diabetestalk.net

Metabolic Acidosis And Alkalosis

Metabolic Acidosis And Alkalosis

Metabolic Acidosis And Alkalosis

Your blood contains many substances that help your body function. To function properly, your blood keeps a balance between substances that are acidic and substances that are alkaline (base). Normally, your body naturally maintains this balance, called your blood pH level. However, certain health conditions and substances can upset this balance. If your blood has too much acid or too little base in it, you may develop metabolic acidosis. Alcohol, aspirin and poisons, like carbon monoxide or cyanide, can all cause your body to make too much acid. Conditions like kidney disease or Type 1 diabetes can also affect how acidic your blood is. If your blood has too much base, you may develop metabolic alkalosis. This can happen if you lose too much acid due to using diuretics, vomiting, or if your adrenal gland is overactive. What are the symptoms of metabolic acidosis and alkalosis? If you have metabolic acidosis, you may have no symptoms. However, most people experience nausea, vomiting and fatigue (feeling tired and weak.) You may also start to breathe deeper and faster. These symptoms can get worse the longer you experience acidosis. Without treatment, you acidosis can lead to shock, coma or even death. Metabolic alkalosis, on the other hand, can cause irritability, muscle cramps and twitches. If left untreated, you can experience long-term muscle spasms. How are metabolic acidosis and alkalosis treated? Doctors can diagnose acidosis and alkalosis with a blood test. The blood test shows if your body’s pH levels are out of balance. Your doctor will design a treatment for your acidosis or alkalosis based on what caused the condition. For instance, if Type 1 diabetes led to diabetic ketoacidosis, your doctor will use insulin to balance out your blood sugar and get rid of exce Continue reading >>

The Effect Of Metabolic Acidosis And Alkalosis On The Blood Flow Through The Cerebral Cortex

The Effect Of Metabolic Acidosis And Alkalosis On The Blood Flow Through The Cerebral Cortex

Full text Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (403K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References. These references are in PubMed. This may not be the complete list of references from this article. Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group Continue reading >>

Blood Gas Analysis, Pt 5: Metabolic Acidosis And Alkalosis

Blood Gas Analysis, Pt 5: Metabolic Acidosis And Alkalosis

Base excess (BE) and bicarbonate (HCO3-) represent the metabolic components of the acid base equation. In general, both components will change in the same direction. Decreased HCO3– and BE indicate either a primary metabolic acidosis or a metabolic compensation for a chronic respiratory alkalosis. Elevated HCO3– and BE indicate either a primary metabolic alkalosis or a metabolic compensation for a chronic respiratory acidosis. The exception to this rule arises when a patient hypoventilates or hyperventilates. Carbonic acid equation CO2 + H2O ↔ H2CO3 ↔ HCO3– + H+ When a patient hypoventilates, CO2 will increase as a result of reduced expiration, so a shift to the right of the equilibrium will occur. The shift to the right will increase the bicarbonate levels proportional to the increase in CO2. The opposite occurs when a patient hyperventilates; the equilibrium shifts to the left, so a decrease in HCO3– is present. Since HCO3– is not independent to the patient’s respiratory status, it is an inaccurate way of measuring the metabolic component in patients with respiratory changes. For this reason, the BE value is the preferred. The BE represents the amount of acid, or base, needed to titrate 1L of the blood sample until the pH reaches exactly 7.4, with the assumption the blood sample is equilibrated to a partial pressure of CO2 of 40mmHg (the middle of the reference range) and the patient’s body temperature is normal. Possible causes The possible causes of the primary disease are: Metabolic acidosis lactic acidosis – shock and poor perfusion renal failure – reduced hydrogen ion (H+) excretion and increased loss of HCO3– diabetic ketoacidosis – ketone acids gastrointestinal (GI) losses – loss of HCO3– through vomiting and diarrhoea Metabolic al Continue reading >>

Acid-base Disorders

Acid-base Disorders

Acid-base disorders are pathologic changes in arterial pH and carbon dioxide partial pressure (Pco2), and in serum bicarbonate (HCO3−). Acidosis refers to physiologic processes that cause acid accumulation or alkali loss. Alkalosis refers to physiologic processes that cause alkali accumulation or acid loss. Actual changes in pH depend on the degree of physiologic compensation and whether multiple processes are present. Primary acid-base disturbances are defined as metabolic or respiratory based on clinical context and whether the primary change in pH is due to an alteration in serum HCO3− or in Pco2. Whenever an acid-base disorder is present, compensatory mechanisms begin to correct the pH (see Table: Primary Changes and Compensations in Simple Acid-Base Disorders). Compensation cannot return pH completely to normal and never overshoots. A simple acid-base disorder is a single acid-base disturbance with its accompanying compensatory response. Mixed acid-base disorders comprise ≥ 2 primary disturbances. Compensated or mild acid-base disorders cause few symptoms or signs. Severe, uncompensated disorders have multiple cardiovascular, respiratory, neurologic, and metabolic consequences (see Table: Clinical Consequences of Acid-Base Disorders and see Figure: Oxyhemoglobin dissociation curve.). Evaluation is with ABG and serum electrolytes. The ABG directly measures arterial pH and Pco2. HCO3− levels on ABG are calculated using the Henderson-Hasselbalch equation; HCO3− levels on serum chemistry panels are directly measured and are considered more accurate in cases of discrepancy. Acid-base balance is most accurately assessed with measurement of pH and Pco2 on arterial blood. In cases of circulatory failure or during cardiopulmonary resuscitation, measurements on ven Continue reading >>

Metabolic And Respiratory Acidosis And Alkalosis

Metabolic And Respiratory Acidosis And Alkalosis

There are two main types of pH imbalances in the body: acidosis and alkalosis. An increase in H+ ion levels in the blood causes pH levels to fall resulting in acidosis. A decrease in H+ levels causes pH levels to rise, making the blood more basic, or alkaline. These conditions can be caused by two kinds of disturbances to the buffers that control the body’s pH levels, which alter the acid-base balance. Metabolic and respiratory acidosis and alkalosis are the results of disruptions to the bicarbonate and carbonic acid components of the chemical buffers. Metabolic and respiratory acidosis result when pH levels fall due to an increase in H+ ions or a loss of bases causing the bodily fluids to become slightly acidic. Insufficient bicarbonate levels lower the pH levels of fluids in the digestive tract, resulting in metabolic acidosis. Respiratory acidosis is caused by excessive carbonic acid in the respiratory system, which lowers pH levels through the retention of CO2. Alkalosis is the result of opposite changes to the acid-base balance: excessive bicarbonate levels in the digestive system increases pH as H+ ion concentrations decrease, which causes fluids to become more basic. Insufficient carbonic acid levels are caused by excessive exhalation of CO2, resulting in respiratory alkalosis. Treatment for metabolic and respiratory acidosis and alkalosis varies depending on the underlying cause of the imbalance. Respiratory acidosis caused by hypoventilation can be treated with oxygen therapy and the help of breathing machines to help restore normal oxygen/carbon dioxide exchange, allowing the kidneys time to increase production of bicarbonate and reestablish the acid-base balance of the blood. Respiratory alkalosis caused by hyperventilation can be treated with inhalation of Continue reading >>

Metabolic Alkalosis

Metabolic Alkalosis

Practice Essentials Metabolic alkalosis is a primary increase in serum bicarbonate (HCO3-) concentration. This occurs as a consequence of a loss of H+ from the body or a gain in HCO3-. In its pure form, it manifests as alkalemia (pH >7.40). As a compensatory mechanism, metabolic alkalosis leads to alveolar hypoventilation with a rise in arterial carbon dioxide tension (PaCO2), which diminishes the change in pH that would otherwise occur. Normally, arterial PaCO2 increases by 0.5-0.7 mm Hg for every 1 mEq/L increase in plasma bicarbonate concentration, a compensatory response that is very quick. If the change in PaCO2 is not within this range, then a mixed acid-base disturbance occurs. For example, if the increase in PaCO2 is more than 0.7 times the increase in bicarbonate, then metabolic alkalosis coexists with primary respiratory acidosis. Likewise, if the increase in PaCO2 is less than the expected change, then a primary respiratory alkalosis is also present. The first clue to metabolic alkalosis is often an elevated bicarbonate concentration that is observed when serum electrolyte measurements are obtained. Remember that an elevated serum bicarbonate concentration may also be observed as a compensatory response to primary respiratory acidosis. However, a bicarbonate concentration greater than 35 mEq/L is almost always caused by metabolic alkalosis. Metabolic alkalosis is diagnosed by measuring serum electrolytes and arterial blood gases. If the etiology of metabolic alkalosis is not clear from the clinical history and physical examination, including drug use and the presence of hypertension, then a urine chloride ion concentration can be obtained. Calculation of the serum anion gap may also help to differentiate between primary metabolic alkalosis and metabolic compe Continue reading >>

Acid Base Statuses

Acid Base Statuses

A B Metabolic Acidosis (1) results from cold stress Respiratory Alkalosis (1) results from excessive CO2 blown off Body decr carbonic acid (1) results in slow respirations so that CO2 is retained Acidosis (1) symptoms (a) CNS depression (b) errors in judgment (c) disorientation (d) drowsiness (e) stupor (f) coma Hydrogen Ions excess (1) results in acidosis as pH falls below 7.35 (2) hydrogen ions are forced into the cells causing K+ to move into the cells Diabetic Ketoacidosis metabolic acidosis Metabolic Acidosis dehydration after an extended bout of diarrhea COPD respiratory acidosis Diarrhea (1) respirtory acidosis Anxiety (1)results in respiratory alkalosis (2) associated w/hyperventilation (2) during hyperventilation CO2 is blown off which lowers the amount of acid in the system Severe Asthma Respiratory Alkalosis Acute Renal Failure (1) metabolic acidosis (2) hypermagnesemia (3) hyperkalemia (4) hypocalcemia Diarrhea (1) metabolic acidosis (2) leads to meta acid because there is an over-elimination of bicarbonate Alkalosis (1) signs (a) tingling fingers, toes & face (b) estreme nervousness (c) twitching of muscles (d) tetany Severe Asthma respiratory acidosis Vomiting (1) metabolic alkalosis (2) leads to metabolic alkalosis as hydrochloric acid is lost from the stomach Aspirin metabolic acidosis Overdose of Morphine respiratory acisosis Vigorous Diuresis metabolic alkalosis End Stage Muscular Distrophy respiratory acidosis Severe Hypokalemia metabolic alkalosis Renal Failure (1) results in metabolic acisosis as fluid build up turns acidic Shock (1) metabolic acidosis (2) meta acid because acid is added to the system (3) anaerobic metabolic pathways result in lactate and hydrogen irons (forming lactic acid) Hyperventilation (1) respiratory alkalosis (2) leads to re Continue reading >>

Acid Base Disorders

Acid Base Disorders

Arterial blood gas analysis is used to determine the adequacy of oxygenation and ventilation, assess respiratory function and determine the acid–base balance. These data provide information regarding potential primary and compensatory processes that affect the body’s acid–base buffering system. Interpret the ABGs in a stepwise manner: Determine the adequacy of oxygenation (PaO2) Normal range: 80–100 mmHg (10.6–13.3 kPa) Determine pH status Normal pH range: 7.35–7.45 (H+ 35–45 nmol/L) pH <7.35: Acidosis is an abnormal process that increases the serum hydrogen ion concentration, lowers the pH and results in acidaemia. pH >7.45: Alkalosis is an abnormal process that decreases the hydrogen ion concentration and results in alkalaemia. Determine the respiratory component (PaCO2) Primary respiratory acidosis (hypoventilation) if pH <7.35 and HCO3– normal. Normal range: PaCO2 35–45 mmHg (4.7–6.0 kPa) PaCO2 >45 mmHg (> 6.0 kPa): Respiratory compensation for metabolic alkalosis if pH >7.45 and HCO3– (increased). PaCO2 <35 mmHg (4.7 kPa): Primary respiratory alkalosis (hyperventilation) if pH >7.45 and HCO3– normal. Respiratory compensation for metabolic acidosis if pH <7.35 and HCO3– (decreased). Determine the metabolic component (HCO3–) Normal HCO3– range 22–26 mmol/L HCO3 <22 mmol/L: Primary metabolic acidosis if pH <7.35. Renal compensation for respiratory alkalosis if pH >7.45. HCO3 >26 mmol/L: Primary metabolic alkalosis if pH >7.45. Renal compensation for respiratory acidosis if pH <7.35. Additional definitions Osmolar Gap Use: Screening test for detecting abnormal low MW solutes (e.g. ethanol, methanol & ethylene glycol [Reference]) An elevated osmolar gap (>10) provides indirect evidence for the presence of an abnormal solute which is prese Continue reading >>

Metabolic Alkalosis And Metabolic Acidosis Nclex Quiz | Acid-base Imbalances Quiz

Metabolic Alkalosis And Metabolic Acidosis Nclex Quiz | Acid-base Imbalances Quiz

This NCLEX quiz will test your ability to differentiate between metabolic acidosis vs metabolic alkalosis. You will be required to know the causes, signs and symptoms, and how to interpret blood gas values in this quiz. As a nursing student, it is crucial you know the basics about acid-base imbalances. Below are common test questions you may encounter on your nursing lecture exam or NCLEX licensing exam. Also, don’t forget to take our free Arterial Blood Gas (ABGs) Quiz. After you are done taking the quiz and click submit, the page will refresh and you will need to scroll down to see what you got right and wrong. In addition, below this quiz is a layout of the quiz with an answer key (if you wanted to print off the quiz..just copy and paste it). Don’t forget to share this quiz with your friends! Please do not re-post on other websites, however. Metabolic Acidosis and Metabolic Alkalosis Quiz NCLEX Diabetic ketoacidosis, aspirin toxicity, and renal failure are examples of the causes of ___________________. A. High anion gap metabolic acidosis B. Normal anion gap metabolic acidosis C. Low anion gap metabolic acidosis D. Normal anion gap respiratory acidosis A patient has the following arterial blood gases: PaCO2 33, HCO3 15, pH 7.23. Which of the following conditions are presenting? A. Metabolic alkalosis partially compensated B. Metabolic acidosis partially compensated C. Respiratory alkalosis not compensated D. Metabolic acidosis fully compensated A patient is in high anion gap metabolic acidosis due to diabetic ketoacidosis. Which of the following signs and symptoms would you expect to see in this patient? A. Kussmaul’s respirations B. Glucose 110 C. Hypoventilation D. Neuro-excitability A patient reports taking Diamox and has been reporting confusion, fatigue, a Continue reading >>

Metabolic Acidosis And Alkalosis -

Metabolic Acidosis And Alkalosis -

1. ‫الرحيم‬ ‫الرحمن‬ ‫هللا‬ ‫بسم‬ Ahmad A. Al-Qudah Supervision : Dr. Saleem Bani Hani Metabolic Acidosis & Alkalosis 2. Metabolic Acidosis & Alkalosis • Terms And Definitions • Acid – Base Balance ( Regulation ) • Acid – Base Disorders ( Acidosis & Alkalosis ) • Metabolic Acidosis • Metabolic Alkalosis • Measurements • References 3. Terms And Definitions • Acid : substance that can yield Hydrogen ion Strong Acid pH < 3.0 • Base : substance that can yield Hydroxyl ion Strong Base pH > 9.0 • pH : terms that we use to describe the level of Acidity and Basicity of Aq. Solution . 4. Acid – Base Balance • Maintenance of Hydrogen ion concentration in the ECF ( Extracellular Fluid ) within the Normal Range . - Normal Range : 36 – 44 nmol/L - pH : 7.35 – 7.45 ( Slightly Alkaline ) ACID BASE 5. Acid – Base Balance ( Regulation ) How the Body maintain the Hydrogen ion concentration • Lung • Buffer System ( Carbonic Acid , Bicarbonate ) - Henderson Equation 6. Acid – Base Balance ( Regulation ) How the Body maintain the Hydrogen ion concentration • Kidney - Regulate by excreting Acid (Hydrogen ion) and reclaiming Bicarbonate . - Reclaiming Bicarbonate from glomerular filtrate . - Hydrogen ion combined with ammonia and excreting as Ammonium . 7. Acid – Base Disorders ( Acidosis & Alkalosis ) • Acidosis : Increase in Acids [ Hydrogen ion ] --> Decrease in pH • Alkalosis : Decrease in Acids [ Hydrogen ion ] -- > Increase in pH ACID BASE BASEACID 8. Metabolic Acidosis • is a metabolic condition that occurs when the body produces too much acid or when the kidneys are not removing enough acid from the body . Because of the decrease in Bicarbonate level . Shift to Right Bicarbonate Hydrogen ion 9. Metabo Continue reading >>

Effects Of Metabolic Alkalosis, Metabolic Acidosis And Uraemia On Whole-body Intracellular Ph In Man.

Effects Of Metabolic Alkalosis, Metabolic Acidosis And Uraemia On Whole-body Intracellular Ph In Man.

Abstract 1. Whole-body intracellular pH (pHi) was measured by the 14C-labelled DMO method in twenty-four control subjects, eighteen normal subjects with induced acute metabolic alkalosis, ten normal subjects with induced acute metabolic acidosis, twelve normal subjects with chronic acidosis and in fifteen patients with chronic renal insufficiency and acidosis. 2. The change in pHi per unit change in extracellular pH is significantly larger in acute metabolic alkalosis than in acute metabolic acidosis. In chronic metabolic acidosis, pHi decreased in proportion to the total amount of ammonium chloride administered; pHi was normal in patients with uraemic acidosis. 3. These observations confirm the role that tissue buffers play in the protection of the cellular environment in some forms of acidosis. When the acid load overwhelms tissue buffer capacity, pHi becomes a function of extracellular pH. 4. Cells seem more protected from acute acidosis than from acute alkalosis. Continue reading >>

Metabolic Acidosis

Metabolic Acidosis

Metabolic acidosis is primary reduction in bicarbonate (HCO3−), typically with compensatory reduction in carbon dioxide partial pressure (Pco2); pH may be markedly low or slightly subnormal. Metabolic acidoses are categorized as high or normal anion gap based on the presence or absence of unmeasured anions in serum. Causes include accumulation of ketones and lactic acid, renal failure, and drug or toxin ingestion (high anion gap) and GI or renal HCO3− loss (normal anion gap). Symptoms and signs in severe cases include nausea and vomiting, lethargy, and hyperpnea. Diagnosis is clinical and with ABG and serum electrolyte measurement. The cause is treated; IV sodium bicarbonate may be indicated when pH is very low. Acidemia (arterial pH < 7.35) results when acid load overwhelms respiratory compensation. Causes are classified by their effect on the anion gap (see The Anion Gap and see Table: Causes of Metabolic Acidosis). High anion gap acidosis Ketoacidosis is a common complication of type 1 diabetes mellitus (see diabetic ketoacidosis), but it also occurs with chronic alcoholism (see alcoholic ketoacidosis), undernutrition, and, to a lesser degree, fasting. In these conditions, the body converts from glucose to free fatty acid (FFA) metabolism; FFAs are converted by the liver into ketoacids, acetoacetic acid, and beta-hydroxybutyrate (all unmeasured anions). Ketoacidosis is also a rare manifestation of congenital isovaleric and methylmalonic acidemia. Lactic acidosis is the most common cause of metabolic acidosis in hospitalized patients. Lactate accumulation results from a combination of excess formation and decreased utilization of lactate. Excess lactate production occurs during states of anaerobic metabolism. The most serious form occurs during the various types o Continue reading >>

Renal Regulation Of Metabolic Acidosis And Alkalosis

Renal Regulation Of Metabolic Acidosis And Alkalosis

1. 06/21/14 1 Normal Acid-Base Balance • Normal pH 7.35-7.45 • Narrow normal range • Compatible with life 6.8 - 8.0 ___/______/___/______/___ 6.8 7.35 7.45 8.0 Acid Alkaline 2. 06/21/14 2 PH Scale 3. 06/21/14 3 Acid & Base • Acid: • An acid is "when hydrogen ions accumulate in a solution" • It becomes more acidic • [H+] increases = more acidity • CO2 is an example of an acid. Base: A base is chemical that will remove hydrogen ions from the solution Bicarbonate is an example of a base. 4. 06/21/14 4 Acid and Base Containing Food: • To maintain health, the diet should consist of 60% alkaline forming foods and 40% acid forming foods. To restore health, the diet should consist of 80% alkaline forming foods and 20% acid forming foods. • Generally, alkaline forming foods include: most fruits, green vegetables, peas, beans, lentils, spices, herbs,seasonings,seeds and nuts. • Generally, acid forming foods include: meat, fish, poultry, eggs, grains, and legumes. 5. 06/21/14 5 Citric Acid And Lactic Acid Although both citric acid and lactic acid are acids BUT Citric acid leads to Alkalosis while Lactic acid to Acidosis due to metabolism 6. 06/21/14 6 Acidoses & Alkalosis • An abnormality in one or more of the pH control mechanisms can cause one of two major disturbances in Acid-BaseAcid-Base balance – AcidosisAcidosis – AlkalosisAlkalosis 7. 06/21/14 7 Acidosis • Acidosis is excessive blood acidity caused by an overabundance of acid in the blood or a loss of bicarbonate from the blood (metabolic acidosis), or by a buildup of carbon dioxide in the blood that results from poor lung function or slow breathing (respiratory acidosis). • Blood acidity increases when people ingest substances that contain or produce acid or when the lungs do not expel enou Continue reading >>

Laboratory Investigation Effects Of Metabolic Acidosis And Alkalosis On Sodium And Calcium Transport In The Dog Kidney

Laboratory Investigation Effects Of Metabolic Acidosis And Alkalosis On Sodium And Calcium Transport In The Dog Kidney

Effects of metabolic acidosis and alkalosis on sodium and calcium transport in the dog kidney. Clearance and micropuncture studies have been performed in dogs to examine the effects of acute and chronic metabolic acidosis and acute alkalosis on tubular sodium and calcium transport. Acute metabolic acidosis, induced by the infusion of hydrochloric acid, decreased proximal fluid reabsorption and increased the fractional delivery of sodium and calcium to the distal tubule, but not to the final urine. In comparison with normal dogs, dogs with chronic metabolic acidosis (induced by feeding ammonium chloride) showed an increase in proximal fluid reabsorption and a dissociation of calcium from sodium reabsorption more distally, leading to an increased delivery of calcium relative to sodium at the distal tubule and in the final urine. The infusion of sodium bicarbonate to correct chronic metabolic acidosis, both in intact and thyroparathyroidectomized (TPTX) dogs, reduced proximal fluid reabsorption and caused a selective enhancement of calcium reabsorption relative to sodium in the more distal nephron, resulting in a reversal of the dissociation observed in acidosis, both at the distal tubule and in the final urine. By contrast, infusion of sodium chloride in parathyroid-intact acidotic dogs did not reduce proximal fluid reabsorption or enhance tubular calcium reabsorption. In nonacidotic dogs, both intact and TPTX, infusion of sodium bicarbonate to induce acute alkalosis resulted in selective enhancement of calcium over sodium reabsorption in the distal nephron segments. These data demonstrate the presence of a component of tubular calcium reabsorption situated beyond the proximal tubule, which is inhibited by chronic (but not acute) metabolic acidosis and enhanced by metabol Continue reading >>

Acid-base Imbalances: Metabolic Acidosis And Alkalosis

Acid-base Imbalances: Metabolic Acidosis And Alkalosis

Acid-Base Imbalances: Metabolic Acidosis and Alkalosis; Respiratory Acidosis and Alkalosis The hydrogen ion concentration ([H+]) of the body, described as the pH or negative log of the [H+], is maintained in a narrow range to promote health and homeostasis. The body has many regulatory mechanisms that counteract even a slight deviation from normal pH. An acid-base imbalance can alter many physiological processes and lead to serious problems or, if left untreated, to coma and death. A pH below 7.35 is considered acidosis and above 7.45 is alkalosis. Alterations in hydrogen ion concentration can be metabolic or respiratory in origin or they may have a mixed origin. Metabolic acidosis, a pH below 7.35, results from any nonpulmonary condition that leads to an excess of acids over bases. Renal patients with chronic acidemia may show signs of skeletal problems as calcium and phosphate are released from bone to help with the buffering of acids. Children with chronic acidosis may show signs of impaired growth. Metabolic alkalosis, a pH above 7.45, results from any nonpulmonary condition that leads to an excess of bases over acids. Metabolic alkalosis results from one of two mechanisms: an excess of bases or a loss of acids. Patients with a history of congestive heart failure and hypertension who are on sodium-restricted diets and diuretics are at greatest risk for metabolic alkalosis. Metabolic alkalosis can also be caused by prolonged vomiting, hyperaldosteronism, and diuretic therapy. Respiratory acidosis is a pH imbalance that results from alveolar hypoventilation and an accumulation of carbon dioxide. It can be classified as either acute or chronic. Acute respiratory acidosis is associated with a sudden failure in ventilation. Chronic respiratory acidosis is seen in patient Continue reading >>

More in ketosis