diabetestalk.net

Lactic Acidosis Causes

Lactic Acidosis: Background, Etiology, Epidemiology

Lactic Acidosis: Background, Etiology, Epidemiology

Author: Kyle J Gunnerson, MD; Chief Editor: Michael R Pinsky, MD, CM, Dr(HC), FCCP, MCCM more... In basic terms, lactic acid is the normal endpoint of the anaerobic breakdown of glucose in the tissues. The lactate exits the cells and is transported to the liver, where it is oxidized back to pyruvate and ultimately converted to glucose via the Cori cycle. In the setting of decreased tissue oxygenation, lactic acid is produced as the anaerobic cycle is utilized for energy production. With a persistent oxygen debt and overwhelming of the body's buffering abilities (whether from chronic dysfunction or excessive production), lactic acidosis ensues. [ 1 , 2 ] (See Etiology.) Lactic acid exists in 2 optical isomeric forms, L-lactate and D-lactate. L-lactate is the most commonly measured level, as it is the only form produced in human metabolism. Its excess represents increased anaerobic metabolism due to tissue hypoperfusion. (See Workup.) D-lactate is a byproduct of bacterial metabolism and may accumulate in patients with short-gut syndrome or in those with a history of gastric bypass or small-bowel resection. [ 3 ] By the turn of the 20th century, many physicians recognized that patients who are critically ill could exhibit metabolic acidosis unaccompanied by elevation of ketones or other measurable anions. In 1925, Clausen identified the accumulation of lactic acid in blood as a cause of acid-base disorder. Several decades later, Huckabee's seminal work firmly established that lactic acidosis frequently accompanies severe illnesses and that tissue hypoperfusion underlies the pathogenesis. In their classic 1976 monograph, Cohen and Woods classified the causes of lactic acidosis according to the presence or absence of adequate tissue oxygenation. (See Presentationand Differe Continue reading >>

Lactic Acidosis

Lactic Acidosis

Lactic acidosis is a medical condition characterized by the buildup of lactate (especially L-lactate) in the body, which results in an excessively low pH in the bloodstream. It is a form of metabolic acidosis, in which excessive acid accumulates due to a problem with the body's metabolism of lactic acid. Lactic acidosis is typically the result of an underlying acute or chronic medical condition, medication, or poisoning. The symptoms are generally attributable to these underlying causes, but may include nausea, vomiting, rapid deep breathing, and generalised weakness. The diagnosis is made on biochemical analysis of blood (often initially on arterial blood gas samples), and once confirmed, generally prompts an investigation to establish the underlying cause to treat the acidosis. In some situations, hemofiltration (purification of the blood) is temporarily required. In rare chronic forms of lactic acidosis caused by mitochondrial disease, a specific diet or dichloroacetate may be used. The prognosis of lactic acidosis depends largely on the underlying cause; in some situations (such as severe infections), it indicates an increased risk of death. Classification[edit] The Cohen-Woods classification categorizes causes of lactic acidosis as:[1] Type A: Decreased tissue oxygenation (e.g., from decreased blood flow) Type B B1: Underlying diseases (sometimes causing type A) B2: Medication or intoxication B3: Inborn error of metabolism Signs and symptoms[edit] Lactic acidosis is commonly found in people who are unwell, such as those with severe heart and/or lung disease, a severe infection with sepsis, the systemic inflammatory response syndrome due to another cause, severe physical trauma, or severe depletion of body fluids.[2] Symptoms in humans include all those of typical m Continue reading >>

Lactic Acidosis

Lactic Acidosis

A.D.A.M., Inc. is accredited by URAC, also known as the American Accreditation HealthCare Commission (www.urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows rigorous standards of quality and accountability. A.D.A.M. is among the first to achieve this important distinction for online health information and services. Learn more about A.D.A.M.'s editorial policy, editorial process and privacy policy. A.D.A.M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health on the Net Foundation (www.hon.ch). The information provided herein should not be used during any medical emergency or for the diagnosis or treatment of any medical condition. A licensed physician should be consulted for diagnosis and treatment of any and all medical conditions. Call 911 for all medical emergencies. Links to other sites are provided for information only -- they do not constitute endorsements of those other sites. Copyright 1997-2018, A.D.A.M., Inc. Duplication for commercial use must be authorized in writing by ADAM Health Solutions. Continue reading >>

Lactic Acidosis

Lactic Acidosis

Background In basic terms, lactic acid is the normal endpoint of the anaerobic breakdown of glucose in the tissues. The lactate exits the cells and is transported to the liver, where it is oxidized back to pyruvate and ultimately converted to glucose via the Cori cycle. In the setting of decreased tissue oxygenation, lactic acid is produced as the anaerobic cycle is utilized for energy production. With a persistent oxygen debt and overwhelming of the body's buffering abilities (whether from chronic dysfunction or excessive production), lactic acidosis ensues. [1, 2] (See Etiology.) Lactic acid exists in 2 optical isomeric forms, L-lactate and D-lactate. L-lactate is the most commonly measured level, as it is the only form produced in human metabolism. Its excess represents increased anaerobic metabolism due to tissue hypoperfusion. (See Workup.) D-lactate is a byproduct of bacterial metabolism and may accumulate in patients with short-gut syndrome or in those with a history of gastric bypass or small-bowel resection. [3] By the turn of the 20th century, many physicians recognized that patients who are critically ill could exhibit metabolic acidosis unaccompanied by elevation of ketones or other measurable anions. In 1925, Clausen identified the accumulation of lactic acid in blood as a cause of acid-base disorder. Several decades later, Huckabee's seminal work firmly established that lactic acidosis frequently accompanies severe illnesses and that tissue hypoperfusion underlies the pathogenesis. In their classic 1976 monograph, Cohen and Woods classified the causes of lactic acidosis according to the presence or absence of adequate tissue oxygenation. (See Presentation and Differentials.) The causes of lactic acidosis are listed in the chart below. Go to Acute Lactic Ac Continue reading >>

Lactate And Lactic Acidosis

Lactate And Lactic Acidosis

The integrity and function of all cells depend on an adequate supply of oxygen. Severe acute illness is frequently associated with inadequate tissue perfusion and/or reduced amount of oxygen in blood (hypoxemia) leading to tissue hypoxia. If not reversed, tissue hypoxia can rapidly progress to multiorgan failure and death. For this reason a major imperative of critical care is to monitor tissue oxygenation so that timely intervention directed at restoring an adequate supply of oxygen can be implemented. Measurement of blood lactate concentration has traditionally been used to monitor tissue oxygenation, a utility based on the wisdom gleaned over 50 years ago that cells deprived of adequate oxygen produce excessive quantities of lactate. The real-time monitoring of blood lactate concentration necessary in a critical care setting was only made possible by the development of electrode-based lactate biosensors around a decade ago. These biosensors are now incorporated into modern blood gas analyzers and other point-of-care analytical instruments, allowing lactate measurement by non-laboratory staff on a drop (100 L) of blood within a minute or two. Whilst blood lactate concentration is invariably raised in those with significant tissue hypoxia, it can also be raised in a number of conditions not associated with tissue hypoxia. Very often patients with raised blood lactate concentration (hyperlactatemia) also have a reduced blood pH (acidosis). The combination of hyperlactatemia and acidosis is called lactic acidosis. This is the most common cause of metabolic acidosis. The focus of this article is the causes and clinical significance of hyperlactatemia and lactic acidosis. The article begins with a brief overview of normal lactate metabolism. Normal lactate production and Continue reading >>

Glyburide And Metformin (oral Route)

Glyburide And Metformin (oral Route)

Precautions Drug information provided by: Micromedex It is very important that your doctor check your progress at regular visits to make sure this medicine is working properly. Blood tests may be needed to check for unwanted effects. Under certain conditions, too much metformin can cause lactic acidosis. The symptoms of lactic acidosis are severe and quick to appear. They usually occur when other health problems not related to the medicine are present and very severe, such as a heart attack or kidney failure. The symptoms of lactic acidosis include abdominal or stomach discomfort; decreased appetite; diarrhea; fast, shallow breathing; a general feeling of discomfort; muscle pain or cramping; and unusual sleepiness, tiredness, or weakness. If you have any symptoms of lactic acidosis, get emergency medical help right away. It is very important to carefully follow any instructions from your health care team about: Alcohol—Drinking alcohol may cause severe low blood sugar. Discuss this with your health care team. Other medicines—Do not take other medicines unless they have been discussed with your doctor. This especially includes nonprescription medicines such as aspirin, and medicines for appetite control, asthma, colds, cough, hay fever, or sinus problems. Counseling—Other family members need to learn how to prevent side effects or help with side effects if they occur. Also, patients with diabetes may need special counseling about diabetes medicine dosing changes that might occur because of lifestyle changes, such as changes in exercise and diet. Furthermore, counseling on contraception and pregnancy may be needed because of the problems that can occur in patients with diabetes during pregnancy. Travel—Keep your recent prescription and your medical history with yo Continue reading >>

What Is A Lactic Acid Blood Test?

What Is A Lactic Acid Blood Test?

It’s a test that measures the amount of lactic acid (also called “lactate”) in your blood. This acid is made in muscle cells and red blood cells. It forms when your body turns food into energy. Your body relies on this energy when its oxygen levels are low. Oxygen levels might drop during an intense workout or when you have an infection or disease. Once you finish your workout or recover from the illness, your lactic acid level tends to go back to normal. But sometimes, it doesn't. Higher-than-normal lactic acid levels can lead to a condition called lactic acidosis. If it’s severe enough, it can upset your body’s pH balance, which indicates the level of acid in your blood. Lactic acidosis can lead to these symptoms: It’s a simple blood test. Your doctor will draw blood from a vein or artery using a needle. In rare cases, he may take a sample of cerebrospinal fluid from your spinal column during a procedure called a spinal tap. Normally, you don’t have to adjust your routine to prepare for the test. If your lactic acid level is normal, you don’t have lactic acidosis. Your cells are making enough oxygen. It also tells your doctor that something other than lactic acidosis is causing your symptoms. He’ll likely order other tests to find out what it is. If your lactic acid level is high, it could be caused by a number of things. Most often, it’s because you have a condition that makes it hard for you to breathe in enough oxygen. Some of these conditions could include: Severe lung disease or respiratory failure Fluid build-up in your lungs Very low red blood cell count (severe anemia) A higher-than-normal lactic acid level in your blood can also be a sign of problems with your metabolism. And, your body might need more oxygen than normal because you have o Continue reading >>

Congenital Lactic Acidosis

Congenital Lactic Acidosis

Causes Most cases of congenital lactic acidosis are caused by one or more inherited mutations of genes within the DNA located within the nucleus (nDNA) or within the mitochondria (mtDNA) of cells. Genes carry the genetic instructions for cells. A mutation is a change in a gene located in nuclear or mitochondrial DNA that may cause disease. Mutations of nDNA, which occur in cellular chromosomes, can be inherited through different forms of transmission of the mutation, including autosomal recessive, autosomal dominant or X-linked recessive inheritance. Mutations affecting the genes for mitochondria (mtDNA) are inherited from the mother. MtDNA that is found in sperm cells is typically lost during fertilization. As a result, all human mtDNA comes from the mother. An affected mother will pass on the mutation to all her children, but only her daughters will pass on the mutation to their children. Mitochondria, which are found by the hundreds or thousands in the cells of the body, particularly in muscle and nerve tissue, carry the blueprints for regulating energy production. As cells divide, the number of normal mtDNA and mutated mtDNA are distributed in an unpredictable fashion among different tissues. Consequently, mutated mtDNA accumulates at different rates among different tissues in the same individual. Thus, family members who have the identical mutation in mtDNA may exhibit a variety of different symptoms and signs at different times and to varying degrees of severity. Pyruvate dehydrogenase complex (PDC) deficiency is a genetic mitochondrial disease of carbohydrate metabolism that is due to a mutation in nDNA. It is generally considered to be the most common cause of biochemically proven cases of congenital lactic acidosis. PDC deficiency can be inherited as an autosom Continue reading >>

Metformin And Fatal Lactic Acidosis

Metformin And Fatal Lactic Acidosis

Publications Published: July 1998 Information on this subject has been updated. Read the most recent information. Dr P Pillans,former Medical Assessor, Centre for Adverse Reactions Monitoring (CARM), Dunedin Metformin is a useful anti-hyperglycaemic agent but significant mortality is associated with drug-induced lactic acidosis. Significant renal and hepatic disease, alcoholism and conditions associated with hypoxia (eg. cardiac and pulmonary disease, surgery) are contraindications to the use of metformin. Other risk factors for metformin-induced lactic acidosis are sepsis, dehydration, high dosages and increasing age. Metformin remains a major reported cause of drug-associated mortality in New Zealand. Of the 12 cases of lactic acidosis associated with metformin reported to CARM since 1977, 2 occurred in the last year and 8 cases had a fatal outcome. Metformin useful but small risk of potentially fatal lactic acidosis Metformin is a useful therapeutic agent for obese non-insulin dependent diabetics and those whose glycaemia cannot be controlled by sulphonylurea monotherapy. Lactic acidosis is an uncommon but potentially fatal adverse effect. The reported frequency of lactic acidosis is 0.06 per 1000 patient-years, mostly in patients with predisposing factors.1 Examples of metformin-induced lactic acidosis cases reported to CARM include: A 69-year-old man, with renal and cardiac disease, was prescribed metformin due to failing glycaemic control on glibenclamide monotherapy. He was well for six weeks, then developed lactic acidosis and died within 3 days. Post-surgical lactic acidosis caused the death of a 70-year-old man whose metformin was not withdrawn at the time of surgery. A 56-year-old woman, with no predisposing disease, died from lactic acidosis following major Continue reading >>

Lactic Acidosis: Symptoms, Causes, And Treatment

Lactic Acidosis: Symptoms, Causes, And Treatment

Lactic acidosis occurs when the body produces too much lactic acid and cannot metabolize it quickly enough. The condition can be a medical emergency. The onset of lactic acidosis might be rapid and occur within minutes or hours, or gradual, happening over a period of days. The best way to treat lactic acidosis is to find out what has caused it. Untreated lactic acidosis can result in severe and life-threatening complications. In some instances, these can escalate rapidly. It is not necessarily a medical emergency when caused by over-exercising. The prognosis for lactic acidosis will depend on its underlying cause. A blood test is used to diagnose the condition. Lactic acidosis symptoms that may indicate a medical emergency include a rapid heart rate and disorientaiton. Typically, symptoms of lactic acidosis do not stand out as distinct on their own but can be indicative of a variety of health issues. However, some symptoms known to occur in lactic acidosis indicate a medical emergency. Lactic acidosis can occur in people whose kidneys are unable to get rid of excess acid. Even when not related to just a kidney condition, some people's bodies make too much lactic acid and are unable to balance it out. Diabetes increases the risk of developing lactic acidosis. Lactic acidosis may develop in people with type 1 and 2 diabetes mellitus , especially if their diabetes is not well controlled. There have been reports of lactic acidosis in people who take metformin, which is a standard non-insulin medication for treating type 2 diabetes mellitus. However, the incidence is low, with equal to or less than 10 cases per 100,000 patient-years of using the drug, according to a 2014 report in the journal Metabolism. The incidence of lactic acidosis is higher in people with diabetes who Continue reading >>

Chronic Lactic Acidosis In An Adult: A New Syndrome Associated With An Altered Redox State Of Certain Nad/nadh Coupled Reactions - Sciencedirect

Chronic Lactic Acidosis In An Adult: A New Syndrome Associated With An Altered Redox State Of Certain Nad/nadh Coupled Reactions - Sciencedirect

Volume 48, Issue 1 , January 1970, Pages 104-112 Chronic lactic acidosis in an adult: A new syndrome associated with an altered redox state of certain NAD/NADH coupled reactions Author links open overlay panel Karl E.SussmanM.D. Get rights and content Chronically elevated blood lactic acid, pyruvic acid and increased L:P ratios have been found in a twenty-eight year old woman with episodic acidosis. The patient has no other associated disease. Alcohol ingestion increases the hyperlacticacidemia and exacerbates the patient's symptoms of weakness and easy fatiguability. Moderate exercise increases blood lactic acid levels from 3,1 to 10.2 M per ml and lowers arterial blood pH from 7.4 to 7.26. Hyperuricemia is present due to depressed uric acid clearance. Certain NAD/NADH coupled metabolic reactions are clearly shifted towards the reduced state (lactate/pyruvate, -glycerophosphate dihydroxyacetone phosphate and galactose-glucose interconversion). Skeletal muscle and liver demonstrate normal total NAD/NADH content and partition of these pyridine nucleotides. Four members of the patient's maternal family have an abnormal lactate response to the combination of alcohol ingestion and exercise, suggesting that this defect may be an inherited disorder. Continue reading >>

Etiology And Therapeutic Approach To Elevated Lactate

Etiology And Therapeutic Approach To Elevated Lactate

Etiology and therapeutic approach to elevated lactate aResearch Center for Emergency Medicine, Aarhus University Hospital, Denmark bDepartment of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States cDepartment of Medicine, Division of Pulmonary Critical Care Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States bDepartment of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States dDepartment of Anesthesia Critical Care, Beth Israel Deaconess Medical Center, Boston, MA, United States bDepartment of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States cDepartment of Medicine, Division of Pulmonary Critical Care Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States aResearch Center for Emergency Medicine, Aarhus University Hospital, Denmark bDepartment of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States cDepartment of Medicine, Division of Pulmonary Critical Care Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States dDepartment of Anesthesia Critical Care, Beth Israel Deaconess Medical Center, Boston, MA, United States Corresponding author: Michael W. Donnino Beth Israel Deaconess Medical Center One Deaconess Road, W/CC 2 Boston, Boston, MA 02215 Phone: 617-754-2450 Fax: 617-754-2350 [email protected] The publisher's final edited version of this article is available at Mayo Clin Proc See other articles in PMC that cite the published article. Lactate levels are commonly evaluated in acutely ill patients. Although most commonly used in the context of evaluating shock, lactate can be elevated for many reasons. While tissue hypoperfusion is probably the most common cause of elevation Continue reading >>

Lactic Acidosis

Lactic Acidosis

Patient professional reference Professional Reference articles are written by UK doctors and are based on research evidence, UK and European Guidelines. They are designed for health professionals to use. You may find one of our health articles more useful. Description Lactic acidosis is a form of metabolic acidosis due to the inadequate clearance of lactic acid from the blood. Lactate is a byproduct of anaerobic respiration and is normally cleared from the blood by the liver, kidney and skeletal muscle. Lactic acidosis occurs when the body's buffering systems are overloaded and tends to cause a pH of ≤7.25 with plasma lactate ≥5 mmol/L. It is usually caused by a state of tissue hypoperfusion and/or hypoxia. This causes pyruvic acid to be preferentially converted to lactate during anaerobic respiration. Hyperlactataemia is defined as plasma lactate >2 mmol/L. Classification Cohen and Woods devised the following system in 1976 and it is still widely used:[1] Type A: lactic acidosis occurs with clinical evidence of tissue hypoperfusion or hypoxia. Type B: lactic acidosis occurs without clinical evidence of tissue hypoperfusion or hypoxia. It is further subdivided into: Type B1: due to underlying disease. Type B2: due to effects of drugs or toxins. Type B3: due to inborn or acquired errors of metabolism. Epidemiology The prevalence is very difficult to estimate, as it occurs in critically ill patients, who are not often suitable subjects for research. It is certainly a common occurrence in patients in high-dependency areas of hospitals.[2] The incidence of symptomatic hyperlactataemia appears to be rising as a consequence of the use of antiretroviral therapy to treat HIV infection. It appears to increase in those taking stavudine (d4T) regimens.[3] Causes of lactic acid Continue reading >>

Lactic Acidosis: What You Need To Know

Lactic Acidosis: What You Need To Know

Lactic acidosis is a form of metabolic acidosis that begins in the kidneys. People with lactic acidosis have kidneys that are unable to remove excess acid from their body. If lactic acid builds up in the body more quickly than it can be removed, acidity levels in bodily fluids — such as blood — spike. This buildup of acid causes an imbalance in the body’s pH level, which should always be slightly alkaline instead of acidic. There are a few different types of acidosis. Lactic acid buildup occurs when there’s not enough oxygen in the muscles to break down glucose and glycogen. This is called anaerobic metabolism. There are two types of lactic acid: L-lactate and D-lactate. Most forms of lactic acidosis are caused by too much L-lactate. Lactic acidosis has many causes and can often be treated. But if left untreated, it may be life-threatening. The symptoms of lactic acidosis are typical of many health issues. If you experience any of these symptoms, you should contact your doctor immediately. Your doctor can help determine the root cause. Several symptoms of lactic acidosis represent a medical emergency: fruity-smelling breath (a possible indication of a serious complication of diabetes, called ketoacidosis) confusion jaundice (yellowing of the skin or the whites of the eyes) trouble breathing or shallow, rapid breathing If you know or suspect that you have lactic acidosis and have any of these symptoms, call 911 or go to an emergency room right away. Other lactic acidosis symptoms include: exhaustion or extreme fatigue muscle cramps or pain body weakness overall feelings of physical discomfort abdominal pain or discomfort diarrhea decrease in appetite headache rapid heart rate Lactic acidosis has a wide range of underlying causes, including carbon monoxide poisoni Continue reading >>

A Rare Cause Of Metabolic (lactic) Acidosis Highlighted

A Rare Cause Of Metabolic (lactic) Acidosis Highlighted

A rare cause of metabolic (lactic) acidosis highlighted Summarized from Giacalone M, Martinelli R, Abramo A et al. Rapid reversal of severe lactic acidosis after thiamine administration in critically ill adults: a report of three cases. Nutrition in Clinical Practice 2015; 30: 104-10Salvatori G, Mondi V, Piersigelli F et al. Thiamine deficiency in a developed country: acute lactic acidosis in two neonates due to unsupplemented parenteral nutrition. J Parenter Enteral Nutr 2015. Published online Jan 2015 ahead of print publication. Available at: Lactic acidosis, the most common kind of metabolic acidosis, is characterized by reduced blood pH (usually <7.25) in association with marked increase in blood lactate (usually >5.0 mmol/L). Lactic acidosis has many possible causes but two broad etiological classes have been defined: type A (hypoxic) lactic acidosis and type B (non-hypoxic) lactic acidosis. Of the two, type A lactic acidosis, i.e. lactic acidosis arising from reduced tissue perfusion and/or severe hypoxemia, is the more common. In the absence of an adequate oxygen supply, tissue cells must depend on less efficient anaerobic metabolism of glucose for its energy production, and this alternative metabolic pathway results in accumulation of lactic acid. Type B lactic acidosis (i.e. lactic acidosis in the presence of adequate tissue perfusion and normal blood oxygenation) has many possible causes, including a range of medicinal drugs, liver failure, renal disease, diabetic ketoacidosis, hematological malignancy, and some inherited defects of metabolism. Deficiency of vitamin B1 (thiamine) is a very rare cause of type B lactic acidosis that is highlighted in two recently published papers. The mechanism of lactic acidosis in vitamin B1 deficiency is explained by the fac Continue reading >>

More in ketosis