diabetestalk.net

Ketone Bodies Synthesis

Share on facebook

Ketogenesis

Ketogenesis pathway. The three ketone bodies (acetoacetate, acetone, and beta-hydroxy-butyrate) are marked within an orange box Ketogenesis is the biochemical process by which organisms produce a group of substances collectively known as ketone bodies by the breakdown of fatty acids and ketogenic amino acids.[1][2] This process supplies energy to certain organs (particularly the brain) under circumstances such as fasting, but insufficient ketogenesis can cause hypoglycemia and excessive production of ketone bodies leads to a dangerous state known as ketoacidosis.[3] Production[edit] Ketone bodies are produced mainly in the mitochondria of liver cells, and synthesis can occur in response to an unavailability of blood glucose, such as during fasting.[3] Other cells are capable of carrying out ketogenesis, but they are not as effective at doing so.[4] Ketogenesis occurs constantly in a healthy individual.[5] Ketogenesis takes place in the setting of low glucose levels in the blood, after exhaustion of other cellular carbohydrate stores, such as glycogen.[citation needed] It can also take place when there is insufficient insulin (e.g. in type 1 (but not 2) diabetes), particularly durin Continue reading >>

Share on facebook

Popular Questions

  1. metalmd06

    Does acute DKA cause hyperkalemia, or is the potassium normal or low due to osmotic diuresis? I get the acute affect of metabolic acidosis on potassium (K+ shifts from intracellular to extracellular compartments). According to MedEssentials, the initial response (<24 hours) is increased serum potassium. The chronic effect occuring within 24 hours is a compensatory increase in Aldosterone that normalizes or ultimatley decreases the serum K+. Then it says on another page that because of osmotic diuresis, there is K+ wasting with DKA. On top of that, I had a question about a diabetic patient in DKA with signs of hyperkalemia. Needless to say, I'm a bit confused. Any help is appreciated.

  2. FutureDoc4

    I remember this being a tricky point:
    1) DKA leads to a decreased TOTAL body K+ (due to diuresis) (increase urine flow, increase K+ loss)
    2) Like you said, during DKA, acidosis causes an exchange of H+/K+ leading to hyperkalemia.
    So, TOTAL body K+ is low, but the patient presents with hyperkalemia. Why is this important? Give, insulin, pushes the K+ back into the cells and can quickly precipitate hypokalemia and (which we all know is bad). Hope that is helpful.

  3. Cooolguy

    DKA-->Anion gap M. Acidosis-->K+ shift to extracellular component--> hyperkalemia-->symptoms and signs
    DKA--> increased osmoles-->Osmotic diuresis-->loss of K+ in urine-->decreased total body K+ (because more has been seeped from the cells)
    --dont confuse total body K+ with EC K+
    Note: osmotic diuresis also causes polyuria, ketonuria, glycosuria, and loss of Na+ in urine--> Hyponatremia
    DKA tx: Insulin (helps put K+ back into cells), and K+ (to replenish the low total potassium
    Hope it helps

  4. -> Continue reading
read more close

Related Articles

More in ketosis