diabetestalk.net

Ketone Naming

1. Nomenclature Of Aldehydes And Ketones

1. Nomenclature Of Aldehydes And Ketones

Aldehydes and ketones are organic compounds which incorporate a carbonyl functional group, C=O. The carbon atom of this group has two remaining bonds that may be occupied by hydrogen or alkyl or aryl substituents. If at least one of these substituents is hydrogen, the compound is an aldehyde. If neither is hydrogen, the compound is a ketone. The IUPAC system of nomenclature assigns a characteristic suffix to these classes, al to aldehydes and one to ketones. For example, H2C=O is methanal, more commonly called formaldehyde. Since an aldehyde carbonyl group must always lie at the end of a carbon chain, it is by default position #1, and therefore defines the numbering direction. A ketone carbonyl function may be located anywhere within a chain or ring, and its position is given by a locator number. Chain numbering normally starts from the end nearest the carbonyl group. In cyclic ketones the carbonyl group is assigned position #1, and this number is not cited in the name, unless more than one carbonyl group is present. If you are uncertain about the IUPAC rules for nomenclature you should review them now. Examples of IUPAC names are provided (in blue) in the following diagram. Common names are in red, and derived names in black. In common names carbon atoms near the carbonyl group are often designated by Greek letters. The atom adjacent to the function is alpha, the next removed is beta and so on. Since ketones have two sets of neighboring atoms, one set is labeled α, β etc., and the other α', β' etc. Very simple ketones, such as propanone and phenylethanone (first two examples in the right column), do not require a locator number, since there is only one possible site for a ketone carbonyl function. Likewise, locator numbers are omitted for the simple dialdehyde at t Continue reading >>

Nomenclature Of Aldehydes & Ketones

Nomenclature Of Aldehydes & Ketones

Aldehydes and ketones contain the carbonyl group. Aldehydes are considered the most important functional group. They are often called the formyl or methanoyl group. Aldehydes derive their name from the dehydration of alcohols. Aldehydes contain the carbonyl group bonded to at least one hydrogen atom. Ketones contain the carbonyl group bonded to two carbon atoms. Aldehydes and ketones are organic compounds which incorporate a carbonyl functional group, C=O. The carbon atom of this group has two remaining bonds that may be occupied by hydrogen, alkyl or aryl substituents. If at least one of these substituents is hydrogen, the compound is an aldehyde. If neither is hydrogen, the compound is a ketone. Naming Aldehydes The IUPAC system of nomenclature assigns a characteristic suffix -al to aldehydes. For example, H2C=O is methanal, more commonly called formaldehyde. Since an aldehyde carbonyl group must always lie at the end of a carbon chain, it is always is given the #1 location position in numbering and it is not necessary to include it in the name. There are several simple carbonyl containing compounds which have common names which are retained by IUPAC. Also, there is a common method for naming aldehydes and ketones. For aldehydes common parent chain names, similar to those used for carboxylic acids, are used and the suffix –aldehyde is added to the end. In common names of aldehydes, carbon atoms near the carbonyl group are often designated by Greek letters. The atom adjacent to the carbonyl function is alpha, the next removed is beta and so on. If the aldehyde moiety (-CHO) is attached to a ring the suffix –carbaldehyde is added to the name of the ring. The carbon attached to this moiety will get the #1 location number in naming the ring. Aldehydes take their name Continue reading >>

Naming Aldehydes

Naming Aldehydes

In the IUPAC system we use the -al ending. The end e is replaced by al. So the common names of the first four aldehydes become: Now this is all pretty simple, but what if there are side chains off the main aldehyde chain. For example, take the molecule pictured on the right. Step 1 The aldehyde forms the root name Step 2 Number the carbons so that the C=O is carbon number 1. Step 3 Name all the substituents in alphabetical order. 3-methylbutanal Consider the example shown on the right. It has two substituent groups, the methyl and hydroxy. The IUPAC name is 4-hydroxy-3-methylbutanal. When naming a ketone we remove the end "e" from the name and replace it with a "one". For example propane becomes propanone. Since the carbonyl group can be located anywhere in the carbon chain a locator number is needed. . With simple molecules, such as propanone, shown on the right, a number is not needed as there can be only one location for the carbonyl group. Now lets look at he steps to derive a IUPAC name. Step 1) Identify the longest carbon chain that contains the carbonyl group and number the carbons so that the carbonyl group is on the lowest carbon. Step 2) Identify the various substituent groups Step 3) Place the substituent groups in the name in alphabetical order and use position numbers to locate the substituent groups and the carbonyl group. Step 4) Change the end e to a one. Lets take the molecule shown on the right as an example. Step 1 The longest carbon chain is pentane Step 2 No substituent groups Step 3 and 4 The carbonyl group is found at carbon number 2 . Hence the name is 2-pentanone What is the IUPAC name of this molecule? Solution What is the IUPAC name of this molecule? Solution What is the IUPAC name of this molecule? Solution Continue reading >>

R-5.6.2 Ketones, Thioketones, And Their Analogues

R-5.6.2 Ketones, Thioketones, And Their Analogues

Specific Classes of Compounds R-5.6.2.1 Ketones. The generic term "ketone" refers to compounds containing a carbonyl group, >C=O, joined to two carbon atoms. Ketones are named substitutively by adding a suffix such as "-one", and "-dione" to the name of a parent hydride with elision of the final "e" of the parent hydride, if any, before "o". When a group having priority for citation as principal characteristic group is present, a ketone is described by the prefix "oxo-". Functional class names for monoketones and vicinal diketones, etc., are formed by citing the prefix names for the two groups attached to the carbonyl group(s) in alphabetical order followed by the class name "ketone", "diketone", etc., as a separate word. Examples to R-5.6.2.1 Diketones derived from cyclic parent hydrides having the maximum number of noncumulative double bonds by conversion of two -CH= groups into >CO groups with rearrangement of double bonds to a quinonoid structure may be named alternatively by adding the suffix "-quinone" to the name of the aromatic parent hydride. Example to R-5.6.2.1 Acyl derivatives of benzene or naphthalene have been named by changing the "-ic acid" or "-oic acid" ending of a trivial name of the acid corresponding to the acyl group to "-ophenone" or "-onaphthone". Only the names acetophenone, propiophenone, and benzophenone are retained in these recommendations (see R-9.1, Table 27(a)). Acyl derivatives of cyclic parent hydrides are named by prefixing the substituent name derived from the cyclic parent hydride to the name of the acyclic ketone. Example to R-5.6.2.1 Some trivial names are retained (see R-9.1, Table 27(a)). R-5.6.2.2 Chalcogen analogues of ketones are named by using suffixes such as "-thione" and "-selone", and prefix names such as "thioxo-" and "s Continue reading >>

Aldehydes And Ketones

Aldehydes And Ketones

The carbon atom of a carbonyl group must form two other bonds in addition to the carbon oxygen double bond in order to have four bonds. The nature of these two additional bonds determines the type of carbonyl containing compound it is. Aldehyde - In an aldehyde one of the two additional bonds that the carbonyl carbon atom forms must be ti a hydrogen atom. The other may be to a hydrogen atom, an alkyl or cycloalkyl group, or an aromatic ring system. Ketone - In a ketone both of the additional bonds of the carbonyl carbon atom must be to another carbon atom that is part of an alkyl, cycloalkyl or aromatic group. The carbonyl group of an aldehyde is flanked by a hydrogen atom, while the carbonyl group of a ketone is flanked by two carbon atoms. The systematic name for an aldehyde is obtained from the parent alkane by removing the final -e and adding -al. For ketones the final -e is replaced by -one, and a number indicates the position of the carbonyl group wherever necessary. The carbon chain in ketones is numbered such that the carbonyl carbon gets the lowest possible number. In aldehyde the carbonyl group is always at the end of the chain and is always assumed to be carbon number 1. The positions of the other substituents are specified by numbers as usual. The following examples illustrates these principles. The names in parentheses are common names that are used much more often than the systematic names. An alternative system for naming ketones specifies the substituents attached to the C=C group. For example, the compound 2-butanone is used in the system as described. However this molecule also can be named methyl ethyl ketone and is commonly referred to in industry as MEK (methyl ethyl ketone). 1. Oxidation Aldehyde are oxidized to carboxylic acids by a variety of oxi Continue reading >>

Organic Chemistry/ketones And Aldehydes

Organic Chemistry/ketones And Aldehydes

Aldehydes () and ketones () are both carbonyl compounds. They are organic compounds in which the carbonyl carbon is connected to C or H atoms on either side. An aldehyde has one or both vacancies of the carbonyl carbon satisfied by a H atom, while a ketone has both its vacancies satisfied by carbon. 3 Preparing Aldehydes and Ketones Ketones are named by replacing the -e in the alkane name with -one. The carbon chain is numbered so that the ketone carbon, called the carbonyl group, gets the lowest number. For example, would be named 2-butanone because the root structure is butane and the ketone group is on the number two carbon. Alternatively, functional class nomenclature of ketones is also recognized by IUPAC, which is done by naming the substituents attached to the carbonyl group in alphabetical order, ending with the word ketone. The above example of 2-butanone can also be named ethyl methyl ketone using this method. If two ketone groups are on the same structure, the ending -dione would be added to the alkane name, such as heptane-2,5-dione. Aldehydes replace the -e ending of an alkane with -al for an aldehyde. Since an aldehyde is always at the carbon that is numbered one, a number designation is not needed. For example, the aldehyde of pentane would simply be pentanal. The -CH=O group of aldehydes is known as a formyl group. When a formyl group is attached to a ring, the ring name is followed by the suffix "carbaldehyde". For example, a hexane ring with a formyl group is named cyclohexanecarbaldehyde. Aldehyde and ketone polarity is characterized by the high dipole moments of their carbonyl group, which makes them rather polar molecules. They are more polar than alkenes and ethers, though because they lack hydrogen, they cannot participate in hydrogen bonding like Continue reading >>

Ll.l Aldehydes Ond Ketones

Ll.l Aldehydes Ond Ketones

Focus l3.l Aldehydes and Ketones 595 AIM: To describe the corbon-oxygen bond of the corbonyl group of oldehydes ond ketones. The functional group known as the carbonyl group ( )C-O)-a carbon ato m and an oxy gen atonx j o ined by a double b o nd-is fciund in comp ounds called aldehydes arrd ketones. Structures of aldehydes and ketones Aldehydes are organic compounds in which the carbonyl carbon-the car- bon to which the oxygen k bonded-is always joined to at least one hydro- gen.The general formula for an aldehyde is Carbonr.l. ox'gen \ t O - ^ - L ^ - . | - - ^ . . - 1a---zCatbonvl grouP R-C-H I Carbonyl / carbon This structural formula is often abbreviated to RCHO. Ketones are organic compounds in which the carbonyl carbon is joined to two other carbons: Carbonrtl. orygen \ O - ^ * L ^ . ^ , , r ^ - ^ , . ^ !1 <-_-- CarA on1'l group R-C-R ,( Carbonyl/ carbon The abbreviated form for a ketone is RCOR. Note the similarity in structure of aldehydes and ketones. Because they both contain the carbonyl group, the chemistry of aldehydes and ketones is similar. Both aldehydes and ketones are highly reactive, but aldehydes are generally the more reactive of the two classes. Namtng aldehydes and ketones The IUPAC system may be used for naming aldehydes. We must first identify the longest hydrocarbon chain that contains the carbonyl car- bon. The -e ending of the hydrocarbon is replace dby -al to designate an aldehyde. Using the IUPAC system, we name the aldehydes methanal, ethanal, propanal, butanal, and so forth. In naming substituted aldehy- des, the longest chain is counted starting from the carbon of the alde- hyde group. The general structures of aldehydes and ketones are similar. ,94 CHAPTER 13 Aldehydes and Ketones I X A M P L E I 5 . I Naming a substituted aldehyde by t Continue reading >>

Try To Name The Following Compound Using These Conventions�

Try To Name The Following Compound Using These Conventions�

a. Ketones are named by dropping the -e ending of the parent name and adding -one. The substituent name for the O= group is oxo. Ketones can also be named by naming each of the two carbon groups as a separate word followed by a space and the word ketone. b. Ring compounds can be named by dropping the -e ending of the parent name and adding -one. c. Common names that you should know are... d. The Greek letters a, b, g, etc. are used at times to designate attached groups on the second, third and fourth, etc. carbons from the carbonyl. This nomenclature is common for many functional groups such as aldehydes, carboxylic acids and derivatives of carboxylic acids. Copyright � August 2000 by Richard C. Banks...all rights reserved. Continue reading >>

Nomenclature

Nomenclature

IUPAC Names The naming of ketones is actually fairly simple, if you use the IUPAC method. It is very similar to the naming of alcohols. You start by choosing the longest carbon chain you can find that includes the carbon from the carbonyl group and use the length of that carbon chain as your base name. You change the ending by removing the -e and adding -one, and adding a number at the beginning of the name to indicate which carbon is double bonded to the oxygen. Then, if there are any side groups attached to the main chain, those are added to the front of the name with the appropriate numbers to show their location. Example A specific example is shown here (from Example 12-b in your workbook): butanone is formed from 2-butanol. The carbon chain is four carbon atoms long. Therefore, we have "butane" as a starting point. One of those carbons is double bonded to an oxygen. This make the compound a ketone. This means that we replace the -e ending on the "butane" with an -one ending to get butanone. (We could also use a 2- in front of this name to indicate that it is the 2nd carbon which is a member of the carbonyl group. This gives the name 2-butanone for this particular compound. However, the 2- is unnecessary here since if the carbonyl group were to be moved one carbon to the right we would start numbering from the right side of the compound and that carbon would be #2.) H H H | | | H-C-C-C-C-H | || | | H O H H butanone In this example I would also like to point out that the alcohol we start with, and the ketone we end up with both have the same number of carbon atoms. In addition, the carbonyl group in the ketone is in the same location as the hydroxyl group in the alcohol. This is a very important consideration when you are trying to make a particular ketone. You need Continue reading >>

Chapter 14 - Aldehydes And Ketones

Chapter 14 - Aldehydes And Ketones

Sort Guide to naming ketones Step 1 name the longest carbon chain by replacing e with -one. Step 2 # carbon chain from end nearer to carbonyl group Step 3 name and number substituents Step 4 for cyclic ketones add prefix cyclo Continue reading >>

Ketones And Aldehydes

Ketones And Aldehydes

Your chemical reactions can be run safely and effectively with US-made clamps and other laboratory accessories from Safety Emporium. According to the International Union of Pure and Applied Chemistry (IUPAC) naming (nomenclature) rules, simple ketones are named by taking the name of the longest acyclic hydrocarbon chain in the molecule, dropping the terminal "e" (if present), and adding the suffix "one". In situations where there are other functional groups that take naming precedence, the ketone may be indicated by the use of "oxo". Certain other ketone-containing substructures have additional naming rules that are beyond the scope of our current discussion: Under IUPAC nomenclature aldehydes are named by taking the name of the longest acyclic hydrocarbon chain in the molecule, dropping the terminal "e" (if present), and adding the suffix "al", "aldehyde" or "carbaldehyde". In some cases the prefix "formyl" may be used. Two aldehydes are indicated by the suffix "dial". In addition, a number of trivial (traditional) names are still recognized. For detailed naming rules see Further Reading below. Aldehydes and ketones are widely used industrial chemicals both as solvents and as chemical intermediates (ingredients for other chemicals). Most can be classified as volatile organic compounds meaning that their vapors may be easily inhaled or ignited. Many ketones and aldehydes are also flammable as liquids and solids. Training materials, handbooks, posters and videos at Safety Emporium can help your employees protect themselves from hazards such as formaldehyde. Important note: formaldehyde is an industrially important aldehyde that is used on the billion ton scale. Glutaraldehyde is a "cold sterilent" used widely in the health care industry. Both are potent sensitizers. Expo Continue reading >>

Naming Ketones

Naming Ketones

Naming Organic Compounds Series: Video 15 This Leah4sci tutorial video shows you how to name molecules containing a carbonyl in the middle of the chain using my puzzle piece approach to IUPAC nomenclature. Naming examples include simple and substituted ketones, multiple carbonyls and cyclic ketones. (Watch on YouTube: Ketones. Click CC on bottom right for transcript.) <– Watch Previous Video: Naming Aldehydes –> Watch Next Video: Naming Carboxylic Acids This is Video 15 in the Naming Organic Compounds Video Series. Click HERE for the entire series. Need a review on Functional Groups? Watch the Functional Groups Video then try the Functional Groups Quiz. Continue reading >>

Naming Ketones

Naming Ketones

Ketones are organic chemical compounds that include a -carbonyl group (i.e. an oxygen atom attached to a carbon atom by a double covalent bond) such that the carbon atom to which the -carbonyl group is attached is itself attached to two other carbon atoms - as opposed to one other carbon atom and one hydrogen atom, which the case for aldehydes That is, ketones are a class or category of organic chemical compounds that include a carbon atom attached to both an oxygen atom (by a double covalent bond), and also to two other carbon atoms (by a single covalent bond in each case). Bearing in mind that carbon atoms form a total of 4 single covalent bonds - or equivalent in combinations of double or triple bonds, a carbon atom attached to both an oxygen atom (by a double covalent bond) and also to two other carbon atoms (by a single covalent bond in each case) cannot be the first- or last - (which are equivalent positions) carbon atom in the chain of carbon atoms that form the organic molecule of which it is a part. This position of the -carbonyl group (oxygen atom) attached to a carbon atom that is not the last carbon atom in a carbon-chain is important because it distinguishes ketones from a similar category of organic compounds, called aldehydes. In contrast to ketones, aldehydes include a -carbonyl group attached to the end-carbon in a carbon-chain. Ketone molecules can vary in size up to very long molecules most of which consist of carbon atoms attached to each other and also to hydrogen atoms. Continue reading >>

Ketone

Ketone

Not to be confused with ketone bodies. Ketone group Acetone In chemistry, a ketone (alkanone) /ˈkiːtoʊn/ is an organic compound with the structure RC(=O)R', where R and R' can be a variety of carbon-containing substituents. Ketones and aldehydes are simple compounds that contain a carbonyl group (a carbon-oxygen double bond). They are considered "simple" because they do not have reactive groups like −OH or −Cl attached directly to the carbon atom in the carbonyl group, as in carboxylic acids containing −COOH.[1] Many ketones are known and many are of great importance in industry and in biology. Examples include many sugars (ketoses) and the industrial solvent acetone, which is the smallest ketone. Nomenclature and etymology[edit] The word ketone is derived from Aketon, an old German word for acetone.[2][3] According to the rules of IUPAC nomenclature, ketones are named by changing the suffix -ane of the parent alkane to -anone. The position of the carbonyl group is usually denoted by a number. For the most important ketones, however, traditional nonsystematic names are still generally used, for example acetone and benzophenone. These nonsystematic names are considered retained IUPAC names,[4] although some introductory chemistry textbooks use systematic names such as "2-propanone" or "propan-2-one" for the simplest ketone (CH3−CO−CH3) instead of "acetone". The common names of ketones are obtained by writing separately the names of the two alkyl groups attached to the carbonyl group, followed by "ketone" as a separate word. The names of the alkyl groups are written alphabetically. When the two alkyl groups are the same, the prefix di- is added before the name of alkyl group. The positions of other groups are indicated by Greek letters, the α-carbon being th Continue reading >>

Ketone

Ketone

Ketone, any of a class of organic compounds characterized by the presence of a carbonyl group in which the carbon atom is covalently bonded to an oxygen atom. The remaining two bonds are to other carbon atoms or hydrocarbon radicals (R): Ketone compounds have important physiological properties. They are found in several sugars and in compounds for medicinal use, including natural and synthetic steroid hormones. Molecules of the anti-inflammatory agent cortisone contain three ketone groups. Only a small number of ketones are manufactured on a large scale in industry. They can be synthesized by a wide variety of methods, and because of their ease of preparation, relative stability, and high reactivity, they are nearly ideal chemical intermediates. Many complex organic compounds are synthesized using ketones as building blocks. They are most widely used as solvents, especially in industries manufacturing explosives, lacquers, paints, and textiles. Ketones are also used in tanning, as preservatives, and in hydraulic fluids. The most important ketone is acetone (CH3COCH3), a liquid with a sweetish odour. Acetone is one of the few organic compounds that is infinitely soluble in water (i.e., soluble in all proportions); it also dissolves many organic compounds. For this reason—and because of its low boiling point (56 °C [132.8 °F]), which makes it easy to remove by evaporation when no longer wanted—it is one of the most important industrial solvents, being used in such products as paints, varnishes, resins, coatings, and nail-polish removers. The International Union of Pure and Applied Chemistry (IUPAC) name of a ketone is derived by selecting as the parent the longest chain of carbon atoms that contains the carbonyl group. The parent chain is numbered from the end that Continue reading >>

More in ketosis