diabetestalk.net

Ketones Chemistry

Introducing Aldehydes And Ketones

Introducing Aldehydes And Ketones

This page explains what aldehydes and ketones are, and looks at the way their bonding affects their reactivity. It also considers their simple physical properties such as solubility and boiling points. Details of the chemical reactions of aldehydes and ketones are described on separate pages. What are aldehydes and ketones? Aldehydes and ketones as carbonyl compounds Aldehydes and ketones are simple compounds which contain a carbonyl group - a carbon-oxygen double bond. They are simple in the sense that they don't have other reactive groups like -OH or -Cl attached directly to the carbon atom in the carbonyl group - as you might find, for example, in carboxylic acids containing -COOH. Examples of aldehydes In aldehydes, the carbonyl group has a hydrogen atom attached to it together with either a second hydrogen atom or, more commonly, a hydrocarbon group which might be an alkyl group or one containing a benzene ring. For the purposes of this section, we shall ignore those containing benzene rings. Note: There is no very significant reason for this. It is just that if you are fairly new to organic chemistry you might not have come across any compounds with benzene rings in them yet. I'm just trying to avoid adding to your confusion! Notice that these all have exactly the same end to the molecule. All that differs is the complexity of the other group attached. When you are writing formulae for these, the aldehyde group (the carbonyl group with the hydrogen atom attached) is always written as -CHO - never as COH. That could easily be confused with an alcohol. Ethanal, for example, is written as CH3CHO; methanal as HCHO. The name counts the total number of carbon atoms in the longest chain - including the one in the carbonyl group. If you have side groups attached to the ch Continue reading >>

Ketones And Aldehydes

Ketones And Aldehydes

Your chemical reactions can be run safely and effectively with US-made clamps and other laboratory accessories from Safety Emporium. According to the International Union of Pure and Applied Chemistry (IUPAC) naming (nomenclature) rules, simple ketones are named by taking the name of the longest acyclic hydrocarbon chain in the molecule, dropping the terminal "e" (if present), and adding the suffix "one". In situations where there are other functional groups that take naming precedence, the ketone may be indicated by the use of "oxo". Certain other ketone-containing substructures have additional naming rules that are beyond the scope of our current discussion: Under IUPAC nomenclature aldehydes are named by taking the name of the longest acyclic hydrocarbon chain in the molecule, dropping the terminal "e" (if present), and adding the suffix "al", "aldehyde" or "carbaldehyde". In some cases the prefix "formyl" may be used. Two aldehydes are indicated by the suffix "dial". In addition, a number of trivial (traditional) names are still recognized. For detailed naming rules see Further Reading below. Aldehydes and ketones are widely used industrial chemicals both as solvents and as chemical intermediates (ingredients for other chemicals). Most can be classified as volatile organic compounds meaning that their vapors may be easily inhaled or ignited. Many ketones and aldehydes are also flammable as liquids and solids. Training materials, handbooks, posters and videos at Safety Emporium can help your employees protect themselves from hazards such as formaldehyde. Important note: formaldehyde is an industrially important aldehyde that is used on the billion ton scale. Glutaraldehyde is a "cold sterilent" used widely in the health care industry. Both are potent sensitizers. Expo Continue reading >>

Naming Ketones

Naming Ketones

Ketones are organic chemical compounds that include a -carbonyl group (i.e. an oxygen atom attached to a carbon atom by a double covalent bond) such that the carbon atom to which the -carbonyl group is attached is itself attached to two other carbon atoms - as opposed to one other carbon atom and one hydrogen atom, which the case for aldehydes That is, ketones are a class or category of organic chemical compounds that include a carbon atom attached to both an oxygen atom (by a double covalent bond), and also to two other carbon atoms (by a single covalent bond in each case). Bearing in mind that carbon atoms form a total of 4 single covalent bonds - or equivalent in combinations of double or triple bonds, a carbon atom attached to both an oxygen atom (by a double covalent bond) and also to two other carbon atoms (by a single covalent bond in each case) cannot be the first- or last - (which are equivalent positions) carbon atom in the chain of carbon atoms that form the organic molecule of which it is a part. This position of the -carbonyl group (oxygen atom) attached to a carbon atom that is not the last carbon atom in a carbon-chain is important because it distinguishes ketones from a similar category of organic compounds, called aldehydes. In contrast to ketones, aldehydes include a -carbonyl group attached to the end-carbon in a carbon-chain. Ketone molecules can vary in size up to very long molecules most of which consist of carbon atoms attached to each other and also to hydrogen atoms. Continue reading >>

Aldehydes And Ketones

Aldehydes And Ketones

Aldehydes and Ketones The connection between the structures of alkenes and alkanes was previously established, which noted that we can transform an alkene into an alkane by adding an H2 molecule across the C=C double bond. The driving force behind this reaction is the difference between the strengths of the bonds that must be broken and the bonds that form in the reaction. In the course of this hydrogenation reaction, a relatively strong HH bond (435 kJ/mol) and a moderately strong carbon-carbon bond (270 kJ/mol) are broken, but two strong CH bonds (439 kJ/mol) are formed. The reduction of an alkene to an alkane is therefore an exothermic reaction. What about the addition of an H2 molecule across a C=O double bond? Once again, a significant amount of energy has to be invested in this reaction to break the HH bond (435 kJ/mol) and the carbon-oxygen bond (375 kJ/mol). The overall reaction is still exothermic, however, because of the strength of the CH bond (439 kJ/mol) and the OH bond (498 kJ/mol) that are formed. The addition of hydrogen across a C=O double bond raises several important points. First, and perhaps foremost, it shows the connection between the chemistry of primary alcohols and aldehydes. But it also helps us understand the origin of the term aldehyde. If a reduction reaction in which H2 is added across a double bond is an example of a hydrogenation reaction, then an oxidation reaction in which an H2 molecule is removed to form a double bond might be called dehydrogenation. Thus, using the symbol [O] to represent an oxidizing agent, we see that the product of the oxidation of a primary alcohol is literally an "al-dehyd" or aldehyde. It is an alcohol that has been dehydrogenated. This reaction also illustrates the importance of differentiating between primar Continue reading >>

Aldehydes And Ketones

Aldehydes And Ketones

We'll get right to the point: we're asking you to help support Khan Academy. We're a nonprofit that relies on support from people like you. If everyone reading this gives $10 monthly, Khan Academy can continue to thrive for years. Please help keep Khan Academy free, for anyone, anywhere forever. Continue reading >>

Tests For Aldehydes And Ketones

Tests For Aldehydes And Ketones

2,4-DNP Test for Aldehydes and Ketones Tollen's Test for Aldehydes Jones (Chromic Acid) Oxidation Test for Aldehydes 2,4-DNP Test for Aldehydes and Ketones Aldehyde or Ketone Procedure Add a solution of 1 or 2 drops or 30 mg of unknown in 2 mL of 95% ethanol to 3 mL of 2,4-dinitrophenylhydrazine reagent. Shake vigorously, and, if no precipitate forms immediately, allow the solution to stand for 15 minutes. The 2,4-dinitrophenylhydrazine reagent will already be prepared for you. Positive test Formation of a precipitate is a positive test. Complications Some ketones give oils which will not solidify. Some allylic alcohols are oxidized by the reagent to aldehydes and give a positive test. Some alcohols, if not purified, may contain aldehyde or ketone impurities. Tollen’s Test for Aldehydes Aldehyde Standards Cyclohexanone and Benzaldehyde Procedure Add one drop or a few crystals of unknown to 1 mL of the freshly prepared Tollens reagent. Gentle heating can be employed if no reaction is immediately observed. Tollens reagent: Into a test tube which has been cleaned with 3M sodium hydroxide, place 2 mL of 0.2 M silver nitrate solution, and add a drop of 3M sodium hydroxide. Add 2.8% ammonia solution, drop by drop, with constant shaking, until almost all of the precipitate of silver oxide dissolves. Don't use more than 3 mL of ammonia. Then dilute the entire solution to a final volume of 10 mL with water. Positive Test Formation of silver mirror or a black precipitate is a positive test. Complications The test tube must be clean and oil-free if a silver mirror is to be observed. Easily oxidized compounds give a positive test. For example: aromatic amine and some phenols. Cleaning up Place all solutions used in this experiment in an appropriate waste container. Jones (Chromic Continue reading >>

Organic Chemistry/ketones And Aldehydes

Organic Chemistry/ketones And Aldehydes

Aldehydes () and ketones () are both carbonyl compounds. They are organic compounds in which the carbonyl carbon is connected to C or H atoms on either side. An aldehyde has one or both vacancies of the carbonyl carbon satisfied by a H atom, while a ketone has both its vacancies satisfied by carbon. 3 Preparing Aldehydes and Ketones Ketones are named by replacing the -e in the alkane name with -one. The carbon chain is numbered so that the ketone carbon, called the carbonyl group, gets the lowest number. For example, would be named 2-butanone because the root structure is butane and the ketone group is on the number two carbon. Alternatively, functional class nomenclature of ketones is also recognized by IUPAC, which is done by naming the substituents attached to the carbonyl group in alphabetical order, ending with the word ketone. The above example of 2-butanone can also be named ethyl methyl ketone using this method. If two ketone groups are on the same structure, the ending -dione would be added to the alkane name, such as heptane-2,5-dione. Aldehydes replace the -e ending of an alkane with -al for an aldehyde. Since an aldehyde is always at the carbon that is numbered one, a number designation is not needed. For example, the aldehyde of pentane would simply be pentanal. The -CH=O group of aldehydes is known as a formyl group. When a formyl group is attached to a ring, the ring name is followed by the suffix "carbaldehyde". For example, a hexane ring with a formyl group is named cyclohexanecarbaldehyde. Aldehyde and ketone polarity is characterized by the high dipole moments of their carbonyl group, which makes them rather polar molecules. They are more polar than alkenes and ethers, though because they lack hydrogen, they cannot participate in hydrogen bonding like Continue reading >>

Aldehydes, Ketones, Carboxylic Acids, And Esters

Aldehydes, Ketones, Carboxylic Acids, And Esters

Learning Objectives By the end of this section, you will be able to: Describe the structure and properties of aldehydes, ketones, carboxylic acids and esters Another class of organic molecules contains a carbon atom connected to an oxygen atom by a double bond, commonly called a carbonyl group. The trigonal planar carbon in the carbonyl group can attach to two other substituents leading to several subfamilies (aldehydes, ketones, carboxylic acids and esters) described in this section. Aldehydes and Ketones Both aldehydes and ketones contain a carbonyl group, a functional group with a carbon-oxygen double bond. The names for aldehyde and ketone compounds are derived using similar nomenclature rules as for alkanes and alcohols, and include the class-identifying suffixes –al and –one, respectively: In an aldehyde, the carbonyl group is bonded to at least one hydrogen atom. In a ketone, the carbonyl group is bonded to two carbon atoms: In both aldehydes and ketones, the geometry around the carbon atom in the carbonyl group is trigonal planar; the carbon atom exhibits sp2 hybridization. Two of the sp2 orbitals on the carbon atom in the carbonyl group are used to form σ bonds to the other carbon or hydrogen atoms in a molecule. The remaining sp2 hybrid orbital forms a σ bond to the oxygen atom. The unhybridized p orbital on the carbon atom in the carbonyl group overlaps a p orbital on the oxygen atom to form the π bond in the double bond. Like the C=O bond in carbon dioxide, the C=O bond of a carbonyl group is polar (recall that oxygen is significantly more electronegative than carbon, and the shared electrons are pulled toward the oxygen atom and away from the carbon atom). Many of the reactions of aldehydes and ketones start with the reaction between a Lewis base and Continue reading >>

Ketone

Ketone

Previous (Kermit Roosevelt, Jr.) Next (Key (music)) A ketone (pronounced as key tone) is either the functional group characterized by a carbonyl group (O=C) linked to two other carbon atoms or a chemical compound that contains this functional group. A ketone can be generally represented by the formula: A carbonyl carbon bonded to two carbon atoms distinguishes ketones from carboxylic acids, aldehydes, esters, amides, and other oxygen-containing compounds. The double-bond of the carbonyl group distinguishes ketones from alcohols and ethers. The simplest ketone is acetone (also called propanone). Mold Test Kits Easy to Use, Fast Results Available Interpretive Lab Report moldtesting.com The carbon atom adjacent to a carbonyl group is called the α-carbon. Hydrogens attached to this carbon are called α-hydrogens. In the presence of an acid catalyst the ketone is subjected to so-called keto-enol tautomerism. The reaction with a strong base gives the corresponding enolate. A diketone is a compound containing two ketone groups. Nomenclature In general, ketones are named using IUPAC nomenclature by changing the suffix -e of the parent alkane to -one. For common ketones, some traditional names such as acetone and benzophenone predominate, and these are considered retained IUPAC names,[1] although some introductory chemistry texts use names such as propanone. Oxo is the formal IUPAC nomenclature for a ketone functional group. However, other prefixes are also used by various books and journals. For some common chemicals (mainly in biochemistry), keto or oxy is the term used to describe the ketone (also known as alkanone) functional group. Oxo also refers to a single oxygen atom coordinated to a transition metal (a metal oxo). Physical properties A carbonyl group is polar. This ma Continue reading >>

> Aldehydes And Ketones

> Aldehydes And Ketones

Syllabus ref: 20.1 Aldehydes and ketones are both carbonyl compounds, that is they contain alkyl chains attached to a C=O group. The difference between them is that the aldehyde also has a hydrogen attached to the carbonyl group. This confers aldehydes with sightly different properties to ketones. Aldehydes Ketones Aldehydes Aldehydes have the general formula CxH2x+1CHO, although the first member of the homologous series is methanal, HCHO (x=0). The carbonyl group has a pair of electrons in a pi orbital between the carbon atom and the oxygen of the carbonyl group. This is a polarised system due to the high electronegativity of the oxygen atom. Oxidation This reactivity of the carbonyl group means that aldehydes can be oxidised easily to carboxylic acids. This is carried out using potassium dichromate(VI) in acidic solution under reflux (to prevent loss of the volatile aldehyde). Reduction In section section 10.33 the oxidation of alcohols to aldehydes was described: This reaction can be made to go in the reverse direction using a strong reducing agent. Suitable reducing agents are lithium aluminium hydride (lithium tetrahydroaluminate) or sodium borohydride (sodium tetrahydroborate). Lithium aluminium hydride (lithium tetrahydroaluminate) Lithium aluminium hydride, LiAlH4, is a highly reactive reducing agent that must be used in non-aqueous solutions, for example, ethoxyethane (ether). This is because it reacts vigorously with water. The reaction is carried out in two stages: 2 decomposition of the complex formed in 1 by adding aqueous acid to give the required product Sodium borohydride (sodium tetrahydroborate) Sodium borohydride, NaBH4, has an advantage over lithium aluminium hydride in that it is not decomposed by water at high pH and hence can be used in aqueous so Continue reading >>

Ketone Definition

Ketone Definition

Ketone Definition A ketone is a compound containing a carbonyl functional group bridging two groups of atoms. The general formula for a ketone is RC(=O)R' where R and R' are alkyl or aryl groups. IUPAC ketone functional group names contain "oxo" or "keto". Ketones are named by changing the -e on the end of the parent alkane name to -one. Examples: Acetone is a ketone. The carbonyl group is connected to the alkane propane, therefore the IUPAC name for acetone would be propanone. Continue reading >>

Nomenclature Of Aldehydes & Ketones

Nomenclature Of Aldehydes & Ketones

Aldehydes and ketones contain the carbonyl group. Aldehydes are considered the most important functional group. They are often called the formyl or methanoyl group. Aldehydes derive their name from the dehydration of alcohols. Aldehydes contain the carbonyl group bonded to at least one hydrogen atom. Ketones contain the carbonyl group bonded to two carbon atoms. Aldehydes and ketones are organic compounds which incorporate a carbonyl functional group, C=O. The carbon atom of this group has two remaining bonds that may be occupied by hydrogen, alkyl or aryl substituents. If at least one of these substituents is hydrogen, the compound is an aldehyde. If neither is hydrogen, the compound is a ketone. Naming Aldehydes The IUPAC system of nomenclature assigns a characteristic suffix -al to aldehydes. For example, H2C=O is methanal, more commonly called formaldehyde. Since an aldehyde carbonyl group must always lie at the end of a carbon chain, it is always is given the #1 location position in numbering and it is not necessary to include it in the name. There are several simple carbonyl containing compounds which have common names which are retained by IUPAC. Also, there is a common method for naming aldehydes and ketones. For aldehydes common parent chain names, similar to those used for carboxylic acids, are used and the suffix –aldehyde is added to the end. In common names of aldehydes, carbon atoms near the carbonyl group are often designated by Greek letters. The atom adjacent to the carbonyl function is alpha, the next removed is beta and so on. If the aldehyde moiety (-CHO) is attached to a ring the suffix –carbaldehyde is added to the name of the ring. The carbon attached to this moiety will get the #1 location number in naming the ring. Aldehydes take their name Continue reading >>

Class 12 Chemistry - Aldehydes, Ketones And Carboxylic Acids

Class 12 Chemistry - Aldehydes, Ketones And Carboxylic Acids

Get 100 percent accurate NCERT Solutions for Class 12 Chemistry Chapter 12 (Aldehydes, Ketones and Carboxylic Acids) solved by expert Chemistry teachers. We provide solutions for questions given in Class 12 Chemistry text-book as per CBSE Board guidelines from the latest NCERT book for Class 12 Chemistry. The topics and sub-topics in Chapter 12 Aldehydes, Ketones and Carboxylic Acids 12.1 Nomenclature and Structure of Carbonyl Group 12.2 Preparation of Aldehydes and Ketones 12.3 Physical Properties 12.4 Chemical Reactions 12.5 Uses of Aldehydes and Ketones 12.6 Nomenclature and Structure of Carboxyl Group 12.7 Methods of Preparation of Carboxylic Acids 12.8 Physical Properties 12.9 Chemical Reactions 12.10 Uses of Carboxylic Acids. We cover all exercises in the chapter given below:- Chapter 12 Exercises - 20 Questions with Solutions. Download the free PDF of Chapter 12 Aldehydes, Ketones and Carboxylic Acids or save the solution images and take the print out to keep it handy for your exam preparation. Continue reading >>

Ketone

Ketone

Not to be confused with ketone bodies. Ketone group Acetone In chemistry, a ketone (alkanone) /ˈkiːtoʊn/ is an organic compound with the structure RC(=O)R', where R and R' can be a variety of carbon-containing substituents. Ketones and aldehydes are simple compounds that contain a carbonyl group (a carbon-oxygen double bond). They are considered "simple" because they do not have reactive groups like −OH or −Cl attached directly to the carbon atom in the carbonyl group, as in carboxylic acids containing −COOH.[1] Many ketones are known and many are of great importance in industry and in biology. Examples include many sugars (ketoses) and the industrial solvent acetone, which is the smallest ketone. Nomenclature and etymology[edit] The word ketone is derived from Aketon, an old German word for acetone.[2][3] According to the rules of IUPAC nomenclature, ketones are named by changing the suffix -ane of the parent alkane to -anone. The position of the carbonyl group is usually denoted by a number. For the most important ketones, however, traditional nonsystematic names are still generally used, for example acetone and benzophenone. These nonsystematic names are considered retained IUPAC names,[4] although some introductory chemistry textbooks use systematic names such as "2-propanone" or "propan-2-one" for the simplest ketone (CH3−CO−CH3) instead of "acetone". The common names of ketones are obtained by writing separately the names of the two alkyl groups attached to the carbonyl group, followed by "ketone" as a separate word. The names of the alkyl groups are written alphabetically. When the two alkyl groups are the same, the prefix di- is added before the name of alkyl group. The positions of other groups are indicated by Greek letters, the α-carbon being th Continue reading >>

Aldehydes And Ketones

Aldehydes And Ketones

Aldehydes and ketones incorporate a carbonyl functional group, C=O. These are organic compounds with structures -CHO and RC(=O)R’ where R and R’ represent carbon-containing substituents respectively. Aldehydes and Ketones are often called as methanoyl or formyl group. The carbon atom of this group has 2 remaining bonds that might be occupied by aryl or alkyl or substituents. If neither of these substituents is hydrogen, the compound is a Ketone. If at least one is hydrogen, the compound is an Aldehyde. Aldehydes In aldehydes, the carbonyl group has one hydrogen atom attached to it together with either a 2nd hydrogen atom or a hydrogen group which may be an alkyl group or one containing a benzene ring. Example: Ketones In ketones, the carbonyl group has 2 hydrocarbon groups attached to it. These can be either the ones containing benzene rings or alkyl groups. Ketone does not have a hydrogen atom attached to the carbonyl group. Example: Propane is generally written as CH3COCH3. In pentanone, the carbonyl group could be in the middle of the chain or next to the end – giving either pentan-3-one or pentan-2-one. Occurrence of Aldehydes and Ketones Combined with other functional group aldehydes and ketone are widespread in nature. Compounds such as cinnamaldehyde (cinnamon bark), vanillin (vanilla bean), Citra (lemongrass), helminthosporal (a fungal toxin), carvone (spearmint and caraway), camphor (camphor trees) are found chiefly in microorganisms or plants. Whereas, compounds such as muscone (musk deer), testosterone (male sex hormone), progesterone (female sex hormone), cortisone (adrenal hormone) have animal and human origin. Uses of Aldehydes and Ketones Formaldehyde is the simplest aldehyde whereas acetone is the smallest ketone. There are a number of aldehydes an Continue reading >>

More in ketosis