diabetestalk.net

Ketoacidosis Definition

Diabetic Ketoacidosis

Diabetic Ketoacidosis

As fat is broken down, acids called ketones build up in the blood and urine. In high levels, ketones are poisonous. This condition is known as ketoacidosis. Diabetic ketoacidosis (DKA) is sometimes the first sign of type 1 diabetes in people who have not yet been diagnosed. It can also occur in someone who has already been diagnosed with type 1 diabetes. Infection, injury, a serious illness, missing doses of insulin shots, or surgery can lead to DKA in people with type 1 diabetes. People with type 2 diabetes can also develop DKA, but it is less common. It is usually triggered by uncontrolled blood sugar, missing doses of medicines, or a severe illness. Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a serious problem that can occur in people with diabetes if their body starts to run out of insulin. This causes harmful substances called ketones to build up in the body, which can be life-threatening if not spotted and treated quickly. DKA mainly affects people with type 1 diabetes, but can sometimes occur in people with type 2 diabetes. If you have diabetes, it's important to be aware of the risk and know what to do if DKA occurs. Symptoms of diabetic ketoacidosis Signs of DKA include: needing to pee more than usual being sick breath that smells fruity (like pear drop sweets or nail varnish) deep or fast breathing feeling very tired or sleepy passing out DKA can also cause high blood sugar (hyperglycaemia) and a high level of ketones in your blood or urine, which you can check for using home-testing kits. Symptoms usually develop over 24 hours, but can come on faster. Check your blood sugar and ketone levels Check your blood sugar level if you have symptoms of DKA. If your blood sugar is 11mmol/L or over and you have a blood or urine ketone testing kit, check your ketone level. If you do a blood ketone test: lower than 0.6mmol/L is a normal reading 0.6 to 1.5mmol/L means you're at a slightly increased risk of DKA and should test again in a couple of hours 1.6 to 2.9mmol/L means you're at an increased risk of DKA and should contact your diabetes team or GP as soon as possible 3mmol/L or over means you have a very high risk of DKA and should get medical help immediately If you do a urine ketone test, a result of more than 2+ means there's a high chance you have DKA. When to get medical help Go to your nearest accident and emergency (A&E) department straight away if you think you have DKA, especially if you have a high level of ketones in Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

© 1996–2017 themedicalbiochemistrypage.org, LLC | info @ themedicalbiochemistrypage.org Definition of Diabetic Ketoacidosis The most severe and life threatening complication of poorly controlled type 1 diabetes is diabetic ketoacidosis (DKA). DKA is characterized by metabolic acidosis, hyperglycemia and hyperketonemia. Diagnosis of DKA is accomplished by detection of hyperketonemia and metabolic acidosis (as measured by the anion gap) in the presence of hyperglycemia. The anion gap refers to the difference between the concentration of cations other than sodium and the concentration of anions other than chloride and bicarbonate. The anion gap therefore, represents an artificial assessment of the unmeasured ions in plasma. Calculation of the anion gap involves sodium (Na+), chloride (Cl–) and bicarbonate (HCO3–) measurements and it is defined as [Na+ – (Cl– + HCO3–)] where the sodium and chloride concentrations are measured as mEq/L and the bicarbonate concentration is mmol/L. The anion gap will increase when the concentration of plasma K+, Ca2+, or Mg2+ is decreased, when organic ions such as lactate are increased (or foreign anions accumulate), or when the concentration or charge of plasma proteins increases. Normal anion gap is between 8mEq/L and 12mEq/L and a higher number is diagnostic of metabolic acidosis. Rapid and aggressive treatment is necessary as the metabolic acidosis will result in cerebral edema and coma eventually leading to death. The hyperketonemia in DKA is the result of insulin deficiency and unregulated glucagon secretion from α-cells of the pancreas. Circulating glucagon stimulates the adipose tissue to release fatty acids stored in triglycerides. The free fatty acids enter the circulation and are taken up primarily by the liver where Continue reading >>

Euglycemic Dka: It’s Not A Myth

Euglycemic Dka: It’s Not A Myth

Background: Diabetic ketoacidosis (DKA) is traditionally defined as a triad of hyperglycemia (>250mg/dL), anion gap acidosis, and increased plasma ketones. There is another entity that providers must be aware of known as euglycemic DKA (euDKA), which is essentially DKA without the hyperglycemia (Serum glucose <200 mg/dL). Euglycemic DKA is a rare entity that mostly occurs in patients with type 1 diabetes, but can possibly occur in type 2 diabetes as well. The exact mechanism of euDKA is not entirely known, but has been associated with partial treatment of diabetes, carbohydrate food restriction, alcohol intake, and inhibition of gluconeogenesis. euDKA, can also be associated with sodium-glucose cotransporter 2 (SGLT-2) inhibitor medications. These medications first came onto the market in 2013 and are FDA approved for the treatment of type 2 diabetes, however many physicians use them off-label for type I diabetes due to their ability to improve average glucose levels, reduce glycemic variability without increasing hypoglycemia, and finally promote weight loss. Does euDKA Exist even in Patients not Using SGLT-2 Inhibitors? The short answer is YES. Munro JF et al [5] reviewed a case series of 37 episodes of euDKA in a publication from 1973. Although, dated and not robust evidence some take home messages can be derived: All but one episode was in insulin dependent diabetics Vomiting was the most frequent symptom of euDKA in 32% of patients Management in most cases consisted of: Intravenous fluids and electrolyte replacement. No deaths occurred in this case series What are the Names of the SGLT-2 Inhibitors? Ipragliflozin (Suglat) – Approved in Japan Dapagliflozin (Farxiga) – 1st SGLT2 Inhibitor Approved; Approved in US Luseogliflozin (Lusefi) – Approved in Japan Tofo Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a potentially life-threatening complication of diabetes mellitus.[1] Signs and symptoms may include vomiting, abdominal pain, deep gasping breathing, increased urination, weakness, confusion, and occasionally loss of consciousness.[1] A person's breath may develop a specific smell.[1] Onset of symptoms is usually rapid.[1] In some cases people may not realize they previously had diabetes.[1] DKA happens most often in those with type 1 diabetes, but can also occur in those with other types of diabetes under certain circumstances.[1] Triggers may include infection, not taking insulin correctly, stroke, and certain medications such as steroids.[1] DKA results from a shortage of insulin; in response the body switches to burning fatty acids which produces acidic ketone bodies.[3] DKA is typically diagnosed when testing finds high blood sugar, low blood pH, and ketoacids in either the blood or urine.[1] The primary treatment of DKA is with intravenous fluids and insulin.[1] Depending on the severity, insulin may be given intravenously or by injection under the skin.[3] Usually potassium is also needed to prevent the development of low blood potassium.[1] Throughout treatment blood sugar and potassium levels should be regularly checked.[1] Antibiotics may be required in those with an underlying infection.[6] In those with severely low blood pH, sodium bicarbonate may be given; however, its use is of unclear benefit and typically not recommended.[1][6] Rates of DKA vary around the world.[5] In the United Kingdom, about 4% of people with type 1 diabetes develop DKA each year, while in Malaysia the condition affects about 25% a year.[1][5] DKA was first described in 1886 and, until the introduction of insulin therapy in the 1920s, it was almost univ Continue reading >>

Ketoacidosis

Ketoacidosis

Ketoacidosis is a metabolic state associated with high concentrations of ketone bodies, formed by the breakdown of fatty acids and the deamination of amino acids. The two common ketones produced in humans are acetoacetic acid and β-hydroxybutyrate. Ketoacidosis is a pathological metabolic state marked by extreme and uncontrolled ketosis. In ketoacidosis, the body fails to adequately regulate ketone production causing such a severe accumulation of keto acids that the pH of the blood is substantially decreased. In extreme cases ketoacidosis can be fatal.[1] Ketoacidosis is most common in untreated type 1 diabetes mellitus, when the liver breaks down fat and proteins in response to a perceived need for respiratory substrate. Prolonged alcoholism may lead to alcoholic ketoacidosis. Ketoacidosis can be smelled on a person's breath. This is due to acetone, a direct by-product of the spontaneous decomposition of acetoacetic acid. It is often described as smelling like fruit or nail polish remover.[2] Ketosis may also give off an odor, but the odor is usually more subtle due to lower concentrations of acetone. Treatment consists most simply of correcting blood sugar and insulin levels, which will halt ketone production. If the severity of the case warrants more aggressive measures, intravenous sodium bicarbonate infusion can be given to raise blood pH back to an acceptable range. However, serious caution must be exercised with IV sodium bicarbonate to avoid the risk of equally life-threatening hypernatremia. Cause[edit] Three common causes of ketoacidosis are alcohol, starvation, and diabetes, resulting in alcoholic ketoacidosis, starvation ketoacidosis, and diabetic ketoacidosis respectively.[3] In diabetic ketoacidosis, a high concentration of ketone bodies is usually accomp Continue reading >>

Ketoacidosis

Ketoacidosis

GENERAL ketoacidosis is a high anion gap metabolic acidosis due to an excessive blood concentration of ketone bodies (keto-anions). ketone bodies (acetoacetate, beta-hydroxybutyrate, acetone) are released into the blood from the liver when hepatic lipid metabolism has changed to a state of increased ketogenesis. a relative or absolute insulin deficiency is present in all cases. CAUSES The three major types of ketosis are: (i) Starvation ketosis (ii) Alcoholic ketoacidosis (iii) Diabetic ketoacidosis STARVATION KETOSIS when hepatic glycogen stores are exhausted (eg after 12-24 hours of total fasting), the liver produces ketones to provide an energy substrate for peripheral tissues. ketoacidosis can appear after an overnight fast but it typically requires 3 to 14 days of starvation to reach maximal severity. typical keto-anion levels are only 1 to 2 mmol/l and this will usually not alter the anion gap. the acidosis even with quite prolonged fasting is only ever of mild to moderate severity with keto-anion levels up to a maximum of 3 to 5 mmol/l and plasma pH down to 7.3. ketone bodies also stimulate some insulin release from the islets. patients are usually not diabetic. ALCOHOLIC KETOSIS Presentation a chronic alcoholic who has a binge, then stops drinking and has little or no oral food intake for a few days (ethanol and fasting) volume depletion is common and this can result in increased levels of counter regulatory hormones (eg glucagon) levels of free fatty acids (FFA) can be high (eg up to 3.5mM) providing plenty of substrate for the altered hepatic lipid metabolism to produce plenty of ketoanions GI symptoms are common (eg nausea, vomiting, abdominal pain, haematemesis, melaena) acidaemia may be severe (eg pH down to 7.0) plasma glucose may be depressed or normal or Continue reading >>

Euglycemic Diabetic Ketoacidosis: A Review.

Euglycemic Diabetic Ketoacidosis: A Review.

Abstract INTRODUCTION: Diabetic ketoacidosis (DKA) is one of the most serious complications of diabetes. It is characterised by the triad of hyperglycemia (blood sugar >250 mg/dl), metabolic acidosis (arterial pH <7.3 and serum bicarbonate <18 mEq/L) and ketosis. Rarely these patients can present with blood glucose (BG) levels of less than 200 mg/dl, which is defined as euglycemic DKA. The possible etiology of euglycemic DKA includes the recent use of insulin, decreased caloric intake, heavy alcohol consumption, chronic liver disease and glycogen storage disorders. DKA in pregnancy has also been reported to present with euglycemia. The recent use of sodium glucose cotransporter 2 (SGLT2) inhibitors has shed light on another possible mechanism of euglycemic DKA. Clinicians may also be misled by the presence of pseudonormoglycemia. CONCLUSION: Euglycemic DKA thus poses a challenge to physicians, as patients presenting with normal BG levels in ketoacidosis may be overlooked, leading to a delay in appropriate management strategies. In this article, we review all the possible etiologies and the associated pathophysiology of patients presenting with euglycemic DKA. We also discuss the approach to diagnosis and management of such patients. Despite euglycemia, ketoacidosis in diabetic patients remains a medical emergency and must be treated in a quick and appropriate manner. Copyright© Bentham Science Publishers; For any queries, please email at [email protected] Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Diabetic Ketoacidosis Definition Diabetic ketoacidosis is a dangerous complication of diabetes mellitus in which the chemical balance of the body becomes far too acidic. Description Diabetic ketoacidosis (DKA) always results from a severe insulin deficiency. Insulin is the hormone secreted by the body to lower the blood sugar levels when they become too high. Diabetes mellitus is the disease resulting from the inability of the body to produce or respond properly to insulin, required by the body to convert glucose to energy. In childhood diabetes, DKA complications represent the leading cause of death, mostly due to the accumulation of abnormally large amounts of fluid in the brain (cerebral edema). DKA combines three major features: hyperglycemia, meaning excessively high blood sugar kevels; hyperketonemia, meaning an overproduction of ketones by the body; and acidosis, meaning that the blood has become too acidic. Insulin deficiency is responsible for all three conditions: the body glucose goes largely unused since most cells are unable to transport glucose into the cell without the presence of insulin; this condition makes the body use stored fat as an alternative source instead of the unavailable glucose for energy, a process that produces acidic ketones, which build up because they require insulin to be broken down. The presence of excess ketones in the bloodstream in turn causes the blood to become more acidic than the body tissues, which creates a toxic condition. Causes and symptoms DKA is most commonly seen in individuals with type I diabetes, under 19 years of age and is usually caused by the interruption of their insulin treatment or by acute infection or trauma. A small number of people with type II diabetes also experience ketoacidosis, but this is rare give Continue reading >>

Euglycemic Diabetic Ketoacidosis: A Potential Complication Of Treatment With Sodium–glucose Cotransporter 2 Inhibition

Euglycemic Diabetic Ketoacidosis: A Potential Complication Of Treatment With Sodium–glucose Cotransporter 2 Inhibition

OBJECTIVE Sodium–glucose cotransporter 2 (SGLT-2) inhibitors are the most recently approved antihyperglycemic medications. We sought to describe their association with euglycemic diabetic ketoacidosis (euDKA) in hopes that it will enhance recognition of this potentially life-threatening complication. RESEARCH DESIGN AND METHODS Cases identified incidentally are described. RESULTS We identified 13 episodes of SGLT-2 inhibitor–associated euDKA or ketosis in nine individuals, seven with type 1 diabetes and two with type 2 diabetes, from various practices across the U.S. The absence of significant hyperglycemia in these patients delayed recognition of the emergent nature of the problem by patients and providers. CONCLUSIONS SGLT-2 inhibitors seem to be associated with euglycemic DKA and ketosis, perhaps as a consequence of their noninsulin-dependent glucose clearance, hyperglucagonemia, and volume depletion. Patients with type 1 or type 2 diabetes who experience nausea, vomiting, or malaise or develop a metabolic acidosis in the setting of SGLT-2 inhibitor therapy should be promptly evaluated for the presence of urine and/or serum ketones. SGLT-2 inhibitors should only be used with great caution, extensive counseling, and close monitoring in the setting of type 1 diabetes. Sodium–glucose cotransporter 2 (SGLT-2) inhibitors are the newest class of antihyperglycemic medications, first marketed in 2013 for the treatment of type 2 diabetes (1). Limited studies suggest that SGLT-2 inhibitors may be effective in addressing many of the unmet needs of people with type 1 diabetes, including improving average glycemia, while reducing glycemic variability and postprandial hyperglycemia, without increasing hypoglycemia, as well as promoting weight loss while reducing insulin dose Continue reading >>

High Frequency Of Diabetic Ketoacidosis At Diagnosis Of Type 1 Diabetes In Italian Children: A Nationwide Longitudinal Study, 2004–2013

High Frequency Of Diabetic Ketoacidosis At Diagnosis Of Type 1 Diabetes In Italian Children: A Nationwide Longitudinal Study, 2004–2013

This longitudinal population-based study analyses the frequency of diabetic ketoacidosis (DKA) at type 1 diabetes diagnosis in Italian children under 15 years of age, during 2004–2013. DKA was defined as absent (pH ≥ 7.30), mild/moderate (7.1 ≤ pH < 7.30) and severe (pH < 7.1). Two multiple logistic regression models were used to evaluate the time trend of DKA frequency considered as present versus absent and severe versus absent, adjusted for gender, age group and geographical area of residence at diagnosis. Overall, 9,040 cases were ascertained. DKA frequency was 40.3% (95%CI: 39.3–41.4%), with 29.1% and 11.2% for mild/moderate and severe DKA, respectively. Severe DKA increased significantly during the period (OR = 1.03, 95%CI: 1.003–1.05). Younger-age children and children living in Southern Italy compared to Central Italy were at significantly higher risk of DKA and severe DKA. Family history of type 1 diabetes and residence in Sardinia compared to Central Italy were significantly associated with a lower probability of DKA and severe DKA. The high frequency of ketoacidosis in Italy over time and high variability among age groups and geographical area of residence, strongly suggests a continuing need for nationwide healthcare strategies to increase awareness of early detection of diabetes. Diabetology Despite increasing social awareness of diabetes1, diabetic ketoacidosis (DKA) still remains a major cause of diabetes-related morbidity and mortality in young people2. Although the frequency of DKA varies widely between countries, levels of DKA at diagnosis of type 1 diabetes seem to be constant in Germany3, Great Britain4, Austria5 and the Unites States6. A recent Italian study on DKA incidence at diagnosis in Italy during the calendar years 2012–2013 showe Continue reading >>

Diabetic Ketoacidosis - Definition

Diabetic Ketoacidosis - Definition

Definition Diabetic ketoacidosis is a complication of diabetes consisting of an acidification of the blood. When there is a lack of insulin in the blood (which is the case in diabetes), the degradation of lipids is raised to supply energy to the organism and this degradation forms ketone bodies. It is these ketone bodies that, in excessive amounts, are responsible for the acidification of the blood. Diabetic ketoacidosis can be a way of discovering diabetes, but can also appear in stable diabetics due to an error in taking insulin, an infection, a stressful event, or an intercurrent event such as cardiac arrest. This document, titled "Diabetic ketoacidosis - Definition," is available under the Creative Commons license. Any copy, reuse, or modification of the content should be sufficiently credited to CCM Health (health.ccm.net). Continue reading >>

Diabetic Ketoacidosis - Symptoms

Diabetic Ketoacidosis - Symptoms

A A A Diabetic Ketoacidosis Diabetic ketoacidosis (DKA) results from dehydration during a state of relative insulin deficiency, associated with high blood levels of sugar level and organic acids called ketones. Diabetic ketoacidosis is associated with significant disturbances of the body's chemistry, which resolve with proper therapy. Diabetic ketoacidosis usually occurs in people with type 1 (juvenile) diabetes mellitus (T1DM), but diabetic ketoacidosis can develop in any person with diabetes. Since type 1 diabetes typically starts before age 25 years, diabetic ketoacidosis is most common in this age group, but it may occur at any age. Males and females are equally affected. Diabetic ketoacidosis occurs when a person with diabetes becomes dehydrated. As the body produces a stress response, hormones (unopposed by insulin due to the insulin deficiency) begin to break down muscle, fat, and liver cells into glucose (sugar) and fatty acids for use as fuel. These hormones include glucagon, growth hormone, and adrenaline. These fatty acids are converted to ketones by a process called oxidation. The body consumes its own muscle, fat, and liver cells for fuel. In diabetic ketoacidosis, the body shifts from its normal fed metabolism (using carbohydrates for fuel) to a fasting state (using fat for fuel). The resulting increase in blood sugar occurs, because insulin is unavailable to transport sugar into cells for future use. As blood sugar levels rise, the kidneys cannot retain the extra sugar, which is dumped into the urine, thereby increasing urination and causing dehydration. Commonly, about 10% of total body fluids are lost as the patient slips into diabetic ketoacidosis. Significant loss of potassium and other salts in the excessive urination is also common. The most common Continue reading >>

What You Should Know About Diabetic Ketoacidosis

What You Should Know About Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a serious condition that can occur in diabetes. DKA happens when acidic substances, called ketones, build up in your body. Ketones are formed when your body burns fat for fuel instead of sugar, or glucose. That can happen if you don’t have enough insulin in your body to help you process sugars. Learn more: Ketosis vs. ketoacidosis: What you should know » Left untreated, ketones can build up to dangerous levels. DKA can occur in people who have type 1 or type 2 diabetes, but it’s rare in people with type 2 diabetes. DKA can also develop if you are at risk for diabetes, but have not received a formal diagnosis. It can be the first sign of type 1 diabetes. DKA is a medical emergency. Call your local emergency services immediately if you think you are experiencing DKA. Symptoms of DKA can appear quickly and may include: frequent urination extreme thirst high blood sugar levels high levels of ketones in the urine nausea or vomiting abdominal pain confusion fruity-smelling breath a flushed face fatigue rapid breathing dry mouth and skin It is important to make sure you consult with your doctor if you experience any of these symptoms. If left untreated, DKA can lead to a coma or death. All people who use insulin should discuss the risk of DKA with their healthcare team, to make sure a plan is in place. If you think you are experiencing DKA, seek immediate medical help. Learn more: Blood glucose management: Checking for ketones » If you have type 1 diabetes, you should maintain a supply of home urine ketone tests. You can use these to test your ketone levels. A high ketone test result is a symptom of DKA. If you have type 1 diabetes and have a glucometer reading of over 250 milligrams per deciliter twice, you should test your urine for keton Continue reading >>

Ketoacidosis

Ketoacidosis

ke·to·a·ci·do·sis pl. ke·to·a·ci·do·ses, Metabolic acidosis caused by an abnormally high concentration of ketone bodies in the blood and body tissues. This condition occurring as a complication of untreated or improperly controlled diabetes mellitus, especially type 1 diabetes, characterized by thirst, fatigue, a fruity odor on the breath, and other symptoms, and having the potential to progress to coma or death. Also called diabetic ketoacidosis . THE AMERICAN HERITAGE® DICTIONARY OF THE ENGLISH LANGUAGE, FIFTH EDITION by the Editors of the American Heritage Dictionaries. Copyright © 2016, 2011 by Houghton Mifflin Harcourt Publishing Company. Published by Houghton Mifflin Harcourt Publishing Company. All rights reserved. ketoacidosis Continue reading >>

More in ketosis