diabetestalk.net

Ketoacidosis Causes

Diabetic Ketoacidosis Symptoms

Diabetic Ketoacidosis Symptoms

What is diabetic ketoacidosis? Diabetic ketoacidosis, also referred to as simply ketoacidosis or DKA, is a serious and even life-threatening complication of type 1 diabetes. DKA is rare in people with type 2 diabetes. DKA is caused when insulin levels are low and not enough glucose can get into the body's cells. Without glucose for energy, the body starts to burn fat for energy. Ketones are products that are created when the body burns fat. The buildup of ketones causes the blood to become more acidic. The high levels of blood glucose in DKA cause the kidneys to excrete glucose and water, leading to dehydration and imbalances in body electrolyte levels. Diabetic ketoacidosis most commonly develops either due to an interruption in insulin treatment or a severe illness, including the flu. What are the symptoms and signs of diabetic ketoacidosis? The development of DKA is usually a slow process. However, if vomiting develops, the symptoms can progress more rapidly due to the more rapid loss of body fluid. Excessive urination, which occurs because the kidneys try to rid the body of excess glucose, and water is excreted along with the glucose High blood glucose (sugar) levels The presence of ketones in the urine Other signs and symptoms of ketoacidosis occur as the condition progresses: These include: Fatigue, which can be severe Flushing of the skin Fruity odor to the breath, caused by ketones Difficulty breathing Type 2 Diabetes Diagnosis, Treatment, Medication What should I do if I think I may have, or someone I know may diabetic ketoacidosis? You should test your urine for ketones if you suspect you have early symptoms or warning signs of ketoacidosis. Call your health-care professional if your urine shows high levels of ketones. High levels of ketones and high blood sug Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Practice Essentials Diabetic ketoacidosis (DKA) is an acute, major, life-threatening complication of diabetes that mainly occurs in patients with type 1 diabetes, but it is not uncommon in some patients with type 2 diabetes. This condition is a complex disordered metabolic state characterized by hyperglycemia, ketoacidosis, and ketonuria. Signs and symptoms The most common early symptoms of DKA are the insidious increase in polydipsia and polyuria. The following are other signs and symptoms of DKA: Nausea and vomiting; may be associated with diffuse abdominal pain, decreased appetite, and anorexia History of failure to comply with insulin therapy or missed insulin injections due to vomiting or psychological reasons or history of mechanical failure of insulin infusion pump Altered consciousness (eg, mild disorientation, confusion); frank coma is uncommon but may occur when the condition is neglected or with severe dehydration/acidosis Signs and symptoms of DKA associated with possible intercurrent infection are as follows: See Clinical Presentation for more detail. Diagnosis On examination, general findings of DKA may include the following: Characteristic acetone (ketotic) breath odor In addition, evaluate patients for signs of possible intercurrent illnesses such as MI, UTI, pneumonia, and perinephric abscess. Search for signs of infection is mandatory in all cases. Testing Initial and repeat laboratory studies for patients with DKA include the following: Serum electrolyte levels (eg, potassium, sodium, chloride, magnesium, calcium, phosphorus) Note that high serum glucose levels may lead to dilutional hyponatremia; high triglyceride levels may lead to factitious low glucose levels; and high levels of ketone bodies may lead to factitious elevation of creatinine levels. Continue reading >>

Recurrent Diabetic Ketoacidosis: Causes, Prevention And Management.

Recurrent Diabetic Ketoacidosis: Causes, Prevention And Management.

Abstract Longitudinal studies indicate that 20% of paediatric patients account for 80% of all admissions for diabetic ketoacidosis (DKA). The frequency of DKA peaks during adolescence and, although individuals generally go into remission, they may continue to have bouts of recurrent DKA in adulthood. The evidence for insulin omission being the behavioural precursor to recurrent DKA is reviewed and discussed. Thereafter the range of possible psychosocial causes is explored and the evidence for each discussed. Approaches to assessing the individual and their family to identify aetiology and therefore appropriate intervention are considered and treatment options reviewed. Finally, the paper examines potential risk factors for recurrent DKA, possible strategies for identifying these early and how to use these assessments to prevent subsequent recurrent DKA. Continue reading >>

Cardiovascular Complications Of Ketoacidosis

Cardiovascular Complications Of Ketoacidosis

US Pharm. 2016;41(2):39-42. ABSTRACT: Ketoacidosis is a serious medical emergency requiring hospitalization. It is most commonly associated with diabetes and alcoholism, but each type is treated differently. Some treatments for ketoacidosis, such as insulin and potassium, are considered high-alert medications, and others could result in electrolyte imbalances. Several cardiovascular complications are associated with ketoacidosis as a result of electrolyte imbalances, including arrhythmias, ECG changes, ventricular tachycardia, and cardiac arrest, which can be prevented with appropriate initial treatment. Acute myocardial infarction can predispose patients with diabetes to ketoacidosis and worsen their cardiovascular outcomes. Cardiopulmonary complications such as pulmonary edema and respiratory failure have also been seen with ketoacidosis. Overall, the mortality rate of ketoacidosis is low with proper and urgent medical treatment. Hospital pharmacists can help ensure standardization and improve the safety of pharmacotherapy for ketoacidosis. In the outpatient setting, pharmacists can educate patients on prevention of ketoacidosis and when to seek medical attention. Metabolic acidosis occurs as a result of increased endogenous acid production, a decrease in bicarbonate, or a buildup of endogenous acids.1 Ketoacidosis is a metabolic disorder in which regulation of ketones is disrupted, leading to excess secretion, accumulation, and ultimately a decrease in the blood pH.2 Acidosis is defined by a serum pH <7.35, while a pH <6.8 is considered incompatible with life.1,3 Ketone formation occurs by breakdown of fatty acids. Insulin inhibits beta-oxidation of fatty acids; thus, low levels of insulin accelerate ketone formation, which can be seen in patients with diabetes. Extr Continue reading >>

An Unusual Cause For Ketoacidosis

An Unusual Cause For Ketoacidosis

Abstract Introduction In our continuing series on the application of principles of integrative physiology at the bedside, once again the central figure is an imaginary consultant, the renal and metabolic physiologist, Professor McCance, who deals with data from a real case. On this occasion his colleague Sir Hans Krebs, an expert in the field of glucose and energy metabolism, assists him in the analysis. Their emphasis is on concepts that depend on an understanding of physiology that crosses subspecialty boundaries. To avoid overwhelming the reader with details, key facts are provided, but only when necessary. The overall objective of this teaching exercise is to demonstrate how application of simple principles of integrative physiology at the bedside can be extremely helpful for clinical decision-making (Table 1). Principle Comment 1. A high H+ concentration per se is seldom life-threatening The threat to survival is usually due to the cause for the acidosis rather than the pH per se 2. Finding a new anion means a new acid was added Look in plasma (anion gap) and urine (net charge) to identify the new anions 3. Identify the acid by thinking of the properties of the anion Rate of production, rapidity of clearance from plasma, and unique toxic effects may all provide clues 4. Metabolic acidosis develops when the kidney fails to add new HCO3 to the body The kidney generates HCO3− by excreting NH4+, (usually with Cl−), in the urine 5. Ketoacids are brain fuels, produced when there is a prolonged lack of insulin The usual causes are diabetic ketoacidosis, alcoholic ketoacidosis, starvation or hypoglycemia-induced ketoacidosis, or that associated with salicylate overdose 6. Ketoacids are produced in the liver from acetyl-CoA, usually derived from fatty acids A low net in Continue reading >>

Ketoacidosis During A Low-carbohydrate Diet

Ketoacidosis During A Low-carbohydrate Diet

To the Editor: It is believed that low-carbohydrate diets work best in reducing weight when producing ketosis.1 We report on a 51-year-old white woman who does not have diabetes but had ketoacidosis while consuming a “no-carbohydrate” diet. There was no family history of diabetes, and she was not currently taking any medications. While adhering to a regimen of carbohydrate restriction, she reached a stable weight of 59.1 kg, a decrease from 72.7 kg. After several months of stable weight, she was admitted to the hospital four times with vomiting but without abdominal pain. On each occasion, she reported no alcohol use. Her body-mass index (the weight in kilograms divided by the square of the height in meters) was 26.7 before the weight loss and 21.7 afterward. Laboratory evaluation showed anion-gap acidosis, ketonuria, and elevated plasma glucose concentrations on three of the four occasions (Table 1). She had normal concentrations of plasma lactate and glycosylated hemoglobin. Screening for drugs, including ethyl alcohol and ethylene glycol, was negative. Abdominal ultrasonography showed hepatic steatosis. On each occasion, the patient recovered after administration of intravenous fluids and insulin, was prescribed insulin injections on discharge, and gradually reduced the use of insulin and then discontinued it while remaining euglycemic for six months or more between episodes. Testing for antibodies against glutamic acid decarboxylase and antinuclear antibodies was negative. Values on lipid studies were as follows: serum triglycerides, 102 mg per deciliter; high-density lipoprotein (HDL) cholesterol, 50 mg per deciliter; and calculated low-density lipoprotein (LDL) cholesterol, 189 mg per deciliter. The patient strictly adhered to a low-carbohydrate diet for four Continue reading >>

Diabetes With Ketone Bodies In Dogs

Diabetes With Ketone Bodies In Dogs

Studies show that female dogs (particularly non-spayed) are more prone to DKA, as are older canines. Diabetic ketoacidosis is best classified through the presence of ketones that exist in the liver, which are directly correlated to the lack of insulin being produced in the body. This is a very serious complication, requiring immediate veterinary intervention. Although a number of dogs can be affected mildly, the majority are very ill. Some dogs will not recover despite treatment, and concurrent disease has been documented in 70% of canines diagnosed with DKA. Diabetes with ketone bodies is also described in veterinary terms as diabetic ketoacidosis or DKA. It is a severe complication of diabetes mellitus. Excess ketone bodies result in acidosis and electrolyte abnormalities, which can lead to a crisis situation for your dog. If left in an untreated state, this condition can and will be fatal. Some dogs who are suffering from diabetic ketoacidosis may present as systemically well. Others will show severe illness. Symptoms may be seen as listed below: Change in appetite (either increase or decrease) Increased thirst Frequent urination Vomiting Abdominal pain Mental dullness Coughing Fatigue or weakness Weight loss Sometimes sweet smelling breath is evident Slow, deep respiration. There may also be other symptoms present that accompany diseases that can trigger DKA, such as hypothyroidism or Cushing’s disease. While some dogs may live fairly normal lives with this condition before it is diagnosed, most canines who become sick will do so within a week of the start of the illness. There are four influences that can bring on DKA: Fasting Insulin deficiency as a result of unknown and untreated diabetes, or insulin deficiency due to an underlying disease that in turn exacerba Continue reading >>

> Hyperglycemia And Diabetic Ketoacidosis

> Hyperglycemia And Diabetic Ketoacidosis

When blood glucose levels (also called blood sugar levels) are too high, it's called hyperglycemia. Glucose is a sugar that comes from foods, and is formed and stored inside the body. It's the main source of energy for the body's cells and is carried to each through the bloodstream. But even though we need glucose for energy, too much glucose in the blood can be unhealthy. Hyperglycemia is the hallmark of diabetes — it happens when the body either can't make insulin (type 1 diabetes) or can't respond to insulin properly (type 2 diabetes). The body needs insulin so glucose in the blood can enter the cells to be used for energy. In people who have developed diabetes, glucose builds up in the blood, resulting in hyperglycemia. If it's not treated, hyperglycemia can cause serious health problems. Too much sugar in the bloodstream for long periods of time can damage the vessels that supply blood to vital organs. And, too much sugar in the bloodstream can cause other types of damage to body tissues, which can increase the risk of heart disease and stroke, kidney disease, vision problems, and nerve problems in people with diabetes. These problems don't usually show up in kids or teens with diabetes who have had the disease for only a few years. However, they can happen in adulthood in some people, particularly if they haven't managed or controlled their diabetes properly. Blood sugar levels are considered high when they're above someone's target range. The diabetes health care team will let you know what your child's target blood sugar levels are, which will vary based on factors like your child's age. A major goal in controlling diabetes is to keep blood sugar levels as close to the desired range as possible. It's a three-way balancing act of: diabetes medicines (such as in Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

What Is It? Diabetic ketoacidosis is a potentially fatal complication of diabetes that occurs when you have much less insulin than your body needs. This problem causes the blood to become acidic and the body to become dangerously dehydrated. Diabetic ketoacidosis can occur when diabetes is not treated adequately, or it can occur during times of serious sickness. To understand this illness, you need to understand the way your body powers itself with sugar and other fuels. Foods we eat are broken down by the body, and much of what we eat becomes glucose (a type of sugar), which enters the bloodstream. Insulin helps glucose to pass from the bloodstream into body cells, where it is used for energy. Insulin normally is made by the pancreas, but people with type 1 diabetes (insulin-dependent diabetes) don't produce enough insulin and must inject it daily. Your body needs a constant source of energy. When you have plenty of insulin, your body cells can get all the energy they need from glucose. If you don't have enough insulin in your blood, your liver is programmed to manufacture emergency fuels. These fuels, made from fat, are called ketones (or keto acids). In a pinch, ketones can give you energy. However, if your body stays dependent on ketones for energy for too long, you soon will become ill. Ketones are acidic chemicals that are toxic at high concentrations. In diabetic ketoacidosis, ketones build up in the blood, seriously altering the normal chemistry of the blood and interfering with the function of multiple organs. They make the blood acidic, which causes vomiting and abdominal pain. If the acid level of the blood becomes extreme, ketoacidosis can cause falling blood pressure, coma and death. Ketoacidosis is always accompanied by dehydration, which is caused by high Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Patient professional reference Professional Reference articles are written by UK doctors and are based on research evidence, UK and European Guidelines. They are designed for health professionals to use. You may find the Pre-diabetes (Impaired Glucose Tolerance) article more useful, or one of our other health articles. See also the separate Childhood Ketoacidosis article. Diabetic ketoacidosis (DKA) is a medical emergency with a significant morbidity and mortality. It should be diagnosed promptly and managed intensively. DKA is characterised by hyperglycaemia, acidosis and ketonaemia:[1] Ketonaemia (3 mmol/L and over), or significant ketonuria (more than 2+ on standard urine sticks). Blood glucose over 11 mmol/L or known diabetes mellitus (the degree of hyperglycaemia is not a reliable indicator of DKA and the blood glucose may rarely be normal or only slightly elevated in DKA). Bicarbonate below 15 mmol/L and/or venous pH less than 7.3. However, hyperglycaemia may not always be present and low blood ketone levels (<3 mmol/L) do not always exclude DKA.[2] Epidemiology DKA is normally seen in people with type 1 diabetes. Data from the UK National Diabetes Audit show a crude one-year incidence of 3.6% among people with type 1 diabetes. In the UK nearly 4% of people with type 1 diabetes experience DKA each year. About 6% of cases of DKA occur in adults newly presenting with type 1 diabetes. About 8% of episodes occur in hospital patients who did not primarily present with DKA.[2] However, DKA may also occur in people with type 2 diabetes, although people with type 2 diabetes are much more likely to have a hyperosmolar hyperglycaemic state. Ketosis-prone type 2 diabetes tends to be more common in older, overweight, non-white people with type 2 diabetes, and DKA may be their Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a potentially life-threatening complication of diabetes mellitus.[1] Signs and symptoms may include vomiting, abdominal pain, deep gasping breathing, increased urination, weakness, confusion, and occasionally loss of consciousness.[1] A person's breath may develop a specific smell.[1] Onset of symptoms is usually rapid.[1] In some cases people may not realize they previously had diabetes.[1] DKA happens most often in those with type 1 diabetes, but can also occur in those with other types of diabetes under certain circumstances.[1] Triggers may include infection, not taking insulin correctly, stroke, and certain medications such as steroids.[1] DKA results from a shortage of insulin; in response the body switches to burning fatty acids which produces acidic ketone bodies.[3] DKA is typically diagnosed when testing finds high blood sugar, low blood pH, and ketoacids in either the blood or urine.[1] The primary treatment of DKA is with intravenous fluids and insulin.[1] Depending on the severity, insulin may be given intravenously or by injection under the skin.[3] Usually potassium is also needed to prevent the development of low blood potassium.[1] Throughout treatment blood sugar and potassium levels should be regularly checked.[1] Antibiotics may be required in those with an underlying infection.[6] In those with severely low blood pH, sodium bicarbonate may be given; however, its use is of unclear benefit and typically not recommended.[1][6] Rates of DKA vary around the world.[5] In the United Kingdom, about 4% of people with type 1 diabetes develop DKA each year, while in Malaysia the condition affects about 25% a year.[1][5] DKA was first described in 1886 and, until the introduction of insulin therapy in the 1920s, it was almost univ Continue reading >>

Understanding And Treating Diabetic Ketoacidosis

Understanding And Treating Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a serious metabolic disorder that can occur in animals with diabetes mellitus (DM).1,2 Veterinary technicians play an integral role in managing and treating patients with this life-threatening condition. In addition to recognizing the clinical signs of this disorder and evaluating the patient's response to therapy, technicians should understand how this disorder occurs. DM is caused by a relative or absolute lack of insulin production by the pancreatic b-cells or by inactivity or loss of insulin receptors, which are usually found on membranes of skeletal muscle, fat, and liver cells.1,3 In dogs and cats, DM is classified as either insulin-dependent (the body is unable to produce sufficient insulin) or non-insulin-dependent (the body produces insulin, but the tissues in the body are resistant to the insulin).4 Most dogs and cats that develop DKA have an insulin deficiency. Insulin has many functions, including the enhancement of glucose uptake by the cells for energy.1 Without insulin, the cells cannot access glucose, thereby causing them to undergo starvation.2 The unused glucose remains in the circulation, resulting in hyperglycemia. To provide cells with an alternative energy source, the body breaks down adipocytes, releasing free fatty acids (FFAs) into the bloodstream. The liver subsequently converts FFAs to triglycerides and ketone bodies. These ketone bodies (i.e., acetone, acetoacetic acid, b-hydroxybutyric acid) can be used as energy by the tissues when there is a lack of glucose or nutritional intake.1,2 The breakdown of fat, combined with the body's inability to use glucose, causes many pets with diabetes to present with weight loss, despite having a ravenous appetite. If diabetes is undiagnosed or uncontrolled, a series of metab Continue reading >>

Diabetic Ketoacidosis (dka) - Topic Overview

Diabetic Ketoacidosis (dka) - Topic Overview

Diabetic ketoacidosis (DKA) is a life-threatening condition that develops when cells in the body are unable to get the sugar (glucose) they need for energy because there is not enough insulin. When the sugar cannot get into the cells, it stays in the blood. The kidneys filter some of the sugar from the blood and remove it from the body through urine. Because the cells cannot receive sugar for energy, the body begins to break down fat and muscle for energy. When this happens, ketones, or fatty acids, are produced and enter the bloodstream, causing the chemical imbalance (metabolic acidosis) called diabetic ketoacidosis. Ketoacidosis can be caused by not getting enough insulin, having a severe infection or other illness, becoming severely dehydrated, or some combination of these things. It can occur in people who have little or no insulin in their bodies (mostly people with type 1 diabetes but it can happen with type 2 diabetes, especially children) when their blood sugar levels are high. Your blood sugar may be quite high before you notice symptoms, which include: Flushed, hot, dry skin. Feeling thirsty and urinating a lot. Drowsiness or difficulty waking up. Young children may lack interest in their normal activities. Rapid, deep breathing. A strong, fruity breath odor. Loss of appetite, belly pain, and vomiting. Confusion. Laboratory tests, including blood and urine tests, are used to confirm a diagnosis of diabetic ketoacidosis. Tests for ketones are available for home use. Keep some test strips nearby in case your blood sugar level becomes high. When ketoacidosis is severe, it must be treated in the hospital, often in an intensive care unit. Treatment involves giving insulin and fluids through your vein and closely watching certain chemicals in your blood (electrolyt Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

The Facts Diabetic ketoacidosis (DKA) is a condition that may occur in people who have diabetes, most often in those who have type 1 (insulin-dependent) diabetes. It involves the buildup of toxic substances called ketones that make the blood too acidic. High ketone levels can be readily managed, but if they aren't detected and treated in time, a person can eventually slip into a fatal coma. DKA can occur in people who are newly diagnosed with type 1 diabetes and have had ketones building up in their blood prior to the start of treatment. It can also occur in people already diagnosed with type 1 diabetes that have missed an insulin dose, have an infection, or have suffered a traumatic event or injury. Although much less common, DKA can occasionally occur in people with type 2 diabetes under extreme physiologic stress. Causes With type 1 diabetes, the pancreas is unable to make the hormone insulin, which the body's cells need in order to take in glucose from the blood. In the case of type 2 diabetes, the pancreas is unable to make sufficient amounts of insulin in order to take in glucose from the blood. Glucose, a simple sugar we get from the foods we eat, is necessary for making the energy our cells need to function. People with diabetes can't get glucose into their cells, so their bodies look for alternative energy sources. Meanwhile, glucose builds up in the bloodstream, and by the time DKA occurs, blood glucose levels are often greater than 22 mmol/L (400 mg/dL) while insulin levels are very low. Since glucose isn't available for cells to use, fat from fat cells is broken down for energy instead, releasing ketones. Ketones accumulate in the blood, causing it to become more acidic. As a result, many of the enzymes that control the body's metabolic processes aren't able Continue reading >>

Recurrent Diabetic Ketoacidosis: Causes, Prevention And Management

Recurrent Diabetic Ketoacidosis: Causes, Prevention And Management

Abstract Longitudinal studies indicate that 20% of paediatric patients account for 80% of all admissions for diabetic ketoacidosis (DKA). The frequency of DKA peaks during adolescence and, although individuals generally go into remission, they may continue to have bouts of recurrent DKA in adulthood. The evidence for insulin omission being the behavioural precursor to recurrent DKA is reviewed and discussed. Thereafter the range of possible psychosocial causes is explored and the evidence for each discussed. Approaches to assessing the individual and their family to identify aetiology and therefore appropriate intervention are considered and treatment options reviewed. Finally, the paper examines potential risk factors for recurrent DKA, possible strategies for identifying these early and how to use these assessments to prevent subsequent recurrent DKA. © 2002 S. Karger AG, Basel References Continue reading >>

More in ketosis