitant of lactic acidosis. ABGs also measure base excess/base deficit (BE/BD), which is the best indicator of the degree of acidosis/alkalosis. BE/BD is measured by gauging the amount of acid or base that is required to titrate the patient's blood sample to a pH of 7.40, given a PCO2 level of 40 mm Hg at 37 degrees Celsius. BE/BD is a more accurate reflection of the body's state, and Continue reading >>

Normal Anion Gap Acidosis

Normal Anion Gap Acidosis

Terry W. Hensle, Erica H. Lambert, in Pediatric Urology , 2010 Nonanion gap acidosis occurs in situations in which HCO3 is lost from the kidney or the gastrointestinal tract or both. When this occurs, Cl (along with Na+) is reabsorbed to replace the HCO3; this leads to the hyperchloremia, which leaves the anion gap in normal range.10 Diarrhea causes a hyperchloremic, hypokalemic metabolic acidosis. Treatment depends on the severity of the acidosis incurred. In mild to moderate acidosis (pH >7.2), fluid and electrolyte replacement is often all that is required. Once adequate renal perfusion is restored, excess H+ can be excreted efficiently, restoring the pH to normal. In severe acidosis (pH <7.2), the addition of intravenous bicarbonate may be needed to correct the metabolic deficit. Before bicarbonate is administered, a serum potassium level should be obtained. The addition of bicarbonate can worsen hypokalemia, leading to neuromuscular complications. Hyperchloremic acidosis also occurs with renal insufficiency and renal tubular acidosis.9,20 Katherine Ahn Jin, in Comprehensive Pediatric Hospital Medicine , 2007 As in any condition, the first priority in management is stabilizing the ABCs, as necessary. Management of metabolic acidosis is directed toward treating the underlying cause. In general, treating the causes of anion gap acidosis can regenerate bicarbonate within hours; however, nonanion gap acidosis can take days to resolve and may require exogenous bicarbonate therapy. Insulin, hydration, and electrolyte repletion will correct the acidosis in diabetic ketoacidosis. In addition to treating the underlying condition, lactic acidosis can be resolved by increasing tissue oxygenation using crystalloid, blood products, afterload reduction, inotropic agents (e.g., d Continue reading >>

Metabolic Acidosis - Endocrine And Metabolic Disorders - Merck Manuals Professional Edition

Metabolic Acidosis - Endocrine And Metabolic Disorders - Merck Manuals Professional Edition

(Video) Overview of Acid-Base Maps and Compensatory Mechanisms By James L. Lewis, III, MD, Attending Physician, Brookwood Baptist Health and Saint Vincent’s Ascension Health, Birmingham Metabolic acidosis is primary reduction in bicarbonate (HCO3−), typically with compensatory reduction in carbon dioxide partial pressure (Pco2); pH may be markedly low or slightly subnormal. Metabolic acidoses are categorized as high or normal anion gap based on the presence or absence of unmeasured anions in serum. Causes include accumulation of ketones and lactic acid, renal failure, and drug or toxin ingestion (high anion gap) and GI or renal HCO3− loss (normal anion gap). Symptoms and signs in severe cases include nausea and vomiting, lethargy, and hyperpnea. Diagnosis is clinical and with ABG and serum electrolyte measurement. The cause is treated; IV sodium bicarbonate may be indicated when pH is very low. Metabolic acidosis is acid accumulation due to Increased acid production or acid ingestion Acidemia (arterial pH < 7.35) results when acid load overwhelms respiratory compensation. Causes are classified by their effect on the anion gap (see The Anion Gap and see Table: Causes of Metabolic Acidosis ). Lactic acidosis (due to physiologic processes) Lactic acidosis (due to exogenous toxins) Toluene (initially high gap; subsequent excretion of metabolites normalizes gap) HIV nucleoside reverse transcriptase inhibitors Biguanides (rare except with acute kidney injury) Normal anion gap (hyperchloremic acidosis) Renal tubular acidosis, types 1, 2, and 4 The most common causes of a high anion gap metabolic acidosis are Ketoacidosis is a common complication of type 1 diabetes mellitus (see diabetic ketoacidosis ), but it also occurs with chronic alcoholism (see alcoholic ketoacidos Continue reading >>

Attending Rounds: Patient With Hypokalemia And Metabolic Acidosis

Attending Rounds: Patient With Hypokalemia And Metabolic Acidosis

Attending Rounds: Patient with Hypokalemia and Metabolic Acidosis Department of Medicine, Yale School of Medicine, New Haven, Connecticut Dr. Asghar Rastegar, Department of Medicine, Yale School of Medicine, 333 Cedar Street, 1074 LMP, P.O. Box 208030, New Haven, CT 06520-8030; Phone: 203-737-2078, Fax: 203-785-7030; E-mail: . Summary Hypokalemic paralysis represents a medical emergency requiring both rapid diagnosis and treatment. In this Attending Rounds a patient with hypokalemia and metabolic acidosis is presented to emphasize the role of routine laboratory studies in the assessment of such patients so that a correct diagnosis can be made and appropriate treatment can be initiated promptly. A 39-year-old woman who had been in excellent health presented with a chief complaint of weakness in her lower extremities. She gave a history of intermittent vomiting for the past 2 months that was worse over the past 3 days. Two weeks before admission she was found to be positive for Helicobacter pylori antigen and was treated with amoxicillin, clarithromycin, and lansoperazole. One day before admission she was seen in the emergency department complaining of 3 days of vomiting. The serum lipase was mildly elevated, and she was diagnosed with mild pancreatitis. The serum potassium concentration was 3.1 mEq/L. She was treated with intravenous fluids and prochlorperazine and sent home. On the day of admission, she noted onset of bilateral lower extremity weakness, inability to walk without a cane, and profound fatigue. She also stated that she had been having intermittent leg cramps and that she recalled having been told previously that she had a low serum potassium level on several occasions. Her past medical history was unremarkable aside from migraine headaches during her mens Continue reading >>

Metabolic Acidosis

Metabolic Acidosis

Metabolic acidosis is a condition that occurs when the body produces excessive quantities of acid or when the kidneys are not removing enough acid from the body. If unchecked, metabolic acidosis leads to acidemia, i.e., blood pH is low (less than 7.35) due to increased production of hydrogen ions by the body or the inability of the body to form bicarbonate (HCO3−) in the kidney. Its causes are diverse, and its consequences can be serious, including coma and death. Together with respiratory acidosis, it is one of the two general causes of acidemia. Terminology : Acidosis refers to a process that causes a low pH in blood and tissues. Acidemia refers specifically to a low pH in the blood. In most cases, acidosis occurs first for reasons explained below. Free hydrogen ions then diffuse into the blood, lowering the pH. Arterial blood gas analysis detects acidemia (pH lower than 7.35). When acidemia is present, acidosis is presumed. Signs and symptoms[edit] Symptoms are not specific, and diagnosis can be difficult unless the patient presents with clear indications for arterial blood gas sampling. Symptoms may include chest pain, palpitations, headache, altered mental status such as severe anxiety due to hypoxia, decreased visual acuity, nausea, vomiting, abdominal pain, altered appetite and weight gain, muscle weakness, bone pain, and joint pain. Those in metabolic acidosis may exhibit deep, rapid breathing called Kussmaul respirations which is classically associated with diabetic ketoacidosis. Rapid deep breaths increase the amount of carbon dioxide exhaled, thus lowering the serum carbon dioxide levels, resulting in some degree of compensation. Overcompensation via respiratory alkalosis to form an alkalemia does not occur. Extreme acidemia leads to neurological and cardia Continue reading >>

Common Laboratory (lab) Values - Abgs

Common Laboratory (lab) Values - Abgs

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Laboratory VALUES Home Page Arterial Blood Gases Arterial blood gas analysis provides information on the following: 1] Oxygenation of blood through gas exchange in the lungs. 2] Carbon dioxide (CO2) elimination through respiration. 3] Acid-base balance or imbalance in extra-cellular fluid (ECF). Normal Blood Gases Arterial Venous pH 7.35 - 7.45 7.32 - 7.42 Not a gas, but a measurement of acidity or alkalinity, based on the hydrogen (H+) ions present. The pH of a solution is equal to the negative log of the hydrogen ion concentration in that solution: pH = - log [H+]. PaO2 80 to 100 mm Hg. 28 - 48 mm Hg The partial pressure of oxygen that is dissolved in arterial blood. New Born – Acceptable range 40-70 mm Hg. Elderly: Subtract 1 mm Hg from the minimal 80 mm Hg level for every year over 60 years of age: 80 - (age- 60) (Note: up to age 90) HCO3 22 to 26 mEq/liter (21–28 mEq/L) 19 to 25 mEq/liter The calculated value of the amount of bicarbonate in the bloodstream. Not a blood gas but the anion of carbonic acid. PaCO2 35-45 mm Hg 38-52 mm Hg The amount of carbon dioxide dissolved in arterial blood. Measured. Partial pressure of arterial CO2. (Note: Large A= alveolor CO2). CO2 is called a “volatile acid” because it can combine reversibly with H2O to yield a strongly acidic H+ ion and a weak basic bicarbonate ion (HCO3 -) according to the following equation: CO2 + H2O <--- --> H+ + HCO3 B.E. –2 to +2 mEq/liter Other sources: normal reference range is between -5 to +3. The base excess indicates the amount of excess or insufficient level of bicarbonate in the system. (A negative base excess indicates a base deficit in the blood.) A negative base excess is equivalent to an acid excess. A value outside of the normal r Continue reading >>

Lab Test Interpretation

Lab Test Interpretation

The various multiparameter blood chemistry and hematology profilesoffered by most labs represent an economical way by which alarge amount of information concerning a patient's physiologic statuscan be made available to the physician. The purpose of this monograph isto serve as a reference for the interpretation of abnormalities of eachof the parameters. Because reference ranges (except for some lipid studies)are typically defined as the range of values of the median 95% of thehealthy population, it is unlikely that a given specimen, even from ahealthy patient, will show "normal" values for all the tests ina lengthy profile. Therefore, caution should be exercised to preventoverreaction to miscellaneous, mild abnormalities without clinicalcorrelate. Units of measurement: America against the world American labs use a different version of the metric system than doesmost of the rest of the world, which uses the SystmeInternationale (SI). In some cases translation between the twosystems is easy, but the difference between the two is most pronouncedin measurement of chemical concentration. The American system generallyuses mass per unit volume, while SI uses moles per unit volume. Sincemass per mole varies with the molecular weight of the analyte,conversion between American and SI units requires many differentconversion factors. Where appropriate, in this paper SI units are givenafter American units. Dennis Jay, PhD, has kindly made available anonline converter between SI and conventional units: Increase in serum sodium is seenin conditions with water loss in excessof salt loss, as in profuse sweating, severe diarrhea or vomiting,polyuria (as in diabetes mellitus or insipidus), hypergluco- ormineralocorticoidism, and inadequate water intake. Drugs causingelevated sodium inclu Continue reading >>

Metabolic Acidosis

Metabolic Acidosis

Patient professional reference Professional Reference articles are written by UK doctors and are based on research evidence, UK and European Guidelines. They are designed for health professionals to use. You may find one of our health articles more useful. See also separate Lactic Acidosis and Arterial Blood Gases - Indications and Interpretations articles. Description Metabolic acidosis is defined as an arterial blood pH <7.35 with plasma bicarbonate <22 mmol/L. Respiratory compensation occurs normally immediately, unless there is respiratory pathology. Pure metabolic acidosis is a term used to describe when there is not another primary acid-base derangement - ie there is not a mixed acid-base disorder. Compensation may be partial (very early in time course, limited by other acid-base derangements, or the acidosis exceeds the maximum compensation possible) or full. The Winter formula can be helpful here - the formula allows calculation of the expected compensating pCO2: If the measured pCO2 is >expected pCO2 then additional respiratory acidosis may also be present. It is important to remember that metabolic acidosis is not a diagnosis; rather, it is a metabolic derangement that indicates underlying disease(s) as a cause. Determination of the underlying cause is the key to correcting the acidosis and administering appropriate therapy[1]. Epidemiology It is relatively common, particularly among acutely unwell/critical care patients. There are no reliable figures for its overall incidence or prevalence in the population at large. Causes of metabolic acidosis There are many causes. They can be classified according to their pathophysiological origin, as below. The table is not exhaustive but lists those that are most common or clinically important to detect. Increased acid Continue reading >>

Anion Gap (blood) - Health Encyclopedia - University Of Rochester Medical Center

Anion Gap (blood) - Health Encyclopedia - University Of Rochester Medical Center

If you may have swallowed a poison, such as wood alcohol, salicylate (in aspirin), and ethylene glycol (in antifreeze), your provider may test your blood for it. If your provider thinks you have ketoacidosis, you might need a urine dipstick test for ketone compounds. Ketoacidosis is a health emergency. Many things may affect your lab test results. These include the method each lab uses to do the test. Even if your test results are different from the normal value, you may not have a problem. To learn what the results mean for you, talk with your healthcare provider. Results are given in milliequivalents per liter (mEq/L). Normal results are 3 to 10mEq/L, although the normal level may vary from lab to lab. If your results are higher, it may mean that you have metabolic acidosis. Hypoalbuminemia means you haveless albumin protein than normal. If you have this condition, your expected normal result must be lower. The test requires a blood sample, which is drawn through a needle from a vein in your arm. Taking a blood sample with a needle carries risks that include bleeding, infection, bruising, or feeling dizzy. When the needle pricks your arm, you may feel a slight stinging sensation or pain. Afterward, the site may be slightly sore. Being dehydrated or retaining water in your body can affect your results. Antibiotics such as penicillin can also affect your results. You don't need to prepare for this test. But be sure your healthcare provider knows about all medicines, herbs, vitamins, and supplements you are taking. This includes medicines that don't need a prescription and any illicit drugs you may use. Continue reading >>

Metabolic Acidosis

Metabolic Acidosis

Practice Essentials Metabolic acidosis is a clinical disturbance characterized by an increase in plasma acidity. Metabolic acidosis should be considered a sign of an underlying disease process. Identification of this underlying condition is essential to initiate appropriate therapy. (See Etiology, DDx, Workup, and Treatment.) Understanding the regulation of acid-base balance requires appreciation of the fundamental definitions and principles underlying this complex physiologic process. Go to Pediatric Metabolic Acidosis and Emergent Management of Metabolic Acidosis for complete information on those topics. Continue reading >>

Clinical Aspects Of The Anion Gap

Clinical Aspects Of The Anion Gap

The anion gap (AG) is a calculated parameter derived from measured serum/plasma electrolyte concentrations. The clinical value of this calculated parameter is the main focus of this article. Both increased and reduced anion gap have clinical significance, but the deviation from normal that has most clinical significance is increased anion gap associated with metabolic acidosis. This reflects the main clinical utility of the anion gap, which is to help in elucidating disturbances of acid-base balance. The article begins with a discussion of the concept of the anion gap, how it is calculated and issues surrounding the anion gap reference interval. CONCEPT OF THE ANION GAP - ITS DEFINITION AND CALCULATION Blood plasma is an aqueous (water) solution containing a plethora of chemical species including some that have a net electrical charge, the result of dissociation of salts and acids in the aqueous medium. Those that have a net positive charge are called cations and those with a net negative charge are called anions; collectively these electrically charged species are called ions. The law of electrochemical neutrality demands that, in common with all solutions, blood serum/plasma is electrochemically neutral so that the sum of the concentration of cations always equals the sum of the concentration of anions [1]. This immutable law is reflected in FIGURE 1, a graphic display of the concentration of the major ions normally present in plasma/serum. It is clear from this that quantitatively the most significant cation in plasma is sodium (Na+), and the most significant anions are chloride (Cl-) and bicarbonate HCO3-. The concentration of these three plasma constituents (sodium, chloride and bicarbonate) along with the cation potassium (K+) are routinely measured in the clinica Continue reading >>

Metabolic Alkalosis

Metabolic Alkalosis

Abstract: Metabolic alkalosis commonly results from excessive HCl, K+ and H2O loss from the stomach or through the urine. The plasma anion gap increases in non-hypoproteinemic metabolic alkalosis due to an increased negative charge equivalency on albumin, and the free ionized Ca++ content of plasma decreases. The [HCO3−]/(S × Pco2) ratio is increased in metabolic alkalosis. The bicarbonate buffer equation is shifted to the right (CO2 + H2O → H2CO3 → H+ + HCO3−) in metabolic alkalosis. The kidneys excrete excess HCO3 − into urine during a metabolic alkalosis. Hypokalemia and kaliuresis are common complications of metabolic alkalosis. Patients with metabolic alkalosis are predisposed to cardiac arrhythmias. Post-hypercapnic metabolic alkalosis can occur in a patient with respiratory acidosis who is mechanically ventilated. Contraction alkalosis can occur in patients who are being treated with loop or thiazide diuretics. A free water deficit leads to a concentration alkalosis. Introduction Metabolic alkalosis is principally an electrolyte disorder that is accompanied by changes in acid–base parameters in plasma, namely an elevated concentration of bicarbonate (HCO3−) ions (PHCO3) and elevated pH. Most patients with metabolic alkalosis have a deficit of chloride (Cl−)-containing compounds: sodium chloride (NaCl), potassium chloride (KCl) and/or hydrochloric acid (HCl). A deficit of NaCl raises the PHCO3 primarily by lowering the extracellular fluid (ECF) volume, whereas a deficit of HCl or KCl raises the PHCO3 by adding new HCO3− ions to the body. In some patients, however, metabolic alkalosis may be due to the retention of NaHCO3. For example, patients with disorders causing primary high mineralocorticoid activity may develop metabolic alkalosis due to t Continue reading >>

Serum Anion Gap: Its Uses And Limitations In Clinical Medicine

Serum Anion Gap: Its Uses And Limitations In Clinical Medicine

Abstract The serum anion gap, calculated from the electrolytes measured in the chemical laboratory, is defined as the sum of serum chloride and bicarbonate concentrations subtracted from the serum sodium concentration. This entity is used in the detection and analysis of acid-base disorders, assessment of quality control in the chemical laboratory, and detection of such disorders as multiple myeloma, bromide intoxication, and lithium intoxication. The normal value can vary widely, reflecting both differences in the methods that are used to measure its constituents and substantial interindividual variability. Low values most commonly indicate laboratory error or hypoalbuminemia but can denote the presence of a paraproteinemia or intoxication with lithium, bromide, or iodide. Elevated values most commonly indicate metabolic acidosis but can reflect laboratory error, metabolic alkalosis, hyperphosphatemia, or paraproteinemia. Metabolic acidosis can be divided into high anion and normal anion gap varieties, which can be present alone or concurrently. A presumed 1:1 stoichiometry between change in the serum anion gap (ΔAG) and change in the serum bicarbonate concentration (ΔHCO3−) has been used to uncover the concurrence of mixed metabolic acid-base disorders in patients with high anion gap acidosis. However, recent studies indicate variability in the ΔAG/ΔHCO3− in this disorder. This observation undercuts the ability to use this ratio alone to detect complex acid-base disorders, thus emphasizing the need to consider additional information to obtain the appropriate diagnosis. Despite these caveats, calculation of the serum anion gap remains an inexpensive and effective tool that aids detection of various acid-base disorders, hematologic malignancies, and intoxication Continue reading >>

Potassium And Acidosis

Potassium And Acidosis

Balance among electrically charged atoms and molecules is essential to maintaining chemical equilibrium in your body. Potassium is the most abundant, positively charged atom inside your cells. Because acids and potassium both have a positive electrical charge in your body, their concentrations are interdependent. Medical conditions that cause an overabundance of acids in your blood, known as acidosis, may affect your blood potassium level, and vice versa. Video of the Day Metabolic acidosis is an abnormally low blood pH caused by overproduction of acids or failure of your kidneys to rid the body of acids normally. With metabolic acidosis, your blood has an abnormally high level of positively charged hydrogen atoms, or hydrogen ions. To reduce the acidity of your blood, hydrogen ions move from your circulation into your cells in exchange for potassium. The exchange of hydrogen for potassium ions helps relieve the severity of acidosis but may cause an abnormally high level of blood potassium, or hyperkalemia. Drs. Kimberley Evans and Arthur Greenberg reported in a September 2005 article published in the "Journal of Intensive Care Medicine" that there is a 0.3 to 1.3 mmol/L increase in blood potassium for every 0.1 decrease in pH with metabolic acidosis. Metabolic Acidosis Recovery Correction of the underlying medical problem responsible for metabolic acidosis typically leads to normalization of your blood pH. Although blood potassium is typically elevated with metabolic acidosis, a substantial amount of your total body potassium stores can be lost through the kidneys, causing a total body deficit. As your blood pH returns to normal, potassium moves from your bloodstream back into your cells. If your total body potassium stores have been depleted, your blood concentration Continue reading >>

Metabolic Acidosis Workup

Metabolic Acidosis Workup

Approach Considerations Often the first clue to metabolic acidosis is a decreased serum HCO3- concentration observed when serum electrolytes are measured. Remember, however, that a decreased serum [HCO3-] level can be observed as a compensatory response to respiratory alkalosis. An [HCO3-] level of less than 15 mEq/L, however, almost always is due, at least in part, to metabolic acidosis. The only definitive way to diagnose metabolic acidosis is by simultaneous measurement of serum electrolytes and arterial blood gases (ABGs), which shows pH and PaCO2 to be low; calculated HCO3- also is low. (For more information, see Metabolic Alkalosis.) A low serum HCO3- and a pH of less than 7.40 upon ABG analysis confirm metabolic acidosis. Go to Pediatric Metabolic Acidosis and Emergent Management of Metabolic Acidosis for complete information on these topics. Continue reading >>

More in ketosis