diabetestalk.net

Ketosis In Animals

Ketosis - An Overview | Sciencedirect Topics

Ketosis - An Overview | Sciencedirect Topics

Ketosis is defined as a condition with an elevation of ketone bodies in the body fluids and is a characteristic of bovine ketosis and pregnancy toxemia of sheep. Danielle L. Brown, ... John M. Cullen, in Pathologic Basis of Veterinary Disease (Sixth Edition) , 2017 Ketosis is a metabolic disease that results from impaired metabolism of carbohydrates and volatile fatty acids. In times of energy demand, free fatty acids are released from body fat stores, and the free fatty acids are esterified into fatty acyl CoA in the liver. Ketone bodies (acetoacetic acid and -hydroxybutyric acid) are derived from fatty acyl CoA by oxidation in the mitochondria. In pregnant and lactating animals, there is a continuous demand for glucose and amino acids, and ketosis results when fat metabolism, which occurs in response to the increased energy demands, becomes excessive. Ketosis is characterized by increased concentrations of ketone bodies in blood (hyperketonemia), hypoglycemia, and low concentrations of hepatic glycogen. Ketosis is common in ruminants and usually occurs during peak lactation, whereas ketosis of sheep usually occurs in late gestation, particularly in ewes carrying twins; this latter disease is known as pregnancy toxemia. Wendy J. Underwood DVM, MS, DACVIM, ... Adam Schoell DVM, DACLAM, in Laboratory Animal Medicine (Third Edition) , 2015 Ketosis is diagnosed by clinical signs; sodium nitroprusside tablets or ketosis dipsticks may be used to identify ketones in the urine or plasma. In dairy cattle, blood glucose is typically less than 40mg/dl, total blood ketones >30mg/dl, and milk ketones >10mg/dl. In small ruminants, blood glucose levels found to be below 25mg/dl and ketonuria are good diagnostic indicators. Often ketones can be smelled in the cows breath and milk. In Continue reading >>

Ketotic Cows: Treatment And Prognosis (proceedings)

Ketotic Cows: Treatment And Prognosis (proceedings)

12Next An absolute requirement for treating ketosis in cattle is to identify and treat the primary cause for the negative energy balance. Symptomatic treatment for ketosis without attacking the primary cause is doomed to failure. Propylene glycol is a routine treatment for ketosis. Only 2 oral formulations are approved for use in cattle as a treatment and the dose rate is 8 oz, q 12 h, for up to 10 days (2 other formulations labeled for use as preventive treatment). Research suggests that 296 ml once/day as on oral drench is just as effective as 887 ml once/day. Propylene glycol is absorbed from the rumen as propylene glycol, some propylene glycol is metabolized to propionate in the rumen, but most is absorbed intact and metabolized to glucose in liver. Propylene glycol increases serum [glucose], decreases serum β-OH butyrate & NEFA concentrations but only if a functional liver as propylene glycol must be metabolized. Propylene glycol is only beneficial if rumen motility to aid mixing and absorption. Glycerol (same dose rate as propylene glycol) and sodium propionate (uncertain dose rate) also reported to be of use but are both considered inferior to propylene glycol. Sodium propionate may have palatability problems. Calcium propionate has been examined, but the evidence is not convincing that it is superior to propylene glycol, even though it also has calcium. Not very soluble, and large volumes need to be administered. 500 ml of 50% Dextrose IV is also a routine treatment (one time administration of 250 g). Numerous approved products for treating ketosis in cattle. A cow uses 50-70 g glucose/hour for maintenance and 200 g glucose/hour high production, from a total blood glucose pool <40 g. Milk is 4.5% lactose, 50 kg of milk contains 2.25 kg lactose (glucose and gala Continue reading >>

Spring Herd Welfare: Ketosis In Cattle

Spring Herd Welfare: Ketosis In Cattle

Ketotic cows have chronically low blood sugar. Ketotic cows have chronically low blood sugar. Ketosis is a metabolic disorder in cattle whose energy demands (e.g. in high milk production) exceed their intake, resulting in a negative energy balance or energy gap. Ketotic cows have chronically low blood sugar. Ketosis often occurs when there is a change in diet or availability of feed, for example when well-conditioned cows accustomed to eating a lot of high energy feed are put on restricted rations. In the absence of available glucose to support production, the cow metabolises her body fat, converting it to ketones as an alternative but inferior energy source. When large amounts of body fat are activated as an emergency energy source, the liver is put under excessive pressure to metabolise the fat. The fat moves faster than the liver can work to use it and is expelled in the form of ketones, chemicals in blood, urine and milk, while the cow remains undernourished, continuing to lose condition. Subclinical or hidden ketosis is a common problem in Irish herds, said to affect around 30% of cows. If there is an acute clinical case on your farm, its worth remembering that other cows may be developing the same problem. You may decide to have your vet test for glycine and ketone levels as the condition is linked to liver damage, mastitis, metritis, cell count and fertility. In beef cows, this is most likely to occur in late pregnancy. The cows appetite has lessened but the growing calf demands a lot of energy. In dairy cows, this imbalance between input and output will usually occur in the initial phase of lactation, when the cow is unable to eat enough to match the energy spent in milk production. Continue reading >>

Ketosis (acetonaemia) In Cattle

Ketosis (acetonaemia) In Cattle

Livestock disease investigation case report Planttoxicity was initially suspected as the cause of cattle deaths on a pastoralproperty north of Alice Springs. Necroscopy on an eight-year old Brahman crosscow revealed the animal was in reasonable body condition and approximately sevenmonths pregnant with a grossly pale and friable liver. Ketosis was confirmedthrough testing of blood samples collected. Ketosis occurs in cattle when theanimal uses more glucose (sugars) than what it is able to acquire fromavailable feed. Excessiveketone bodies in the bloodstream come from the breakdown of fat when the animalis forced to draw on its bodily reserves for energy. Although the metabolism ofbody fat provides energy for cows, the nervous system is dependent on glucose,and the ketones produced as a result of excessive fat metabolism can have toxiceffects.This isexhibited in two main forms; As the name suggests, this form results in animals losing condition. Signsinclude: decline in appetite over two to five day period depraved appetite, eating anything, including dirt and rocks selective eating, may eat hay and grass but will not eat pellets/grain This form of ketosis is associated with neurological signs, such as: When there has beenan absence of significant rainfall, the nutritional value of pasture willdecline considerably. In this case, it is suspected that a number of animalsmay no longer have been able to source sufficient feed from pasture alone, tomaintain the growth of their foetus. This condition may be more common thanmany extensive pastoralists would suspect as loses are often sporadic and notas obvious as plant poisonings or a disease outbreak. The diagnosis of ketosisis an indication of the need to provide supplementation to animals in latepregnancy during periods whe Continue reading >>

Ketosis In Cattle | Biomin.net

Ketosis In Cattle | Biomin.net

Symptoms, main factors and 3 preventive strategies to prevent this transition period metabolic disorder Ketosis in dairy cows relates to the formation of ketone bodies (i.e. acetone, acetoacetate and beta-hydroxybutyrate, BHB) and is a measure of the livers capacity to convert circulating non-esterified fatty acids (NEFA) into glucose via the gluconeogenesis process. Ketosis is a transition period metabolic disorder, with the risk zone lasting from one week before calving and up to 30 days post-calving. Ketosis is marked by elevated levels of ketone bodies measured in blood or milk, indicating that the metabolic processes in the liver are overwhelmed, leading to cell stress and liver damage, thus reducing liver function. Beta-hydroxybutyrate is the predominant ketone body produced by the liver, with most cow-side monitoring techniques focused on this metabolite. Clinical ketosis is defined as having a BHB blood level of 3.0 mmol/l (31.2 mg/d), and generally affects up to 15% of cows, whereas sub-clinical ketosis begins at 1.2 mmol/l (12.4 mg/dl), and shows a prevalence of over 40% of cows in contemporary commercial herds. The level of ketone bodies present in blood or milk are also correlated to increased risk for a number of metabolic disorders, including metritis, mastitis , left-displaced abomasum, all of which contribute to lower milk production and poor reproductive performance. Moreover, clinical ketosis preludes fatty liver syndrome, whereby circulating lipids that are not metabolized are deposited within the liver, resulting in further reduction in metabolic capacity and increasing risk of subsequent metabolic disorders. A number of management and nutrition steps can be taken to reduce the occurrence and impact of sub-clinical and clinical ketosis in cattle. Pr Continue reading >>

Ketosis In Cattle Symptoms And Treatments

Ketosis In Cattle Symptoms And Treatments

Ketosis is a fairly common disease among adult cattle, although usually it occurs in dairy cattle.Ketosis typically occurs the first six weeks of parturition.It occurs in dairy cattle because of their inability to intake enough nutrients to meet their energy needs.This can lead to hypoglycemia which is a pathologic state produced by a lower than normal level of glucose.That in turn leads to the formation of ketone bodies from the body and fat stores. Although they are only broken down for energy to used by the heart and brain in the times of low glucose levels. Ketosis is not an immediate thing like many other illnesses, it gradually occurs. Some typical symptoms you will notice about your cattle if they have ketosis happen to be a decreased appetite,marked weight loss,decreased milk production,acetone odor of breath,nervousness, and hard, mucus covered feces. For confined cattle, usually decreased appetite is the first sign that they might have ketosis.Also if they are fed in components such as part forage, part grain, they will tend to go for the forage more than they will go for the grain.If you fed your cattle in herds, then usually you will see reduced milk production,lethargy and an somewhat “empty” appearing abdomen.When cattle are physically examined with having ketosis they may appear sightly dehydrated. Treatment for ketosis in cattle is more commonly done by IV administration of 500 ml of 50% dextrose solution. This treatment allows rapid recovery but the effects are often producing results beyond itself therefore relapses of ketosis are pretty common.Another treatment that can be used is the administration of glucocorticoids such as dexamethasone or isoflupredone acetate.You typically administer 5-20mg dose intra muscularly. This treatment often has good Continue reading >>

Ketosis

Ketosis

Ketosis is a metabolic disease that occurs when the cow is in severe state of negative energy balance. In this state, the cow mobilises large quantities of body fat but cannot convert this to energy through the usual pathways. Instead, ketone bodies are produced which in small amounts can be used by the cow for energy. However, when ketone production is high, the cow cannot use all the ketone bodies for energy and ketone levels increase in the blood. When this occurs the cow may suffer from ketosis. Types of Ketosis Type 1 ketosis is a result of a sudden drop in energy intake. This can be due to underfeeding or adverse weather events (e.g. snow storms) that prevent the cows from eating sufficient amounts of dry matter. Type 2 ketosis generally occurs post-calving, when the cow is mobilising excess body fat to meet the demands of milk production. Cows that are too fat at calving (BCS > 5) or cows that have been overfed pre-calving are particularly at risk. Silage ketosis is due to cows ingesting poor quality silage. The silage undergoes a secondary fermentation and when ingested will increase the risk of ketosis. Symptoms Ketosis can be displayed in two ways: Wasting form Lethargy (head down, lack of energy) Decreased dry matter intake Decreased milk production Often a sweet smell on the breath (acetone) Nervous form Excitable, uncoordinated and can become aggressive Strange behaviour such as eating soil, licking fence posts and gates, walking in circles, or standing with heads raised up and pushed into a corner etc. If a cow shows signs of ketosis seek advice from your veterinarian Prevention It is important to prevent ketosis from occurring, rather than treating cases as they appear. Prevention depends on adequate feeding and management of body condition score (BCS). E Continue reading >>

Preventive Strategies For Ketosis

Preventive Strategies For Ketosis

Parturition and the onset of lactation challenges calcium and energy homeostasis in dairy cows predisposing them to periparturient disorders that affect health, production and reproductive performance says Carlos Risco, DVM, Dipl. ACT, University of Florida. Dairy cattle experience a negative carbohydrate balance, from -3 weeks and + 3 weeks from calving and are at risk to develop ketosis, Risco explained at the 2010 Western Veterinary Conference. Milk production, in particular, drives the high requirements for glucose because other fuels cannot substitute for lactose in milk. To counteract this, the cow mobilizes body fat and protein stores in the form of non-esterified fatty acids (NEFA) and amino acids. This promotes gluconeogenesis and occurs under the influence of low serum concentrations of insulin. Volatile fatty acids (acetate, propionate, butyrate [BHBA]) produced in the rumen are also presented to the liver as fuels. Acetate and butyrate are ketogenic, and propionate is glycogenic. The key to prevention of ketosis is to maximize dry matter intake before and after calving to prevent excessive NEFA mobilization. Preventing ketosis in the first place is key to avoid some post-partum issues. Risco outlined some preventive strategies: The transition ration. To prevent ketosis the transition ration should maximize DMI, provide adequate energy density, and minimize ketogenic precursors. Silage with a high butyric acid content should not be fed. Introduce ration changes gradually. Manage transition cows to maximize DMI, e.g., provide adequate bunk space. Avoid over-conditioning of cows in late lactation and the early dry period. Niacin (nicotinic acid) fed in transition rations at 6–12 g /d may help reduce blood ketone levels. Propylene glycol may be administered pr Continue reading >>

Overview Of Ketosis In Cattle

Overview Of Ketosis In Cattle

(Acetonemia, Ketonemia) By Thomas H. Herdt, DVM, MS, DACVN, DACVIM, Professor, Department of Large Animal Clinical Sciences and Diagnostic Center for Population and Animal Health, Michigan State University Ketosis is a common disease of adult cattle. It typically occurs in dairy cows in early lactation and is most consistently characterized by partial anorexia and depression. Rarely, it occurs in cattle in late gestation, at which time it resembles pregnancy toxemia of ewes (see Pregnancy Toxemia in Ewes and Does). In addition to inappetence, signs of nervous dysfunction, including pica, abnormal licking, incoordination and abnormal gait, bellowing, and aggression, are occasionally seen. The condition is worldwide in distribution but is most common where dairy cows are bred and managed for high production. Etiology and Pathogenesis: The pathogenesis of bovine ketosis is incompletely understood, but it requires the combination of intense adipose mobilization and a high glucose demand. Both of these conditions are present in early lactation, at which time negative energy balance leads to adipose mobilization, and milk synthesis creates a high glucose demand. Adipose mobilization is accompanied by high blood serum concentrations of nonesterified fatty acids (NEFAs). During periods of intense gluconeogenesis, a large portion of serum NEFAs is directed to ketone body synthesis in the liver. Thus, the clinicopathologic characterization of ketosis includes high serum concentrations of NEFAs and ketone bodies and low concentrations of glucose. In contrast to many other species, cattle with hyperketonemia do not have concurrent acidemia. The serum ketone bodies are acetone, acetoacetate, and β-hydroxybutyrate (BHB). There is speculation that the pathogenesis of ketosis cases oc Continue reading >>

Ketosis

Ketosis

Not to be confused with Ketoacidosis. Ketosis is a metabolic state in which some of the body's energy supply comes from ketone bodies in the blood, in contrast to a state of glycolysis in which blood glucose provides energy. Ketosis is a result of metabolizing fat to provide energy. Ketosis is a nutritional process characterised by serum concentrations of ketone bodies over 0.5 mM, with low and stable levels of insulin and blood glucose.[1][2] It is almost always generalized with hyperketonemia, that is, an elevated level of ketone bodies in the blood throughout the body. Ketone bodies are formed by ketogenesis when liver glycogen stores are depleted (or from metabolising medium-chain triglycerides[3]). The main ketone bodies used for energy are acetoacetate and β-hydroxybutyrate,[4] and the levels of ketone bodies are regulated mainly by insulin and glucagon.[5] Most cells in the body can use both glucose and ketone bodies for fuel, and during ketosis, free fatty acids and glucose synthesis (gluconeogenesis) fuel the remainder. Longer-term ketosis may result from fasting or staying on a low-carbohydrate diet (ketogenic diet), and deliberately induced ketosis serves as a medical intervention for various conditions, such as intractable epilepsy, and the various types of diabetes.[6] In glycolysis, higher levels of insulin promote storage of body fat and block release of fat from adipose tissues, while in ketosis, fat reserves are readily released and consumed.[5][7] For this reason, ketosis is sometimes referred to as the body's "fat burning" mode.[8] Ketosis and ketoacidosis are similar, but ketoacidosis is an acute life-threatening state requiring prompt medical intervention while ketosis can be physiological. However, there are situations (such as treatment-resistant Continue reading >>

Overview Of Ketosis In Cattle

Overview Of Ketosis In Cattle

(Acetonemia, Ketonemia) By Thomas H. Herdt, DVM, MS, DACVN, DACVIM, Professor, Department of Large Animal Clinical Sciences and Diagnostic Center for Population and Animal Health, Michigan State University Ketosis is a common disease of adult cattle. It typically occurs in dairy cows in early lactation and is most consistently characterized by partial anorexia and depression. Rarely, it occurs in cattle in late gestation, at which time it resembles pregnancy toxemia of ewes (see Pregnancy Toxemia in Ewes and Does). In addition to inappetence, signs of nervous dysfunction, including pica, abnormal licking, incoordination and abnormal gait, bellowing, and aggression, are occasionally seen. The condition is worldwide in distribution but is most common where dairy cows are bred and managed for high production. Etiology and Pathogenesis: The pathogenesis of bovine ketosis is incompletely understood, but it requires the combination of intense adipose mobilization and a high glucose demand. Both of these conditions are present in early lactation, at which time negative energy balance leads to adipose mobilization, and milk synthesis creates a high glucose demand. Adipose mobilization is accompanied by high blood serum concentrations of nonesterified fatty acids (NEFAs). During periods of intense gluconeogenesis, a large portion of serum NEFAs is directed to ketone body synthesis in the liver. Thus, the clinicopathologic characterization of ketosis includes high serum concentrations of NEFAs and ketone bodies and low concentrations of glucose. In contrast to many other species, cattle with hyperketonemia do not have concurrent acidemia. The serum ketone bodies are acetone, acetoacetate, and β-hydroxybutyrate (BHB). There is speculation that the pathogenesis of ketosis cases oc Continue reading >>

Acetonaemia (ketosis)

Acetonaemia (ketosis)

Managing disease can be a frustrating proposition. This Guide can help you identify which disease is damaging your cattle. Ketosis is a metabolic disorder that occurs in cattle when energy demands (e.g. high milk production) exceed energyintake and result in a negative energy balance. Ketotic cows often have low blood glucose (blood sugar) concentrations. When large amounts of body fat are utilised as an energy source to support production, fat is sometimes mobilisedfaster than the liver can properly metabolise it. If this situation occurs, ketone production exceeds ketone utilisation by thecow, and ketosis results. In the beef cow, this is most likely to occur in late pregnancy when the cow's appetite is at its lowest and the energy requirement of the growing calf near its peak. In the dairy cow, the mismatch between input and output usually occurs in the first few weeks of lactation, because the cow is not able to eat enough to match the energy lost in the milk. Acetone (pear drop) smell of breath/ or milk Some develop nervous signs including excess salivation, licking, agression etc. For every cow with clinical signs there are probably a number of others with sub-clinical signs. The initial aim of treatment is to restore the lack of glucose in the body. A quick-acting glucose supplement is required immediately. Follow-up treatment is aimed at providing a long term supply of glucose. Intravenous administration of a dextrose solution by a veterinarian is effective in the short term, but follow-up treatment is essential if relapses are to be avoided. Drenching with propylene glycol or glycerine has longer term effects. It also has the benefit of ease of administration. Treatment should be continued for two to four days. Several commercial compounds contain propylene gl Continue reading >>

Ketosis In An Evolutionary Context

Ketosis In An Evolutionary Context

Humans are unique in their remarkable ability to enter ketosis. They’re also situated near the top of the food chain. Coincidence? During starvation, humans rapidly enter ketosis; they do this better than king penguins, and bears don’t do it at all. Starvation ketosis Humans maintain a high level of functionality during starvation. We can still hunt & plan; some would even argue it’s a more finely tuned state, cognitively. And that’s important, because if we became progressively weaker and slower, chances of acquiring food would rapidly decline. Perhaps this is why fasting bears just sleep most of the time: no ketones = no bueno..? Animals with a low brain/carcass weight ratio (ie, small brain) don’t need it. Babies and children have a higher brain/carcass weight ratio, so they develop ketosis more rapidly than adults. Is this a harmful process? No, more likely an evolutionary adaptation which supports the brain. The brain of newborn babies consumes a huge amount of total daily energy, and nearly half comes from ketones. A week or so later, even after the carbohydrate content of breast milk increases, they still don’t get “kicked out of ketosis” (Bourneres et al., 1986). If this were a harmful state, why would Nature have done this? …and all those anecdotes, like babies learn at incredibly rapid rates… coincidence? Maybe they’re myths. Maybe not. Ketosis in the animal kingdom Imagine a hibernating bear: huge adipose tissue but small brain fuel requirement relative to body size and total energy expenditure. No ketosis, because brain accounts for less than 5% of total metabolism. In adult humans, this is around 19-23%, and babies are much higher (eg, Cahill and Veech, 2003 & Hayes et al., 2012). For the rest of this article and more, head over to Pat Continue reading >>

Acetonaemia (ketosis)

Acetonaemia (ketosis)

Managing disease can be a frustrating proposition. This Guide can help you identify which disease is damaging your cattle. Cause Ketosis is a metabolic disorder that occurs in cattle when energy demands (e.g. high milk production) exceed energy intake and result in a negative energy balance. Ketotic cows often have low blood glucose (blood sugar) concentrations. When large amounts of body fat are utilised as an energy source to support production, fat is sometimes mobilised faster than the liver can properly metabolise it. If this situation occurs, ketone production exceeds ketone utilisation by the cow, and ketosis results. In the beef cow, this is most likely to occur in late pregnancy when the cow's appetite is at its lowest and the energy requirement of the growing calf near its peak. In the dairy cow, the mismatch between input and output usually occurs in the first few weeks of lactation, because the cow is not able to eat enough to match the energy lost in the milk. Symptoms Reduced milk yield Weight loss Reduced appetite Dull coat Acetone (pear drop) smell of breath/ or milk Fever Some develop nervous signs including excess salivation, licking, agression etc. For every cow with clinical signs there are probably a number of others with sub-clinical signs. Treatment The initial aim of treatment is to restore the lack of glucose in the body. A quick-acting glucose supplement is required immediately. Follow-up treatment is aimed at providing a long term supply of glucose. Glucose replacement Intravenous administration of a dextrose solution by a veterinarian is effective in the short term, but follow-up treatment is essential if relapses are to be avoided. Drenching with propylene glycol or glycerine has longer term effects. It also has the benefit of ease of admini Continue reading >>

Cattle Diseases

Cattle Diseases

Ketosis Also known as: Acetonemia, Fat Cow Syndrome, Hypoglycemia and Pregnancy Toxemia. Primary ketosis, or acetonemia, is a metabolic disorder and is largely a disease that is influenced by management of dairy cows in early lactation. Ketosis is an important clinical and subclinical disease, as there are several metabolic disorders and diseases that commonly occur in the calving and the early lactation period that are linked to ketosis (including milk fever, retained foetal membranes and displaced abomasum). Hypoglycemia is the major factor involved in the onset and development of clinical ketosis. There is a gradual loss of body condition over several days or even weeks. There is also a moderate to marked decline in milk yield (up to 5 liters per day) over five to six days before the onset of obvious clinical signs (Edwards and Tozer, 2004). This can persist for up to two weeks after diagnosis (Rajala-Schultz et al., 1999). The disease is most commonly seen in high-yielding dairy cows in early lactation. Secondary ketosis due to lack of appetite as a result of another disease can be seen at any stage of lactation. Beef cows may also suffer from ketosis during pregnancy, although this is less commonly recognized. Primary ketosis in dairy cows To satisfy the requirements of milk production, the cow can draw on two sources of nutrients – feed intake and body reserves. During early lactation, the energy intake is insufficient to meet the energy output in milk and the animal is in a negative energy balance. In conventional farming, this is considered to be a normal metabolic situation in high-yielding dairy cows. Cows in early lactation are, therefore, in a vulnerable situation, and any stress that causes a reduction in feed intake may lead to the onset of clinical keto Continue reading >>

More in ketosis